Errata

Title & Document Type: 3776A/B PCM Terminal Test Set Service Manual

Manual Part Number: 03776-90013

Revision Date: March 1985

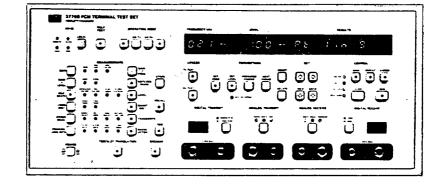
HP References in this Manual

This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this manual copy. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A.

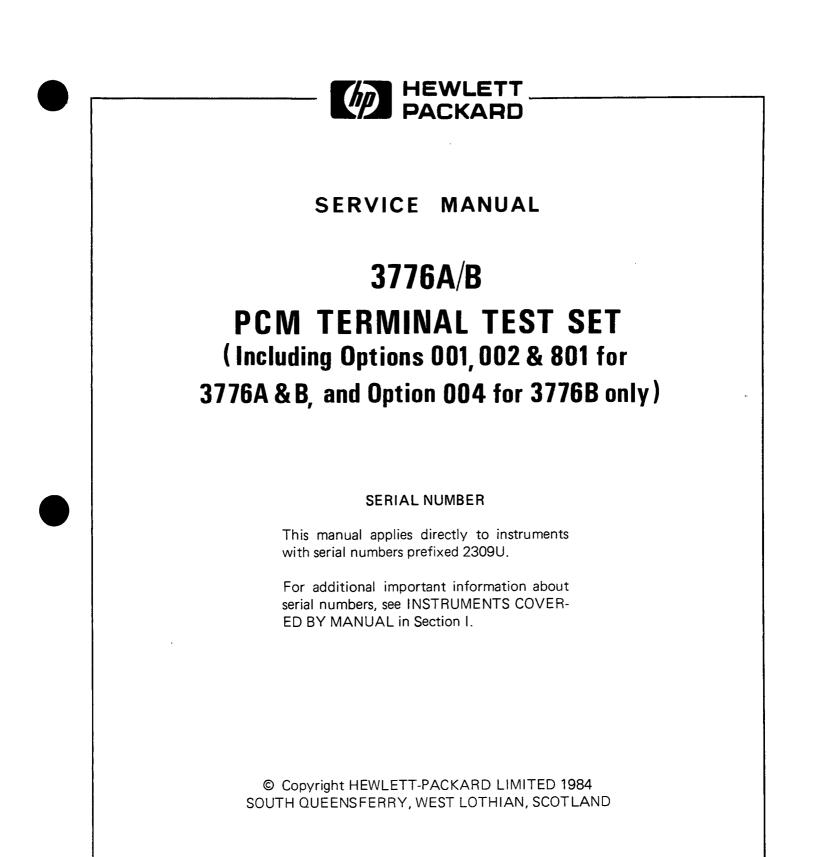
About this Manual

We've added this manual to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

Support for Your Product


Agilent no longer sells or supports this product. You will find any other available product information on the Agilent Test & Measurement website:

www.tm.agilent.com


Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.

3776A/B PCM TERMINAL TEST SET

Manual Part Number 03776-90013 Microfiche Part Number 03776-90038

Printed: March 1985

WARNING

READ THE FOLLOWING NOTES BEFORE INSTALLING OR SERVICING THE INSTRU-MENT.

- 1. IF THIS INSTRUMENT IS TO BE ENERGIZED VIA AN AUTO-TRANSFORMER MAKE SURE THAT THE COMMON TERMINAL OF THE AUTO-TRANSFORMER IS CONNEC-TED TO THE NEUTRAL POLE OF THE POWER SOURCE.
- 2. THE INSTRUMENT MUST ONLY BE USED WITH THE MAINS CABLE PROVIDED. IF THIS IS NOT SUITABLE, CONTACT YOUR NEAREST HP SERVICE OFFICE. THE MAINS PLUG SHALL ONLY BE INSERTED IN A SOCKET OUTLET PROVIDED WITH A PROTECTIVE EARTH CONTACT. THE PROTECTIVE ACTION MUST NOT BE NE-GATED BY THE USE OF AN EXTENSION CORD (POWER CABLE) WITHOUT A PRO-TECTIVE CONDUCTOR (GROUNDING).
- 3. THE SERVICE INFORMATION FOUND IN THIS MANUAL IS OFTEN USED WITH POWER SUPPLIED TO AND PROTECTIVE COVERS REMOVED FROM THE INSTRU-MENT. ENERGY AVAILABLE AT MANY POINTS MAY, IF CONTACTED, RESULT IN PERSONAL INJURY.
- 4. BEFORE SWITCHING ON THIS INSTRUMENT:
 - (a) Make sure the instrument input voltage selector is set to the voltage of the power source.
 - (b) Ensure that all devices connected to this instrument are connected to the protective (earth) ground.
 - (c) Ensure that the line power (mains) plug is connected to a three-conductor line power outlet that has a protective (earth) ground. (Grounding one conductor of a two-conductor outlet is not sufficient).
 - (d) Check that the instrument fuse(s) is of the correct type and rating.
- 5. SERVICING INFORMATION:
 - (a) This manual contains information, cautions, and warnings which must be followed to ensure safe operation and to retain the instrument in safe condition. Service and adjustments should be performed only by qualified service personnel.
 - (b) Any adjustment, maintenance, and repair of the opened instrument under voltage should be avoided as much as possible and, when inevitable, should be carried out only by a skilled person who is aware of the hazard involved.
 - (c) Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source of supply.
 - (d) Whenever it is likely that the protection has been impaired, the instrument must be made inoperative and be secured against any unintended operation.

LIST OF CONTENTS SECTION I GENERAL INFORMATION

Paragraph	1-1	INTRODUCTION Page 1-1
	1-5	SPECIFICATION 1-1
	1-7	SAFETY CONSIDERATION 1-1
	1-9	INSTRUMENTS COVERED BY MANUAL 1-1
	1-14	DESCRIPTION 1- 2
	1-21	ACCESSORIES SUPPLIED 1- 3
	1-23	EQUIPMENT AVAILABLE 1- 3
	1-26	OPTIONS 1-4
	1-28	RECOMMENDED TEST EQUIPMENT 1-4
Figure ·	1-1	The 3776 PCM Terminal Test Set with Acessories Supplied 1-0
Table	1-1	Summary of Measurements Available Page 1-2
	1-2	Index to Specifications in Table 1-3 1-5
	1-3	Specifications 1-6
	1-4	Recommended Test Equipment 1-70

SECTION II INSTALLATION

Paragraph	2-1	INTRODUCTION Page 2-1
	2-3	INITIAL INSPECTION 2-1
	2-5	PREPARATION FOR USE 2- 1
	2-6	Power Requirements 2- 2
	2-8	Line Voltage Selection and Fuse 2- 2
	2-11	Power Cable 2- 2
	2-14	Operating Environment 2- 3
	2-19	MATING CONNECTORS 2- 3
	2-21	RACK MOUNTING
	2-23	HEWLETT-PACKARD INTERFACE (HP-IB) BUS INSTALLATION 2-6
	2-26	Connection to the HP-IB 2- 6
	2-29	3776 CONFIGURATION 2- 7
	2-31	3776 in TALK ONLY Mode 2- 7
	2-37	3776 Configured as an Addressable Device
	2-39	DIG Rx DATA OUTPUT (rear panel) Connector 2-9
	2-41	STORAGE and SHIPMENT 2-9
	2-45	Packaging
	2-49	INTERNAL BATTERY 2-10
Figure	2-1	Power Receptacles Page 2- 2
8	2-2	Connector Configuration 2- 4
	2-3	Rack Mount Kits
	2-4	HP-IB (rear panel) Connector 2- 6
	2-5	HP-IB Switches - 3776 as an Addressable Device
	2-6	DIG Rx DATA OUTPUT Connector
Table	2-1	Fuses Page 2- 2
	2-2	Rear Panel Connectors 2-3
	2-3	Front Panel Connectors 2- 4

2-4	HP-IB Interface Cables
2-5	HP-IB Output Format

.

SECTION III OPERATION

Paragraph	3-1	INTRODUCTION	Page	3-	1
-----------	-----	--------------	------	----	---

SECTION IV PERFORMANCE TESTS

Paragraph	4-1	INTRODUCTION Page	4-	1
	4-7	OPERATIONAL VERIFICATION	4-	1
	4-9	CALIBRATION CYCLE	4-	1
	4-11	OPTIONS	4-	1
	4-13	PERFORMANCE TEST LIST	4-	2
	4-16	EQUIPMENT REQUIRED	4-	2
	4-19	TEST RECORDS	4-	2
	4-21	OPERATIONAL VERIFICATION PROCEDURES	4-	-3
	4-24	POWER ON SEQUENCE	4-	3
	4-25	SEQUENCE DESCRIPTION	4-	
	4-26	SELF-TEST	4-	6
,	4-27	ABSOLUTE LEVEL CHECK	4-	9
	4-28	TEST PROGRAM	4-	11
	4-29	TEST PROGRAM DESCRIPTION	4-	
	4-30	INTERRUPTIONS (3776A)/DROPOUTS (3776B) OPTION 001	4-	
	4-31	INPULSE NOISE (3776B Only) OPTION 001	4-	27
	4-32	IMPULSE NOISE (3776A Only) OPTION 001	4-	29
	4-33	GAIN HITS (OPT 001)	4-	
	4-34	PHASE HITS (OPT 001)	4-	
	4-35	PHASE JITTER (OPT 001)	4-	41
	4-36	SEQUENCE TEST	4-	•••
	4-37	DUAL TONE MULTI-FREQUENCY (DTMF) SIGNALLING TEST	4-	-
	4-38	3776B PCM TESTS	4-	
	4-39	3776A PCM TESTS	4-	
	4-40	ANALOG RECEIVER LEVELS AND LINEARITY	4-	•
	4-41	ANALOG TRANSMITTER LEVELS AND LINEARITY	4-	
	4-42	ANALOG TRANSMITTER FLATNESS	4-	
	4-43	ANALOG RECEIVER FLATNESS	4-	
	4-44	ANALOG RECEIVER DIGITAL FILTER	4-	
	4-45	ANALOG RECEIVER NOISE LINEARITY (3776A ONLY)	4-	
	4-46	ANALOG TO ANALOG (A-A) GAIN	4-	
	4-47	ANALOG RECEIVER NOISE FLOOR	4-	-
	4-48	ANALOG TRANSMITTER SPURIOUS	4-	-
	4-49	ANALOG RECEIVER INTER-MODULATION FLOOR	4-	-
	4-52	ANALOG RECEIVER OUT OF BAND REJECTION	4-	
	4-53	ANALOG RECEIVER ANTI-ALIASING FILTER FLATNESS	4-	-
	4-54	ANALOG TRANSMITTER FREQUENCY ACCURACY		
	4-55	DIGITAL TRANSMITTER EXTERNAL CLOCK INPUT	4-	
	4-56	DIGITAL TRANSMITTER PCM WAVEFORMS	4-	-
	4-57	DIGITAL RECEIVER SENSITIVITY	4-	
	4-58	PHASE JITTER (OPTION 001)	4-	
	4-59	PHASE HITS (OPTION 001)	4-1	.09

	4-60 4-61		4-119
		OPTION 001)	
	4-62		
	4-63	IMPULSE NOISE (3776A ONLY OPTION 001)	4-129
	4-64	ENVELOPE DELAY (3776B OPTION 001)/GROUP DELAY (3776A	
		OPTION 001) AND ATTENUATION DISTORTION	4-132
Table	4-1	Operational Verification Procedures	4- 3
	4-2	Specification Parameter Verification	4- 63
	4-3	Performance Tests	
	4-4	Operational Verification Test Record	4-134
		Performance Tests Test Record	
•			
		SECTION V ADJUSTMENTS	

Paragraph	5-1 5-4 5-7 5-12 5-14 5-16 5-17 5-18 5-19 5-20 5-21	INTRODUCTION. Page SAFETY CONSIDERATIONS. Safety Symbols. EQUIPMENT REQUIRED. ADJUSTMENT LOCATION. Related Adjustments. +5V POWER SUPPLY ADJUSTMENT. +15V POWER SUPPLY ADJUSTMENT. -15V POWER SUPPLY ADJUSTMENT. PROCESSOR CLOCK ADJUSTMENT. CLOCK EXTRACTION ADJUSTMENT. CODEC GAIN ADJUSTMENT.	5
Figure	5-1 5-2 5-3 5-4 5-5 5-6 5-7	Codec Test Set-up.PageA15 Component Location.A16 Component Location.A13 Component Location.A12 Component Location.A12 Component Location.A102 Component Location.	5-9 5-10 5-11
Table	5-1	Adjustable Components Page	5-1

SECTION VI REPLACEABLE PARTS

Paragraph	6-1 6-3 6-5 6-9 6-12	INTRODUCTION	6- 1 6- 1 6- 2
Table	6-1 6-2 6-3 6-4	Unique Board Assemblies Page Reference Designations and Abbreviations	6-3 6-5

List of Contents

Model 3776A/B

SECTION VII MANUAL CHANGES

Paragraph	7-1	INTRODUCTION	Page	7-	1
-----------	-----	--------------	------	----	---

SECTION VIII SERVICE

Paragraph		INTRODUCTION	8-1
	8-3	SAFETY CONSIDERATIONS	0- T
	8-5	ASSEMBLY SERVICE SHEETS	
	8-7	RECOMMENDED TEST EQUIPMENT	
	8-9	TROUBLESHOOTING	
	8-11	REPAIR	
	8-13	After Service Product Safety Checks	8-4
	8-19	SCHEMATIC DIAGRAMS	8-5
•	8-21	LOGIC SYMBOLS	8-6
•	8-23	Qualifiers	8-6
	8-25	Indicator Symbols	8-6
	8-26	Dependancy Notation	8-8
	8-28	Control Blocks	
	8-30	Examples of Logic Devices	8-9
	8-35	THEORY OF OPERATION	8-11
	8-36	INTRODUCTION	
	8-38	TRANSMITTER	
	8-40	Digital Synthesizer and PCM Generator	8-11
	8-41	Digital Transmitter	8-11
	8-44	Analog Transmitter	8-11
	8-46	Monitor	8-12
	8-47	RECEIVER	8-12
	8-49	Digital Receiver and Alignment	8-12
	8-57	Analog Receiver and Autoranging	8-13
	8-61	Digital Filtering	8-13
	8-63	Impulse Noise	8-13
	8-66	Group Delay Distortion	8-14
	8-69	Envelope Delay Distortion	8-14
	8-71	Transients	8-1h
	•	PROCESSOR AND KEYBOARD/DISPLAYS	8_11
	8-72	PROCESSOR AND REIDOARD/DISPERIS	8_1)
	8-73	Processing and Memory	8-15
	8-78	Keyboard and Display	
Figure	8-1	Assembly Location Page	8-3
	8-2	Troubleshooting Layout	8-4
	8-3	Indicator Symbols	8-7
	8-4	Simplified Block Diagram	8-15
	8-5	Overall Block Diagram (in envelope at rear of man	nual)
Table	8-1	3776A and 3776B Assembly Identification Page	8- 2
	8-2	Schematic Diagram Notes	8-5

TROUBLESHOOTING - 1. GENERAL SERVICE SHEETS

C1	PRELIMINARY TROUBLESHOOTING	Page	8-G1-1
GL	POWER SUPPLY		8-G2-1
G2	PROCESSOR & MEMORY		8-G3-1
G3	PROCESSOR & MEMORY		8-01-1
G4	KEYBOARD & DISPLAY	• • • •	9 CE-1
G5	DIGITAL SIGNAL SYNTHESIZER	• • • •	
al	DIGITAL OUTDIT STACE & DIGITAL RECEIVER		0-00-1
A7	ANALOG MOANCHIMED & DECEIVER		0-01-1
a0			0-00-1
G0 G9	TRANSIENTS (OPTION 001)	• • • •	8-G9-1

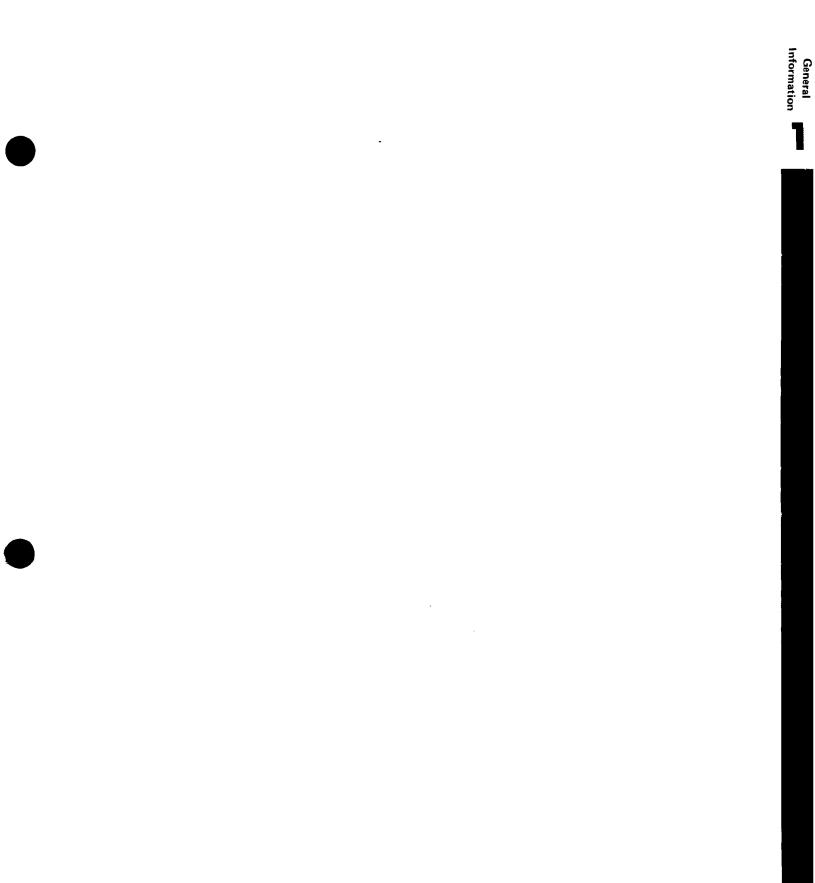
TROUBLESHOOTING - 2. ASSEMBLY SERVICE SHEETS

A1/A101 DIGITAL SYNTHESIZER & PCM GENERATOR Page	• 8-A1-1
A2/A102 DIGITAL PCM TRANSMITTER	8-A2-0
A2/A102 DIGITAL FCM TRANSMITTER.	8-A3-0
A3 ANALOG TRANSMITTER	8-A4-0
A4/A204 ANALOG MONITOR (A204:OPTION 001)	
A5 TRANSIENTS (OPTION 001)	
A6 ANALOG RECEIVER	
AS ANALOG RECEIVER. AND AND AND AND AND DIGITAL OUTPUT STAGE	
AS GROUP DELAY TIMING, IMPULSE NOISE FREQUENCY DETECTOR (OPTION UCI)	0-40-0
	0-49-0
A11/A111 (A11 A-LAW ALIGNMENT: 3776A/A111 U-LAW ALIGNMENT: 3776B)	0-ALT-0
A12/A112 DIGITAL RECEIVER (A12:3776A/A112:3776B)	8-A12-0
A13/A113 PROCESSOR (A13:3776A/A113:3776B)	8-A13-0
A14/A114 MEMORY (A14:3776A/A114:3776B)	8-A14-0
	8-A15-0
	8-A16-0
	8-A20-0
A20 MOTHER BOARD	8-A21-0
A21/A121 KEYBOARD ASSEMBLY (A21:3776A/A121:3776B)	8-A22-0
A22 KEYBOARD AND DISPLAY CONTROLLER	8-A23-0
A22 REAR PANEL CONTROL	8-A24-0
A24 MATNS INPUT	0-424-0

Component Layouts and Schematic Diagrams

Figure

.


A1-7 A1-8 A1-9	A1/A101 Component Location
A2-8 A2-9 A2-10 A2-11	A2 Component Location. 8-A2- 6 A2 Schematic. 8-A2- 7 A102 Component Location. 8-A2- 8 A102 Schematic. 8-A2- 9
A3-3 A3-4 A3-5	A3 Component Location
А4-9 А4-10 А4-11 А4-12	A4 Component Location
A5-8 A5-9 A5-10	A5 Component Location
A6-4 A6-5	A6 Component Location
A7-3 A7-4 A7-5	A7/A107 Component Location
A8-6 A8-7 A8-8 A8-9	A8 Component Location
A9-5 A9-6	A9 Component Location
A11-4 A11-5 A11-6 A11-7 A11-8 A11-9	A11 Component Location
A12-2 A12-3 A12-4	A12/a112 Component Location
	A13/A113 Component Location

A14-2	A14/A114 Component Location	8-A14- 0
A14-3	A14/A114 Schematic	8-A14- 1
A15-3	A15 Component Location	8-A15- 2
A15-4	A15 Schematic	8-A15- 3
A16-2	A16 Component Location	8-A16- 0
A16-3	A16 Schematic	8-A16- 1
A20-1	A20 Component Location	8-A20- 0
A21-1	A21/A121 Component Location	8-A21- 2
A21-2	A21/A121 Schematic	8-A21- 3
A22-8	A22 Component Location	8-A22-6/8
A22-9	A22 Schematic - Part 1	8-A22- 7
A22-10	A22 Schematic - Part 2	8-A22- 9
A23-2	A23 Component Location	8-A23- 0
A23-3	A23 Schematic	8-A23- 1
A24-3	A24 Component Location	8-A24- 0
A24-4	A24 Schematic	8-A24- 1

APPENDICES

APPENDIX A PCM FRAME STRUCTURES	Page	APP-A-1
APPENDIX B ALIASING SIGNALS	• • •	APP-B-1
APPENDIX C CALIBRATION	• • •	APP-C-1
APPENDIX D SERVICE ACCESSORIES	• • •	APP-D-1



Figure 1-1 The 3776 PCM Terminal Test Set with Accessories Supplied

SECTION I GENERAL INFORMATION

1-1 INTRODUCTION

1-2 This Service Manual contains information required to install, test, adjust and service the Hewlett-Packard Model 3776A and 3776B PCM Terminal Test Sets. A PCM Terminal Test Set together with the power cable and extender board supplied are shown in Figure 1-1. The extender board is housed inside the instrument adjacent to assembly A1.

1-3 Operating instructions for the 3776 are contained in a separate Operating Manual.

1-4 On the title page of this manual is a Microfiche Part Number. This number can be used to order 4×6 inch microfilm transparencies of the manual. Each microfiche contains up to 96 photo duplicates of the manual pages.

1-5 SPECIFICATION

1-6 Instrument specifications are listed in Table 1-3. These specifications are the performance standards or limits against which the instrument is tested. Table 1-2 (page 1-5) is a tabular index to facilitate location of individual measurement specifications within Table 1-3.

1-7 SAFETY CONSIDERATION

1-8 This product is a Safety Class 1 instrument (provided with a protective earth terminal). The instrument and manual should be reviewed for safety markings and instructions before operation. Also read the Warning on Page 2.

1-9 INSTRUMENTS COVERED BY MANUAL

1-10 Attached to the instrument is a serial number plate. This serial number is in the form XXXXUXXXXX. It is in two parts; the first four digits and the letter are the serial prefix and the last five are the suffix. The prefix is the same for all identical instruments, it changes only when a change is made to the instrument. The suffix however, is assigned sequentially and is different for each instrument. The contents of this manual apply to instruments with the serial number prefix(es) listed under SERIAL NUMBERS on the title page.

1-11 An instrument manufactured after the printing of this manual may have a serial number prefix that is not listed on the title page. This unlisted serial number prefix indicates the instrument is different from those described in this manual. The manual for this new instrument is accompanied by a Manual Changes supplement. This supplement contains "change information" that explains how to adapt the manual to the newer instrument.

1-12 In addition to change information, the supplement may contain information for correcting errors in the manual. To keep this manual as current and accurate as possible, Hewlett-Packard recommends that you periodically request the latest Manual Changes supplement. The supplement for this manual is identified with the manual print data and part number, both of which appear on the manual title page. Complimentary copies of the supplement are available from Hewlett-Packard.

1-13 For information concerning a serial number prefix that is not listed on the title page or in the Manual

Changes supplement, contact your nearest Hewlett-Packard office.

1-14 DESCRIPTION

1-15 The 3776A and 3776B PCM Terminal Test Sets make comprehensive voice and data measurements on 4kHz bandwidth, analog and digital channels. Besides testing PCM multiplexers and channel banks, these instruments also provide powerful facilities for testing transmultiplexers and digital switching systems. Both versions of HP's Terminal Test Set are fully programmable from an external controller via the HP-IB.

1-16 The 3776A fulfils the measurement needs of CEPT/CCITT transmission networks while the 3776B covers North American/Bell and Japanese systems.

Standard Measurements	A-A	A-D	D-A	D-D		DIG Tx	DIG Rx	AN Rx
	*	*	*	*	*	*	*	*
Gain Disida hull sain	•	•	*	*	•	*	*	*
Digital mW gain	*	*	*	*	*	•	*	*
Level (including harmonic distortion)	*	*	*	*	*	•	*	*
Gain v level (using tone)	*	· *	*	*	*	-	*	*
Gain v level (using noise - 3776A)		· T	*	*	Ť	*	*	*
Gain v level (using sync 2kHz)	*	*	*	*	*		*	*
Gain v frequency	*	*	*	*	*		*	*
Idle state (choice of filters) Coder offset and peak codes	Ť	*	Ŧ	*	*	•	*	~
Noise with tone	*	*	*	*	*		*	*
	*	*	*	*	*	•	*	*
Quantizing distortion (using tone)	*	*	*	*	*	-	*	*
Quantizing distortion (using noise - 3776A) Intermodulation (using two tones)	*	*	*	*	*	•	*	*
Intermodulation (using two tones) Intermodulation (using four tones - 3776B) †	*	*	*	*	*	-	*	*
Digital Tx/Rx		4	4	*		*	*	
Return loss 4W (ERL - 3776B)	*	*	*	*	*	-	*	*
Loop timing (selected by using the FRAMING+				*				
SIG BITS key)								
Option 001 Measurements								
Group delay distortion (3776A)	*	*	*	*	*	*	*	*
Envelope delay distortion	*	*	*	*				
Absolute delay	*	*	*	*				
Phase jitter (choice of filters)	*	*	*	*	*	*	*	*
Re-modulation	*	*						
Transients:	*	*	*	*	*	*	*	*
Amplitude/gain hits								
Phase hits								
Interruptions/dropouts						•		
Impulse noise								

Table 1-1 Summary of Measurements Available

† This non-linear distortion technique is licensed under Hekimiam Laboratories Inc., U.S. Patent No. 3,862,380. 1-17 HP's PCM Terminal Test Sets perform the measurements needed for both analog and digital testing on 4kHz channels. They replace the collection of independant analog and digital test equipment previously used in a mixed system environment with one test set. A summary of the measurements available is given in Table 1-1.

1-18 The main features incorporated into the 3776A and 3776B are listed as follows:

Pre-programmed measurement default parameters, User-modified measurement parameters held in non-volatile memory, Automatic validity checks carried out on parameter entries, Measurement sequences can be loaded into non-volatile memory from an external controller, Once entered, measurement sequences can be run with or without an external controller, Hard-copy measurement parameters results output via HP-IB without an external controller.

1-19 The 3776A can be used to set and to monitor the PCM stream's framing and signalling bits, ie frame word, non-frame word, TS16 frame 0 and TS16 signalling bits. When control of the frame word is selected, simulated error ratio, frame alignment, AIS and loss of 2.048Mb/s signal parameters can be inserted into the transmitter's output stream for checking alarms in the PCM multiplex.

1-20 The 3776B provides the capability to set and to monitor the PCM stream's F_T , F_S and signalling bits. It can also generate a DS-1 (Extended Framing Format Fe) digital stream containing any framing and signalling bits set by the user. This checks channel bank alignment and alarms. A looped timing check is also available and this indicates whether or not a remote channel bank is loop-timed, in addition to detecting the presence of timing jitter on the line.

1-21 ACCESSORIES SUPPLIED

1-22 Figure 1-1 shows the HP Model 3776 together with the power cable and extender board supplied. The extender board is housed inside the instrument, adjacent to assembly A1.

a) The line power cable is supplied in one of six configurations depending upon the country of destination of the instrument (see INSTALLATION, SECTION II).

b) The following manuals are also supplied with each instrument.

- 1 Service Manual (combined 3776A/B manual)
- 2 Operating Manual (separate 3776A and 3776B manual)
- 3 Operating Booklet (separate 3776A and 3776B booklet)

1-23 EQUIPMENT AVAILABLE

1-24 A Loop Holding Accessory is available for use with either the 3776A or 3776B. There are three Loop Holding Accessories and their model numbers are listed here:

HP 15518A available with 3776A only HP 15518B available with 3776B only HP 15518C available with 3776B fitted with Japanese option.

1-25 A Channel Selector, printer, plotter and external controller may also be used with this instrument. A

typical example of each is listed here:

HP 3777A	Channel Selector
HP 85	Controller
HP 2631B	
HP 7470A	

3776B

.

1-26 OPTIONS

1-27 The following options are available and are covered by this manual:

3776A

	5770A	· 3770B
OPTION 001	Adds the following data measure- ments;	Add the following data measure- ments;
	group delay distortion envelope delay distortion absolute delay phase jitter transients of amplitude hits, phase hits, interruptions and 3 level impulse noise. Also adds rear panel MONITOR O/P.	envelope delay distortion remodulation absolute delay phase jitter transients of gain hits, phase hits, dropouts and 3 level impulse noise. Also adds rear panel MONITOR O/P.
OPTION 002	Replaces front panel BNC con- nectors with Siemens 75ohms UNBALanced coaxial (1.6mm/5.6mm) connector.	Japanese option requirements same as standard 3776B except for the following:
		 a) Psophometric weighted filter in place of C-message. b) 810Hz default test frequency instead of 1010Hz. c) Front panel connectors replaced by Japanese I-214 type BALanced connector.
OPTION 004		Front panel connectors change to TROMPETER and mounted on rear panel.
OPTION 801	Front cover including foam insert to hold Loop Holding Accessory.	Front cover including foam insert to hold Loop Holding Accessory.

1-28 RECOMMENDED TEST EQUIPMENT

1-29 Equipment required to maintain the PCM Terminal Test Set is listed in Table 1-4. Other equipment may be substituted if it meets or exceeds the critical specification listed in the table.

A/B/			SPECIFICATION/PAGE NUMBER							
OPT	MEASUREMENT	A-A	A-D	D-A	D-D	AN Tx	DIG Tx	AN Rx	DIG R	
A & B	GAIN (Tone)	1-19	1-25	1-32	1-37	1-42	1-46	1-50	1-53	
	GAIN (Digital MW)			1-32	1-37		1-46	1.50	1.53	
	GAIN (Digital Tx-Rx)				1-37		1-46		1.53	
	GAIN V FREQUENCY	1-19	1-25	1-32	1-37	1-42	1-46	1-50	1-53	
Α	GAIN V LEVEL (Using Noise)	1-19	1-25	1-32	1-38	1-42	1-46	1-50	1-53	
	GAIN V LEVEL (Using Tone)	1-19	1-26	1-33	1-38	1-43	1-47	1-50	1.53	
	GAIN V LEVEL (Synchronising 2kHz)			1-33	1-39		1-47	1-51	1-54	
	NOISE WITH TONE	1-20	1-26	1-34	1-39	1-43	1-47	1-51	1-54	
	IDLE STATE					1-43	1-48			
	IDLE STATE (Weighted, Selective, Other Filters)	1-20	1-27	1-34	1-39			1-51	1-54	
A & B	IDLE STATE (PCM Codes)		1-27		1-39				1-54	
	LEVEL					1-44	1-48			
	LEVEL (Weighted, Other Filters)	1-21	1-27			1				
	LEVEL (Selective)	1-22	1-28						<u>_</u>	
	LEVEL (Weighted, Selective, Other Filters)			1-34	1-40			1-51	1-54	
	LEVEL (PCM Codes)		1-29		1-40				1-54	
A	QUANTISING DISTORTION (Using Noise)	. 1-22	1-29	1-35	1-40	1-44	1-48	1-51	1-55	
	QUANTISING DISTORTION (Using Tone)	1-23	1-30	1-35	1-40	1-44	1-48	1.52	1-55	
A & B	INTERMODULATION (2-Tone)	1-23	1-30	1-36	1-41	1-45	1-48	1-52	1-55	
	INTERMODULATION (4-Tone)	1-23	1-31	1-36	1-41	1-45	1-49	1-52	1-56	
В	RETURN LOSS (ERL)	1-24	1-31	1-36	1-41	1-45	1-49	1-52	1-56	
Α	GROUP DELAY	1				1-58	1-60	1-59	1-60	
	ABSOLUTE DELAY					1-60	1-61	1-61	1-61	
A & B	ENVELOPE DELAY	1				1-61	1-62	1-62	1-62	
В	RE-MODULATION					1-63		1-63	1-63	
	PHASE JITTER					1-63	1-64	1-63	1-64	
	TRANSIENTS					1-65	1-67	1-65	1-67	
A & B	(A) GAIN HITS					1		1-65	1-67	
ŀ	(B) PHASE HITS							1-66	1-68	
Α	(C) INTERRUPTIONS	1						1-66	1-68	
В	(D) DROPOUTS	1					· · · ·	1-66	1-68	
A & B	(E) IMPULSE NOISE	1					[1-66	1-68	

• •

Table 1-2 Index to Specifications in Table 1-3

Table 1-3 Hardware and Measurement Specifications

Except where otherwise indicated, the following parameters are warranted performance specifications. Parameters described as "typical" or "nominal" are supplemental characteristics which provide a useful indication of typical, but non-warranted, performance characteristics.

HARDWARE SPECIFICATIONS

1. ANALOG TRANSMITTER

SIGNALS

Sinewave

Frequency	range:	200 to	3900Hz	(50	to	4600Hz	for level
Frequency	accuracy	/: 50pj	om			measu	urements)
Frequency	resoluti	ion: 10	DHz				
Harmonics	, spuriou	ıs signa	als: ≻6	55dB	dow	'n	
(for outpu	it levels	s >-40dl	3m)				

Two Tone

Frequency range f _A and f _B : 200 to 3900Hz
Frequency accuracy: 50ppm
Frequency resolution: 10Hz
Relative amplitude (f _A relative to f _B): +/-0.1dB
Harmonics, spurious signals: >65dB down
(for output levels >-40dBm)

Noise 3776A only

Meets CCITT Rec. 0.131 Amplitude distribution: gaussian nominal Frequency distribution (3dB points): 375 to 525Hz nominal Spectral line spacing: 3.9Hz Crest Factor: 10.5 +/-0.5dB nominal Repetition rate: 256ms +/-50ppm

Four Tone 3776B only

Meets BSTR Pub. 41009 Lower tones centre frequencies: 860Hz +/-50ppm Lower tones separation: 6Hz +/-1Hz Upper tones centre frequencies: 1380Hz +/-50ppm Upper tones separation: 16Hz +/-1Hz Relative level of four tones: +/-0.1dB Harmonic distribution: <-35dB Spurious signals 1877 to 1923Hz: <-70dB 503 to 537Hz: <-70dB 2223 to 2257Hz: <-70dB

.

Echo Return Loss (ERL) 3776B only	Meets BSTR pub. 41009
Group Delay 3776A option 001 only	
	Reference frequency range: 500 to 3000Hz Measurement frequency range: 200 to 3600Hz Modulation method and measurement: conforms to CCITT Rec. 0.81
Envelope Delay (option 001 only)	×
	Modulation frequency: 41 2/3Hz +/-50ppm Modulation depth: 0.40 +/-0.05 Carrier frequency range: 300 to 3500Hz
В	Meets BSTR Pub. 41009 Modulation frequency: 83 1/3Hz +/-50ppm Carrier frequency range: 300 to 3500Hz
Absolute Delay (option 001 only)	
	Same as envelope delay
LEVEL	
Maximum Output Level	sinewave: +10dBm
	two tone: +7dBm
	noise (3776A only): +2dBm
	four tone (3776B only): +4dBm
	echo return loss (3776B only): OdBm group delay (3776A option 001 only): +5dBm
	envelope delay (option 001 only): +5dBm
Minimum Output level	
•	-76.5dBm nominal
	Level resolution: 0.1dB nominal
	Transmit dBr (TLP) range: -20 to +10dB Level accuracy: (includes return loss effects)
	Nominal Signal Level Accuracy
	Nominal Signal Level Accuracy (dBm) (+/-dB)
	(dBm) (+/-dB)

.-

Model 3776A/B

General Information

Level Flatness

50 t	0	200Hz :	+/-0.3dB
200	to	3900Hz :	+/-0.04dB

OUTPUT

Max dc isolation: +/-56V Impedance: selectable 600ohm/900ohm nominal, balanced/unbalanced Connectors: 3776A - Siemens 3-pin 3776B - WECO 310 and Bantam jack

2. ANALOG RECEIVER

INPUT

Noise floor: <-100dBmp (<-10dBrnC) Maximum continuous ac signal level: 9V p-p Maximum continuous dc signal level: +/-56V Input flatness (200 to 3900Hz): +/-0.03dB Receiver dBr (TLP) range: -20 to +10dB Impedance: selectable 600ohm/900ohm/50kohm, nominal Connectors: 3776A - Siemens 3-pin 3776B - WECO 310 and Bantam jack

FILTERS

The following filters are provided and are selected as appropriate by the measurement software:

Selective: 85Hz nominal noise bandwidth over frequency range 200 to 3900Hz 3kHz flat: meets BSTR Pub. 41009 Wideband: flat filter with dc rejection 4100Hz high pass: filter used for out-of-band measurements

Filters used in 3776A only: Quantising distortion reference and measurement: meets CCITT Rec. 0.13 Psophometric*: meets CCITT Rec. P53A 810Hz notch*: meets CCITT Rec. 0.132

*These filters are also used in 3776B Option 002 (Japanese)

Filters used in 3776B only:-Four-tone intermodulation: meets BSTR Pub. 41009 C-message: meets IEEE P743/D3* C-message notch: meets IEEE P743/D3* 200Hz high pass: filter used for echo return loss (ERL)

*Not used in 3776B option 002.


```
Filters used when option 001 is fitted:-
Impulse noise:
    3776A - selectable three notched band-pass filters to CCITT Rec. 0.71
    3776B - C-notched filter to IEEE P743/D3
Phase jitter: selectable as
    Fil A - 30 to 300Hz
    Fil B - 4 to 300Hz
```

3. DIGITAL TRANSMITTER

SIGNALS

As analog transmitter except bandwidth limited to 200 to 3600Hz

LEVEL

Maximum Output Level

sinewave: +3.1dBm0
two tone: 0.0dBm0
noise (3776A only): -5.0dBm0
four tone (3776B only): -3.0dBm0
echo return loss (3776B only): -7.0dBm0
group delay (3776A Option 001 only): -2.0dBm0
envelope delay (Option 001 only): -2.0dBm0

Minimum output level:

-60.0dBm0 nominal Level resolution: 0.1dBm0 nominal Level accuracy:

Nominal Signal Level (dBmO)	A-law	u-law
>-40 >-55	0.01 0.03	0.01 0.03
>-60	0.03	0.05

TEST CHANNEL OR TIMESLOT

Insertion of test signals into one selectable timeslot, all timeslots or all timeslots except one in the PCM stream.

FRAMING & SIGNALLING BITS MANIPULATION

Selectable bit patterns of:-3776A - timeslot 0 in frame 0; timeslot 0 in non-frame 0; timeslot 16 in frame 0; timeslot 16 signalling bits in all other frames 3776B (FT frame format) - FT bits, FS bits, signalling A & B bits (FE frame format) - FE bits, signalling ABCD bits

SIMULATION OF TERMINAL ALARMS (3776A only)

Timeslot 0 in frames containing alignment word Error Ratio - 1 X 10^{-5} , 5 X 10^{-5} , 1 X 10^{-4} , 5 X 10^{-4} , 1 X 10^{-3} can be simulated in the frame alignment word Frame alignment - 1 in 2, 2 in 4, 3 in 4 frame alignment word in error can be simulated in the PCM stream AIS - an all ones signal can be inserted in PCM stream OFF - no 2048kb/s PCM stream signal

Timeslot 0 in non-frames containing alignment word Frame alignment - 1 in 2 or 3 in 4 of bit 3 in error can be simulated in the PCM stream

UNSELECTED AUDIO TIMESLOTS

THRU PCM: as received from digital receiver SYNTH PCM: background signal (Two user programmable PCM codes alternating at 1kHz. The two PCM codes are accessable via the Digital Tx-Rx measurement on the front panel.)

PCM OUTPUT

Frame format: 3776A - conforms to CCITT Rec. G732. Rear panel switch selects 30 or 31 audio channels (timeslot 16 is used as an audio channel) 3776B - rear panel switch selects FT - standard frame format conforming to BSTR Pub. 43801 (CCITT Rec. G.733) or FE - extended superframe (ESF) format conforming to AT & T Technical Advisory No. 70 Frame source: Synthesized from internal source or looped through from digital receiver
Compression characteristics: conforms to CCITT Rec. G.711 3776A - A-law with alternate digit inversion (ADI) wideal

- 3776A A-law with alternate digit inversion (ADI), ideal 3776B – U-law, ideal
- Signalling: rear panel switch selects channel associated signalling (CAS) or common channel signalling (CCS)

Coding:

3776A - rear panel switch selects HDB3 or AMI 3776B - rear panel switch selects AMI (AZS) or B8ZS

Impedance:

3776A - 120ohm balanced nominal and 75ohm unbalanced nominal 3776B - 100ohm balanced nominal

Connectors:

3776A - Siemens 3-pin (balanced); BNC (unbalanced) 3776B - WECO 310 and Bantam jack

Amplitude:

	3776A, 3776B balanced outputs	3776A unbalanced output
Mark	+/-3V +/-10%	+/-2.37V +/-10%
Space	+/-0.3V max	+/-0.24V max

```
Overshoot: <10% amplitude
Width (at 50% amplitude): 50% +/-6%
Transistion times: <30ns
```

CLOCKS

```
Internal
Frequency: 3776A - 2048kHz +/-50ppm
3776B - 1544kHz +/-50ppm
```

External

Frequency: internal bit rate Level: TTL into 75ohm, nominal Connector: BNC

4. DIGITAL RECEIVER

```
TEST CHANNEL
```

Selected timeslot in the PCM stream

PCM INPUT

```
Frame format:

3776A - meeting CCITT Rec. G.732

3776B - meeting BSTR Pub. 43801 (CCITT Rec. 733) if FT selected

meeting AT+T Technical Advisory Note No. 70 if FE selected
```

```
Expansion characteristics: conforms to CCITT Rec. G.711
3776A - A-law ideal
3776B - u-law ideal
```


Frame alignment: automatic Multi-frame alignment: automatic if CAS selected Signalling: selectable as CAS or CCS Coding: 3776A - selectable HDB3 or AMI 3776B - selectable AMI (AZS) or B8ZS Impedance: 3776A - 120ohm balanced nominal; 75ohm unbalanced nominal 3776B - 100ohm balanced nominal **Connector:** 3776A - Siemens 3-pin (balanced); BNC (unbalanced) 3776B - WECO 310 and Bantam jack Maximum input level: +/-8V Minimum input levels (equivalent cable loss): 3776A - 6dB at 1MHz 3776B - 6dB at 0.75MHz Modes: selectable as TERMinated - PCM input terminated by characteristic impedance **MONitor** 3776A - provides 30dB gain PCM input terminated by 3776B - provides 20dB gain characteristic impedance LED status indicators: no signal - >15 consecutive zeros or signal level too low all ones - >4096 consecutive ones frame alignment loss 3776A - complies with CCITT Rec. G.732 3776B - 3 out of 7 FT bits in error multi-frame alignment loss 3776A - complies with CCITT Rec. G.732 3776B - 2 consecutive FS bits in error FRAMING & SIGNALLING BITS MONITORING Bit pattern monitoring of 3776A - timeslot 0 in frame 0; timeslot 0 in non-frame 0;

timeslot 16 in frame 0; timeslot 16 signalling bits in all other frames 3776B (FT frame format) - FT bits, FS bits, signalling A&B bits (FE frame format) - FE bits, CRC bits, signalling ABCD bits

FILTERS

As analog receiver up to channel bandwidth of 3600Hz

CLOCK

Clock recovered from PCM input. Frequency: 3776A - 2048kHz nominal 3776B - 1544kHz nominal Max number of consecutive zeros: 15

DIGITAL TTL OUTPUT: (rear panel)

Received PCM bit pattern available as a serial output Format: Low true Signal levels: TTL, open collector Receiver timing outputs: framing synchronisation; multi-frame synchronisation; clock; selected data valid Connector: Cannon 15 way

TIMESLOT TRANSLATION

3776A - contents of TS (n) and TS (16+n) exchanged 3776B - contents of TS (n) and TS (n+1) exchanged for all timeslots, where n is odd

AUXILIARY ANALOG INPUT: (rear panel)

An external level source can be applied for retransmission from the analog or digital transmitter.

Impedance: 600ohm balanced Connector: binding posts Additional parameters:

Analog transmitter only Additional flatness to internal source: +/-0.2dB nominal over 200 to 3600Hz

Digital transmitter only Aux input dBr (TLP): -14dB (3776A)

-16dB (3776B)

Aux input flatness (nominal):

Frequency (Hz)	Accuracy (dB)
>200 to <300	+0.15, -2
>300 to <3000	+/-0.2
>3000 to <3300	+0.1, -0.4

ANALOG MONITOR OUTPUT option 001 only: (rear panel)

Analog output of the received analog or digital input after filtering. Impedance: 600ohm balanced Connector: binding posts

General Information

```
SPEAKER
 Simple amplified loudspeaker output of analog input or selected
  timeslot decoded to allow channel monitoring/talk over channel.
HP-IB: (rear panel)
  Flags: Remote, Listen, Talk, and Service Request
  Implementation: (IEEE 488, 1978)
   SH1 (complete capability)
   AH1 (complete capability)
   T5 (basic talker, serial poll, talk only mode, unaddress if MLA)
   L4 (basic listener, unaddress if MTA)
   SR1 (complete SRQ capability)
   RL1 (complete remote-local capability)
   DC1 (complete device clear capability)
 The IEEE 728 codes and formats capabilities are ...
 PM2 (program messages as Fig 24 and 25(b) in IEEE 728)
    NRD1 (implicit point numeric data)
    NRD2 (fixed point numeric data)
    NRD3 (floating point numeric data)
    CHDF (character data field)
    BDFA (binary block data, length specified, no check)
    BDFI (binary block data, length unspecified, no check)
    BDFH (hexadecimal data)
         (comma parameter separator)
         (semicolon command separator)
    <u>CRLF</u> (<u>CRLF</u> command string terminator)
    NL (NL command string terminator)
    END (EOI command string terminator)
 MM1 (measurement messages as Fig 21(a) and 21(b) in IEEE 728)
    NRD1 (implicit point numeric data)
    NRD2 (fixed point numeric data)
    BDFA (binary block data, length specified, no check)
         (comma data separator)
    <u>CRLF</u> (<u>CRLF</u> data list separator)
    END (EOI data list terminator)
Modes: selectable as
   addressable' - when an external controller is connected
  'talk-only' - when no external controller is connected
Print format: (talk-only mode)
  dual in line (DIL) switches select result output string to
  'listen only' printer or plotter connected.
  binary 2 - print output
  binary 8 to 31 - plot option of various configurations
```

		,			
Binary Format	Scale	Scale	Auto Paper	Plot Title	Plat CCITT
Number	X Axis	Y Axis	Eject	and Axes	Nask
8				yes	yes
9	yes			yes	yes
10		yes		y os	yes
11	yes	yes		yes	yes
12	1		yes	yes	yes
13	yes		yes	yes	yes
14	ł	yes	yes	yes	yes
15	ye s	yea	yes	yes	yes
16		1		yes	
17	yes			yes	
18		yes		yes	
19	yes	yes		yes	
20	1		yes	yes	
21	yes		yes	yes	
22		yes	yes	yes	
23	yes	yes	yes	yes	
24					
25	yes				
26		yes			
27	yes	yes			
28			yes		
29	yes		yes		
30		yes	yes		
31	yes	yes	yes		

PLOT OPTIONS

Power on SRQ: selectable DIL switch

EOI: sets end or identify (EOI) with serial poll byte in addressable mode only; selectable DIL switch

Connector: Cannon 24 way

5. GENERAL

Supply voltages: 115V ac +10%, -22% 220V ac +10%, -22% Power consumption: 85W nominal Dimensions: 55178mm (7in) high 425mm (16.75in) wide 440mm (17.25in) deep Weight: 15kg (331b) nominal Temperature range: operating 0degrees to 55degrees centigrade storage -40degrees to 75degrees centigrade

6. OPTIONS

6. OPTIONS	
3776A	3776B
Option 001	Option 001
Adds data measurements of: group delay distortion envelope delay distortion absolute delay phase jitter transients* of ampliture hits phase hits interruptions 3-level impulse noise *All four parameters in transie Option 002	Adds data measurements of: envelope delay distortion remodulation absolute delay phase jitter transients* of gain hits phase hits dropouts 3-level impulse noise ents are measured simultaneously. Option 002 - Japanese requirement same as standard instrument with the following
Replaces front panel BNC con tors with Siemens 75ohm un- balanced coaxial (1.6mm/5.6mr connectors	
OTHER COMMON OPTIONS	
Option 801 Option 90 Front panel cover	9 Rack flange & front handle combination kit
Option 907 Option 91 Front handle kit	O . Extra set of operating and service manuals
Ontion 908	

-

Option 908 Rack flange kit

MEASUREMENT SPECIFICATIONS

GENERAL

In a PCM Channel, the apparent gain for tones varies with the phase of the signal at the start of the measurement. The size of the variation depends on the number (n) of independent values present in the sampled wave n = fs/h, where h is the highest common factor of the tone frequency (Hz) and fs = Sampling frequency = 8000 or 16000. This governs the choice of test tones; frequencies such as 800 or 1000Hz have few independent samples and large gain variations, while 810 or 1010Hz have n = 8000 give stable results.

The standard test frequencies in this instrument have >400 independent samples, and the specifications for A-D and D-A measurements include a corresponding allowance for gain variation with phase. The specifications for A-A measurements do not include this effect, which is present only on PCM Channels. Its magnitude may be formed from the following table:

÷

Level	Gain Variation with Phase		
(dBmO)	(+/-dB)		
	A-law	u-law CCS	u-law CAS
>-40	0.005	0.005	0.01
>-60	0.015	0.01	0.03
>-75	0.03	0.03	0.05

The A-A measurements affected are shown below:

A-A Measurement	Number of error contributions	
Gain Quantising distortion (tone) Level	one	
Gain v Frequency Gain v Level (tone) Intermodulation (2-tone)	two	

ERROR CONTRIBUTIONS

Each measurement accuracy is calculated as the total sum of the worst case values of all the individual component specification that make up the neasurement. Error contributions due to transmission impairments in the system under test (eg QD in Gain vs Level measurement) are not included. Attempting to measure a tone where the frequency is not tied to the 3776 transmitter will result in an error in the following measurements:

Measurement	Maximum additional error (dB)		
Affected	Frequency	Error	
Gain (tone) Gain (digital mW) Gain vs Frequency Intermod (2–tone)	200-400Hz >400Hz	0.04dB +0.01dB/Hz 0.02dB +0.01dB/Hz	
Level (selective) Idle State (selective)	200-400Hz >400Hz	0.01dB +0.01dB/Hz 0.01dB/Hz	

(For <5Hz offset between actual and selected Rx frequencies).

ANALOG-TO-ANALOG (A-A) MEASUREMENTS

GAIN (TONE)

Accuracy: +/-0.05dB (Tx and Rx levels >-30dBm; 200Hz to 3900Hz).

GAIN v FREQUENCY

Accuracy: +/-0.10dB (Tx and Rx levels >-30dBm; 200Hz to 3900Hz).

GAIN v LEVEL (USING NOISE) - 3776A ONLY

Accuracy (+/-dB):

Tx level	Rx :	level («	dBm)
(dBm)	>-46	>-66	>-76
>-46 >-66 >-76	0.15 0.18	0.20 0.22	0.30

Tx and Rx reference level >-36dBm0

GAIN v LEVEL (USING TONE)

Accuracy (+/-dB):

Tx level	Rx level (dBm)		
(dBm)	>-40	>-60	>-76
>-40 >-60 >-70 >-76	0.12 0.12	0.16 0.18 0.22	0.30

Tx and Rx reference level >-40dBm0

1-19

NOISE WITH TONE

Transmit signal

Frequency range: 3776A - 810 to 850Hz 3776B - 1010 to 1020Hz

Level accuracy: +/-0.10dB (for Level >-30dBm)

Accuracy (+/-dB):

S+N/N Ratio	Accuracy
(dB)	(+/-dB)
<30	0.5
<40	0.6
<45	0.8

Rx noise level >-80dBm

IDLE STATE (WEIGHTED, SELECTIVE OR OTHER FILTERS)

Accuracy (+/-dB):

Filter Type	Rx Level (dBm)	
	>-40	>-80
Psophometric C-message Selective other filters:	0.3 0.3 0.2	0.5 0.5 0.3
Filter A: 3Hz Filter B: flat Filter C: high pass	0.3 0.3 0.3	0.5 0.75 0.75

Rx signal crest factor assumed <12

LEVEL (WEIGHTED, OTHER FILTERS)

Internal Source

Frequency range: 50 to 4600Hz

Accuracy (+/-dB):

Nominal Signal Level	Signal Level Accuracy (+/-dB)	
(dBm)	50-200Hz	200-4600Hz
>-30 >-60 >-76	0.20 - -	0.09 0.11 0.13

Auxiliary input

Gain between aux input (50kohms nominal) & analog transmit (600ohm balanced): +/-0.5dB (nominal)

Frequency range: 50 to 4600Hz

Receiver Accuracy (+/-dB):

Filter type	Rx Leve	el (dBm)
	>-40	>-80
Psophometric C-Message other filters:	0.3 0.3	0.5 0.5
Filter A: 3kHz Filter B: flat Filter C: high pass	0.3 0.3 0.3	0.5 0.75 0.75

LEVEL (SELECTIVE)

```
Internal source: same as LEVEL (weighted)
Auxiliary input: same as LEVEL (weighted)
```

Receiver

Frequency range: 200 to 3900Hz Accuracy (+/-dB):

a) Transmit (ref) frequency same as receive (measure) frequency

Receive level	Receive Accuracy
(dBm)	(+/-dB)
>-40	0.10
>-80	0.14

Rx level >-80dBm

b) Transmit (ref) frequency not the same as receive (measure) frequency

Ref/Meas Ratio (dB)	Receive Accuracy (+/-dB)
<40 <45	0.7

Rx level >-80dBm

QUANTISING DISTORTION (USING NOISE) - 3776A ONLY

Accuracy (+/-dB):

S/N Ratio (dB)	Rx distortion level (dBm)	
	>-72	>-76
<40 <45	0.5 1.0	0.9 1.2

Rx noise level >-66dBm

QUANTISING DISTORTION (USING TONE)

Transmit signal

Frequency range:

3776A - 810 to 850Hz 3776B - 1010 to 1020Hz

Accuracy (+/-dB):

S+N/N Ratio	Accuracy
(dB)	(+/-dB)
<30	0.3
<40	0.5
<45	0.8

Rx noise level >-80dBm

INTERMODULATION (2 TONE)

Frequency range of f_A and f_B : 200 to 3900Hz Intermodulation product, fp (2f_A-f_B) frequency range: 200 to 3900Hz Tones at $|f_A-f_B|$, $|f_p-f_A|$ and $|f_p-f_B|$ >150Hz

Accuracy (+/-dB):

Tone f _A /Tone fp	Accuracy
(dB)	(+/-dB)
<30	0.1
<40	0.2
<45	0.5

Rx level (tone A) >-36dBm

INTERMODULATION (4 TONE) - 3776B ONLY

Accuracy (+/-dB):

Measured intermodulation (dB)	Accuracy (+/-dB)
<45	0.5
<55	1.0

Rx stimulating signal >-30dBm

a.

RETURN LOSS (ERL) - 3776B ONLY

Tx level accuracy: +/-0.25dB (Tx levels >-30dBm) Rx accuracy:

Rx signal level	Accuracy
(dBm)	(+/-dB)
>-40	0.3
>-80	0.5

ANALOG-TO-DIGITAL (A-D) MEASUREMENTS

GAIN (TONE)

Accuracy (+/-dB):

	Accuracy (+/-dB)
3776A; 3776B (CCS)	0.10
3776B (CAS)	0.11

Tx level >-30dBm; Rx level >-20dBm0 800 independent samples

GAIN v FREQUENCY

Accuracy (+/-dB):

	Accuracy (+/-dB)
3776A; 3776B (CCS)	0.08
3776B (CAS)	0.11

Tx level >-30dBm; Rx level >-20dBm0 800 independent samples

GAIN v LEVEL (USING NOISE) - 3776A ONLY

Accuracy (+/-dB):

Tx level (dBm)	Rx level (dBmO)		
	>-40	>-55	>-60
>-46 >-56 >-66 >-76 >-82	0.11 0.12 0.13 0.15 0.18	0.12 0.13 0.14 0.16 0.20	0.18 0.19 0.20 0.22 0.25

Tx reference level >-30dBm Rx reference level >-20dBmO

GAIN v LEVEL (USING TONE)

Frequency range: 200 to 3900Hz Accuracy (+/-dB): 3776A and 3776B (CCS) -

Tx level (dBm)	Rx level (dBmO)		
	>-40	>-50	>-60
>-50 >-60 >-70 >-76	0.11 0.12 0.14 0.18	0.13 0.15 0.17 0.20	- 0.30 0.32 0.35

3776B (CAS) -

Tx level (dBm)	Rx level (dBmO)		
	>-40	>-50	>-60
>-50 >-60 >-70 >-76	0.12 0.14 0.16 0.20	0.15 0.20 0.22 0.25	- 0.35 0.37 0.40

Tx reference level >-30dBm; Rx reference level >-20dBm0

NOISE WITH TONE

Accuracy (+/-dB):

 S+N/N Ratio (dB)	Accuracy (+/-dB)
< 30 < 40 < 4 5	0.2 0.4 0.6

Rx noise level >-60dBm0

Transmit Signal Frequency range: 3776A: 810 to 850Hz 3776B: 1010 to 1020Hz Level accuracy: +/-0.10dB (for level >-30dBm)

~

IDLE STATE (WEIGHTED, SELECTIVE, OTHER FILTERS)

Accuracy (+/-dB):

 Filter type	Rx level (dBmO)	
	>-60	>-75
Psophometric C-message Selective	0.15 0.15 0.25	0.3 0.3 0.7
other filters:		
Filter A: 3kHz Filter B: Flat	0.15 0.15	0.7 0.7

IDLE STATE (PCM CODES)

Transmitter: terminated with characteristic impedance Receiver: detects average of 800 codes; result expressed as number of compressed code level steps from centre of coding law.

Signal range: bottom two segments of coding law Resolution: +/-0.5 coded step

LEVEL (WEIGHTED, OTHER FILTERS)

Internal Source

Frequency range: 50 to 4600Hz Accuracy (+/-dB):

Nominal Signal Level	Signal Level Accuracy (+/-dB)	
(dBm)	50-200Hz	200-4600Hz
>-30	0.2	0.09
>-60 >-76	-	0.11 0.13

Auxiliary input Gain between aux input (50kohms nominal) & analog transmit (600ohms balanced): +/-0.5dB Frequency range: 50 to 4600Hz Accuracy (+/-dB):

	Nominal Signal Level (dBm)	Signal Level Linearity (+/-dB)
ſ	>-30	0.25
	>-60	0.28
	>-76	0.30
L		1

Receiver

Accuracy (+/-dB):

Filter type	Rx Level (dBmO)	
	>-60	>-75
Psophometric C-Message	0.3 0.3	0.5 0.5
other filters:		
Filter A: 3kHz Filter B: flat	0.2 0.2	0.7 0.7

LEVEL (SELECTIVE)

Transmitter

Internal source same as LEVEL (weighted) Auxiliary input

Receiver

Frequency range: 200 to 3900Hz Accuracy (+/-dB):

a) Transmit (ref) frequency same as receive (measure) frequency

Receive Level	Receive Accuracy
(dBmO)	(+/-dB)
>-40	0.1
>-60	0.25

b) Transmit (ref) frequency not the same as receive (measure) frequency

Ref/Meas Ratio (dB)	Rx level (dBmO)	
	>-40	>-60
<40 <45	0.12 0.25	0.3 0.4

LEVEL (PCM CODES)

Transmitter

Internal source same as LEVEL (weighted) Auxiliary input

Receiver

Detection: display the peak positive and peak negative PCM codes in 800 samples. Result expressed in compressed codes.

QUANTISING DISTORTION (USING NOISE) - 3776A ONLY

Accuracy (+/-dB):

S/N Ratio (dB)	Rx distortion level (dBm0) >-60
<40	0.3
<45	0.6

Rx noise level >-60dBm0

QUANTISING DISTORTION (USING TONE)

Transmit signal

Frequency range:

3776A - 810 to 850Hz 3776B - 1010 to 1020Hz

Accuracy (+/-dB):

S+N/N Ratio	Accuracy
(dB)	(+/-dB)
<30	0.2
<40	0.4
<45	0.6

Rx tone level >-60dBmO

INTERMODULATION (2 TONE)

Frequency range of f_A and f_B : 200 to 3900Hz Intermodulation product fp $(2f_A - f_B)$ frequency range: 200 to 3900Hz Tones at $|f_A - f_B|$, $|f_p - f_A|$ and $|f_p - f_B| > 150Hz$

Accuracy (+/-dB):

Accuracy (+/-dB)
0.2 0.3 0.5

Rx level (tone f_A) >-20dBmO Rx level (tone fp) >-50dBmO

INTERMODULATION (4 TONE) - 3776B ONLY

Accuracy (+/-dB):

Measured	Accuracy
intermodulation (dB)	(+/-dB)
<45	0.5
<55	1.0

Rx Stimulating signal >-20dBm0
Intermod Rx level >-50dBm0

RETURN LOSS (ERL) - 3776B ONLY

Tx level accuracy: +/-0.25dB (Tx levels >-30dBm) Rx accuracy: +/-0.3dB (Rx levels >-60dBm)

General Information

DIGITAL-TO-ANALOG (D-A) MEASUREMENT

GAIN (TONE)

Frequency range: 200 to 3900Hz Accuracy (+/-dB):

	Accuracy (+/-dB)
3776A; 3776B (CCS)	0.11
3776B (CAS)	0.12

Tx level >-20dBmO; Rx level >-30dBm

GAIN (DIGITAL mW)

Accuracy (+/-dB): 0.10

GAIN v FREQUENCY

Frequency range: 200 to 3900Hz Accuracy (+/-dB):

	Accuracy (+/-dB)
3776A; 3776B (CCS)	0.10
3776B (CAS)	0.11

Tx level >-20dBmO; Rx level >-30dBm

GAIN v LEVEL (USING NOISE) - 3776A ONLY

Accuracy (+/-dB):

Tx level (dBmO)	Rx level (dBm)		
	>-46	>-66	>-82
>-40 >-55 >-60	0.10 0.12 -	0.15 0.16 0.16	- - 0.20

Tx reference level >-20dBm0 Rx reference level >-48dBm

GAIN v LEVEL (USING TONE)

Frequency range: 200 to 3900Hz Accuracy (+/-dB): 3776A and 3776B (CCS)

Tx Level (dBm0)	Rx Level (dBm)			
(/	>-40 >-60 >-76			
>-40 >-55 >-60	0.08 - -	0.12 0.15 0.17	- 0.20 0.22	

3776B (CAS)

Tx level (dBm0)	Rx Level (dBm)		
	>-40	>-60	>-76
>-40 >-55 >-60	0.09 _ _	0.13 0.17 0.20	- 0.22 0.25

Tx reference level >-20dBmO; Rx reference level >-40dBm

GAIN v LEVEL (SYNCHRONISED 2kHz)

Tx PCM code levels: ideal Frequency: 2kHz Accuracy (+/-dB):

	Rx level (dBm)		dBm)
	>-40	>-60	>-76
3776A; 3776B (CCS) 3776B (CAS)	0.05 0.05	0.10 0.10	0.20 0.20

Rx reference level >-20dBm

NOISE WITH TONE

```
Transmit Signal

Frequency range:

3776A - 810 to 850Hz

3776B - 1010 to 1020Hz

Level accuracy: +/-0.01dB

(for levels >-40dBm0)
```

Accuracy (+/-dB):

Accuracy (+/-dB)
0.5 0.6 0.8

Rx noise level >-80dBm

IDLE STATE (WEIGHTED, SELECTIVE, OTHER FILTERS)

Accuracy (+/-dB): same as IDLE STATE (A-A)

LEVEL (WEIGHTED, SELECTIVE, OTHER FILTERS)

Internal Source Frequency range: 50 to 3900Hz Accuracy (+/-dB):

Nominal Signal Level (dBmO)	Signal Level Accuracy (+/-dB)
>-40	0.01
>-55	0.03
>-60	0.05

Auxiliary input

Aux input dBr (TLP):

-14dB (3776A) -16dB (3776B)

.

Level accuracy: +/-0.5dB Aux input flatness (nominal):

Frequency (Hz)	Accuracy (dB)
>200 to <300	+0.15, -2
>300 to <3000	+/-0.2
>3000 to <3300	+0.1, 0.4

Receiver

Accuracy(+/-dB): same as LEVEL (weighted) (A-A)

QUANTISING DISTORTION (USING NOISE) - 3776A ONLY

Accuracy (+/-dB):

S/N Ratio (dB)	Rx distortion level (dBm)		
	>-72	>-76	
<-40 <-45	0.5 0.9	0.9 1.2	

Rx noise levels >-68dBm

QUANTISING DISTORTION (USING TONE)

Transmit signal Frequency range: 3776A - 810 to 850Hz 3776B - 1010 to 1020Hz

Accuracy (+/-dB):

S+N/N Ratio	Accuracy
(dB)	(+/-dB)
<-30	0.5
<-40	0.6
<-45	0.8

Rx noise level >-80dBm

INTERMODULATION (2-TONE)

Frequency range of f_A and f_B : 200 to 3900Hz Intermodulation product, fp ($2f_A-f_B$) frequency range: 200 to 3900Hz Tones at $|f_A-f_B|$, $|f_p-f_A|$ and $|f_p-f_B| > 150Hz$

Accuracy (+/-dB):

Tone f _A /Tone fp	Accuracy
(dB)	(+/-dB)
< 30	0.1
< 40	0.2
< 45	0.5

Rx level (tone f_A) >-36dBm

INTERMODULATION (4 TONE) - 3776B ONLY

Accuracy (+/-dB):

Measured	intermodulation (dB)	Accuracy (+/-dB)
	<45 <55	0.5 1.0

Rx stimulating signal >-36dBm

RETURN LOSS (ERL) - 3776B ONLY

Tx level accuracy: +/-0.01dB (Tx levels >-20dBm0) Rx accuracy:

Rx Signal level	Accuracy
(dBm)	(+/-dB)
>-40	0.3
>-80	0.5

DIGITAL-TO-DIGITAL (D-D) MEAUSREMENTS

GAIN (TONE)

Accuracy (+/-dB):

	Accuracy (+/-dB)
3776A; 3776B (CCS)	0.04
3776B (CAS)	0.05

Tx, Rx levels >-20dBmO

800 indpendent samples

GAIN (DIGITAL mW)

Accuracy (+/-dB):

	Accuracy (+/-dB)
3776A; 3776B (CCS)	0.02
3776B (CAS)	0.03

Rx level >-20dBmO

GAIN (DIGITAL Tx-Rx)

Transmit signal: alternates two 8-bit PCM codes at 1kHz rate. Receiver: displays the positive peak and negative peak PCM codes. (3776B CAS signalling bits suppressed)

GAIN v FREQUENCY

Accuracy (+/-dB):

	Accuracy (+/-dB)
3776A; 3776B (CCS)	0.05
3776B (CAS)	0.08

Tx, Rx levels >-20dBmO; 800 independent samples.

GAIN v LEVEL (USING NOISE) - 3776A ONLY

Accuracy (+/-dB):

Tx level (dBmO)	Rx level (dBmO)		
	>-40	>-55	>-60
>-40 >-55 >-60	0.08 0.10 -	0.10 0.12 0.12	0.15 0.18 0.18

1

.

GAIN v LEVEL (USING TONE)

Frequency range: 200 to 3900Hz Accuracy (+/-dB): 3776A and 3776B (CCS)

Tx level (dBmO)	Rx level (dBmO)		
	>-40	>-50	>-60
>-40	0.08	0.10	-
>-50	0.10	0.12	0.25
>-60	-	0.14	0.30

3776B (CAS)

Tx level (dBmO)	Tx level (dBmO)		
	>-40	>-50	>-60
>-40 >-50 >-60	0.10 0.14 -	0.12 0.16 0.18	- 0.35 0.35

Tx, Rx reference levels >-20dBm0

GAIN v LEVEL (SYNCHRONIZED 2kHz)

Tx PCM code levels: ideal Frequency: 2kHz Accuracy (+/-dB):

	Rx level (dBmO)		
	>-20	>-40	>-60
3776A; 3776B (CCS) 3776B (CAS)	0.05 0.08	0.06 0.08	0.08 0.10

Rx reference level >-20dBm0

NOISE WITH TONE

```
Transmit signal
```

```
Frequency range:

3776A - 810 to 850Hz

3776B - 1010 to 1020Hz

Level accuracy: +/-0.01dB

(for levels >-40dBm0)
```

Accuracy (+/-dB):

S+N/N Ratio	Accuracy
(dB)	(+/-dB)
<-30	0.2
<-40	0.4
<-45	0.6

Rx noise levels >-60dBm0

IDLE STATE (WEIGHTED, SELECTIVE, OTHER FILTERS)

Accuracy (+/-dB): same as IDLE STATE (A-D)

IDLE STATE (PCM CODES)

Transmitter: quiet background Receiver: detects average of 800 codes; result expressed as number of compressed PCM code level steps from centre of coding law

Signal range: bottom two segments of coding law Resolution: +/-0.5 coded step

LEVEL (WEIGHTED, SELECTIVE, OTHER FILTERS)

Internal source

Auxiliary input Tx level accuracy same as LEVEL (D-A)

Receiver accuracy (+/-dB): same as LEVEL (A-D)

LEVEL (PCM CODES)

Detects the peak positive and peak negative PCM codes in 800 samples. Result expressed in compressed codes.

QUANTISING DISTORTION (USING NOISE) - 3776A ONLY

Accuracy (+/-dB):

S/N Ratio (dB)	Rx distortion level (dBm0) >-60
<-40	0.3
<-45	0.6

Rx noise levels >-60dBm0

QUANTISING DISTORTION (USING TONE)

```
Transmit signal
```

```
Frequency range:

3776A - 810 to 850Hz

3776B - 1010 to 1020Hz
```

Accuracy (+/-dB):

S+N/N Ratio	Accuracy (+/-dB)
<30	0.2
<40	0.4
<45	0.6

Rx tone level >-60dBmO

INTERMODULATION (2 TONE)

Frequency range of f_A and f_B : 200 to 3900Hz Intermodulation product fp $(2f_A - f_B)$ frequency range: 200 to 3900Hz Tones at $|f_A - f_B|$, $|f_p - f_A|$ and $|f_p - f_B| > 150$ Hz

Accuracy (+/-dB):

Tonę fA/Tone fp	Accuracy
(dB)	(+/-dB)
<30	0.2
<40	0.3
<45	0.5

Rx level (tone f_A) >-20dBm0 Rx level (tone fp) >-50dBm0 800 indpendent samples

INTERMODULATION (4-TONE) - 3776B ONLY

Accuracy (+/-dB):

Measured	Accuracy
intermodulation (dB)	(+/-dB)
<45	0.5
<55	1.0

Rx stimulating signal >-20dBm0 Intermod Rx level >-50dBm0

RETURN LOSS (ERL) - 3776B ONLY

```
Tx level accuracy: +/-0.01dB
(Tx levels >-20dBm0)
Rx accuracy: +/-0.3dB
(Rx levels >-60dBm0)
```


ANALOG TRANSMITTER (AN Tx) ONLY

GAIN (TONE)

Frequency range: 200 to 3900Hz Tx Level accuracy: +/-0.09dB

GAIN v FREQUENCY

Frequency range: 200 to 3900Hz Tx level accuracy: +/-0.09dB Tx level flatness: +/-0.04dB (Tx levels >-30dBm)

GAIN v LEVEL (USING NOISE) - 3776A ONLY

Level accuracy:

Signal Level Accuracy (+/-dB)
0.09
0.11
0.13

Level Linearity:

Nominal Signal Level (dBm)	Signal Level Linearity (+/-dB)
>-46	0.05
>-56	0.06
>-66	0.07
>-76	0.09
>-82	0.12

(Reference levels >-38dBm)

GAIN v LEVEL (USING TONE)

Frequency Range: 200 to 3900Hz Level accuracy:

Nominal Signal Level	Signal Level Accuracy
(dBm)	(+/-dB)
>-30	0.09
>-60	0.11
>-76	0.13

Level linearity:

Nominal Signal Level (dBm)	Signal Level Linearity (+/-dB)
>-40	0.05
>-50	0.06
>-60	0.07
>-70	0.09
>-76	0.12

(Reference levels >-30dBm)

NOISE WITH TONE

Tx frequency range: 3776A - 810 to 850Hz 3776B - 1010 to 1020Hz Tx level accuracy: +/-0.10dB (Tx levels >-30dBm)

IDLE STATE

Tx: terminated with characteristic impedance (ie 600ohms/900ohms, balanced/unbalanced)

LEVEL

Frequency range: 50 to 4600Hz Internal Source:

Nominal Signal Level	Signal Level Accuracy (+/-dB)		
(dBm)	50 to 200Hz	200 to 4600Hz	
>-30 >-60 >-76	0.2 - -	0.09 0.11 0.13	

Auxiliary input: Auxiliary input to analog Tx gain: +/-0.5dB (nominal)

QUANTISING DISTORTION (USING NOISE) - 3776A ONLY

Nominal Signal Level (dBm)	Signal Level Accuracy (+/-dB)
>-36	0.09
>-66	0.11
>-82	0.13

QUANTISING DISTORTION (USING TONE)

Frequency range: 3776A - 810 to 850Hz 3776B - 1010 to 1020Hz Tx level accuracy: same as Level (internal source) as above

INTERMODULATION (2 TONE)

Tone f_A/Tone f_B level ratio: <0.1dB Tx level accuracy: +/-0.10dB Tx spurious level: >65dB down (Tx levels >-30dBm)

INTERMODULATION (4 TONE) - 3776B ONLY

Tx level accuracy: +/-0.10dB
 (Tx levels >-30dBm)

RETURN LOSS (ERL) - 3776B ONLY

Tx level accuracy: +/-0.25dB (Tx levels >-30dBm)

DIGITAL TRANSMITTER (DIG Tx) ONLY

GAIN (TONE)

Frequency range: 200 to 3900Hz Tx level accuracy: +/-0.01dB

GAIN (DIGITAL mW)

Transmits fixed sequence of PCM codes as defined in CCITT Rec G711 Tx send level: ideal

GAIN (DIGITAL Tx-Rx)

Transmits two programmable PCM codes alternating at lkHz rate Tx send level: ideal

GAIN v FREQUENCY

```
Frequency range: 200 to 3900Hz
Tx level accuracy: +/-0.01dB
Tx level flatness: ideal
(Tx levels >-40dBm0)
```

GAIN v LEVEL (USING NOISE) - 3776A ONLY

Level accuracy:

Nominal Signal Level	Signal Level Accuracy
(dBmO)	(+/-dB)
>-55	0.01
>-60	0.03

Level Linearity:

Nominal Signal Level	Signal Level Linearity
(dBm0)	(+/-dB)
>-55	0.02
>-60	0.04

(Reference levels >-40dBmO)

GAIN v LEVEL (USING TONE)

Frequency range: 200 to 3900Hz Level Accuracy:

Nominal Signal Level	Signal Level Accuracy	
(dBm0)	(+/-dB)	
	3776A	3776B
>-40	0.01	0.01
>-55	0.01	0.03
>-60	0.03	0.05

Level linearity:

Nominal Signal Level	Signal Level Linearity	
(dBm0)	(+/-dB)	
	3776A	3776B
>-40	0.02	0.02
>-55	0.02	0.04
>-60	0.04	0.06

(Reference levels >-40dBmO)

GAIN v LEVEL (SYNCHRONISED 2kHz)

Transmits sequence of PCM codes at 2kHz rate; level programmable Tx send level: ideal

NOISE WITH TONE

```
Tx Frequency range:

3776A - 810 to 850Hz

3776B - 1010 to 1020Hz

Tx level accuracy: +/-0.01dB

(Tx levels >-40dBm0)
```


IDLE STATE

Tx code:

```
3776A - 11010101 [after alternate digit inversion (ADI)]
3776B - alternates 11111111 and 01111111 at 1kHz rate
```

LEVEL

Frequency range: 200 to 3900Hz Internal Source:

Nominal Signal Level	Signal Level Accuracy	
(dBmO)	(+/-dB)	
	3776A	3776B
>-40	0.01	0.01
>-55	0.03	0.03
>-60	0.03	0.05

Auxiliary input:

Same as LEVEL (D-A) meausrement.

QUANTISING DISTORTION (USING NOISE) - 3776A ONLY

Nominal Signal Level	Signal Level Accuracy
(dBmO)	(+/-dB)
>-40	0.01
>-60	0.03

QUANTISING DISTORTION (USING TONE)

Tx frequency range:

3776A - 810 to 850Hz 3776B - 1010 to 1020Hz Tx level accuracy: same as LEVEL (internal source) as above

INTERMODULATION (2 TONE)

```
Tone f_A/Tone f_B ratio: ideal (0.0dB)
Tx level accuracy: +/-0.01dB
(Tone f_A and tone f_B > -20dBmO)
```

v

.

INTERMODULATION (4 TONE) - 3776B ONLY

Tx level accuracy: +/-0.01dB (Tx levels >-20dBmO)

RETURN LOSS (ERL) - 3776B ONLY

Tx level accuracy: +/-0.01dB (Tx levels >-20dBm0)

ANALOG RECEIVER (AN Rx) ONLY

GAIN (TONE)

```
Frequency range: 200 to 3900Hz
Accuracy: +/-0.10dB
(Rx level >-30dBm; assume perfect Tx level)
```

GAIN (DIGITAL mW)

```
Accuracy: +/-0.10dB
(Rx level >-30dBm; assume perfect Tx level)
As defined in CCITT REC G711
```

GAIN v FREQUENCY

```
Frequency range: 200 to 3900Hz
Accuracy: +/-0.08dB
(Rx level >-30dBm; assume perfect Tx level)
```

GAIN v LEVEL (USING NOISE) - 3776A ONLY

	Rx level (dBm)		
	>-46	>-66	>-82
Accuracy (+/-dB)	0.08	0.12	0.30

(Rx reference level >-28dBm; assume perfect Tx levels)

GAIN v LEVEL (USING TONE)

Frequency range: 200 to 3900Hz

	Rx level (dBm)		
	>-40	>-60	>-76
Accuracy (+/-dB)	0.06	0.10	0.18

(Rx reference level >-20dBm, assume perfect Tx levels)

GAIN v LEVEL (SYNCHRONISED 2kHz)

	Rx level (dBm)		
	>-40	>-60	>-76
Accuracy (+/-dB)	0.05	0.1	0.2

(Rx reference level >-20dBm; assume ideal Tx levels)

NOISE WITH TONE

S+N/N Ratio	Accuracy
(dB)	(+/-dB)
< 30	0.5
<40	0.6
<45	0.8

(Rx noise levels >-80dBm)

IDLE STATE (WEIGHTED, SELECTIVE, OTHER FILTERS)

Rx accuracy: same as IDLE STATE (A-A)

LEVEL (WEIGHTED, SELECTIVE, OTHER FILTERS)

Rx accuracy: same as Level (A-A)

QUANTISING DISTORTION (USING NOISE) - 3776A ONLY

Accuracy (+/-dB):

S/N Ratio	Rx distortion level (dBm)	
(dB)	>-72	>-76
<40	0.5	0.9
<45	0.9	1.2

(Rx noise levels >-68dBm)

QUANTISING DISTORTION (USING TONE)

Accuracy (+/-dB):

S+N/N Ratio	Accuracy
(dB)	(+/-dB)
<30	0.5
<40	0.6
<45	0.8

(Rx noise levels >-80dBm)

INTERMODULATION (2-TONE)

Tones at $|f_A-f_B|$, $|f_p-f_A|$ and $|f_p-f_B| > 150Hz$ Accuracy (+/-dB):

Tone f _A /Tone fp	Accuracy
(dB)	(+/-dB)
< 30	0.1
< 40	0.2
< 45	0.5

(Rx level (tone A) <-36dBm)

INTERMODULATION (4 TONE) - 3776B ONLY

Accuracy (+/-dB):

Measured	Accuracy
intermodulation (dB)	(+/-dB)
<45	0.5
<55	1.0

(Rx stimulating signal >-36dBm)

RETURN LOSS (ERL) - 3776B ONLY

Rx accuracy (+/-dB):

Rx Signal Level	Accuracy
(dBm)	(+/-dB)
>-40	0.3
>-80	0.5

DIGITAL RECEIVER (DIG Rx) ONLY

GAIN (TONE) GAIN (DIGITAL mW)

	Accuracy (+/-dB)
3776A; 3776B (CCS)	0.03
3776B (CAS)	0.04

(Rx levels >-20dBmO; assume perfect Tx level; 800-independent samples)

GAIN (DIGITAL Tx-Rx)

Receiver: detects peak positive and peak negative PCM codes

GAIN v FREQUENCY

	Accuracy (+/-dB)
3776A; 3776B (CCS)	0.05
3776B (CAS)	0.07

(Rx levels >-20dBmO; assume perfect Tx level; 800 independent samples)

GAIN v LEVEL (USING NOISE) - 3776A ONLY

Accuracy (+/-dB):

Rx level (dBmO)	Accuracy (+/-dB)
>-40 >-55	0.07 0.08
>-60	0.13

(Rx reference level >-20dBmO; assume perfect Tx level)

GAIN v LEVEL (USING TONE)

Accuracy (+/-dB):

Rx Level (dBmO)	3776A	3776B (CCS)	3776B (CAS)
>-40	0.07	0.06	0.08
>-50	0.08	0.08	0.12
>-60	0.25	0.25	0.30

(Rx reference level >-20dBmO; assume perfect Tx level; 800 independent samples)

GAIN v LEVEL (SYNCHRONISED 2kHz)

Accuracy (+/-dB):

Rx Level (dBmO)	3776A	3776B (CCS)	3776B (CAS)
>-40	0.06	0.05	0.08
>-60	0.08	0.08	0.10

(Rx reference level >-20dBmO; assume ideal Tx level)

NOISE WITH TONE

Accuracy (+/-dB):

S+N/N Ratio	Accuracy
(dB)	(+/-dB)
<30	0.2
<40	0.4
<45	0.6

(Rx noise levels >-60dBmO)

IDLE STATE (WEIGHTED, SELECTIVE, OTHER FILTERS)

Rx accuracy: same as IDLE STATE (A-D)

IDLE STATE (PCM CODES)

Receiver: detects average of 800 codes; result expressed as number of compressed PCM code level steps from centre of coding law. Signal range: bottom two segments of coding law Resolution: +/-0.5 coded step

LEVEL (WEIGHTED, SELECTIVE, OTHER FILTERS)

Rx accuracy: same as LEVEL (A-D)

LEVEL (PCM CODES)

Detects the peak positive and peak negative PCM codes in 800 samples. Result expressed in compressed codes.

.

QUANTISING DISTORTION (USING NOISE) - 3776A ONLY

Accuracy (+/-dB):

S/N Ratio (dB)	Rx distortion level (dBmO) >-60
<-40 <-45	0.3
<-45	0.6

(Rx noise levels >-60dBmO)

QUANTISING DISTORTION (USING TONE)

Accuracy (+/-dB):

S+N/N Ratio (dB)	Accuracy (+/-dB)
< 30 < 40	0.2
<40 <45	0.4

(Rx noise levels >-60dBm0)

INTERMODULATION (2 TONE)

Tones at $|f_A-f_B|$, $|f_p-f_A|$ and $|f_p-f_B| > 150Hz$

Accuracy (+/-dB)

Tone f _A /Tone fp	Accuracy
(dB)	(+/-dB)
<30	0.2
<40	0.3
<45	0.5

[Rx (tone A) >-20dBmO; Rx (tone fp) >-50dBmO; assume perfect Tx levels; assume Tx spurious <-60dB; 800 independent samples]</pre>

INTERMODULATION (4 TONE) - 3776B ONLY

Accuracy (+/-dB):

Measured	Accuracy
intermodulation (dB)	(+/-dB)
45	0.5
55	1.0

(Rx level >-20dBm0; intermod Rx level >-50dBm0)

RETURN LOSS (ERL) - 3776B ONLY

Accuracy: +/-0.3dB (Rx levels >-60dBm0).

-

MEASUREMENT SPECIFICATIONS OPTION 001

The specifications on pages 1-58 to 1-69 apply only to Models 3776A and 3776B fitted with Option 001.

,

~

:

MEASUREMENT SPECIFICATIONS OPTION 001

The following specifications apply only to the 3776A/B PCM Terminal Test Set with Option 001 fitted. Option 001 provides measurements of:

3776A	3776В
Group delay distortion	Envelope delay distortion
Envelope delay distortion	Remodulation
Absolute delay	Absolute delay
Phase jitter	Phase jitter
Transients:	Transients:
amplitude hits	gain hits
phase hits	phase hits
interruptions	dropouts
impulse noise (3-level)	impulse noise (3-level)

The following table shows the various operating modes in which the measurements are valid:

Measurements	A-A	A-D	D-A	D-D	An Tx	Dig Tx	An Rx	Dig Rx
Group delay distortion	*	*	*	*	*	*	*	*
Envelope delay distortion	*	*	*	*			_	
Remodulation	*	*	-	-	_	_	-	l _
Absolute delay	*	*	*	*		-	_	_
Phase jitter	*	*	*	*	*	*	*	*
Transients	*	*	*	*	*	*	*	*

An Tx - Analog Transmit only Dig Tx - Digital Transmit only An Rx - Analog Receive only Dig Tx - Digital Receive only

MEASUREMENTS

1. GROUP DELAY - 3776A ONLY

Analog Transmitter Frequency range: 200 to 3600Hz Error introduced by Tx: <+/-l0us Tx signal level: >-40dBm Tx carrier level accuracy: 0.3dB Note: 40% modulation adds approximately 0.33dB to signal level.


```
Analog Receiver

Frequency range: 200 to 3600Hz

Measurement range:

relative delay - 0 to +/-10ms

relative amplitude - 0 to +/-10dB

Signal level range (Ref and Meas): >-40dBm
```

a) Relative delay measurement measurement error:

Frequency range (Hz)	Rx error (us)
200 to 400	+/-35
400 to 600	+/-15
600 to 3600	+/-10

(< +/-3dB relative attenuation, REF to MEAS; 100ppm, signal freq to Rx freq)

Typical additional error due to relative levels, REF to MEAS:

REF to MEAS (dB)	Error (us)
< +/-6 < +/-10 < -15	+10 +20 +60

Typical error due to gaussian white noise 26dB below carrier: <20us RMS Typical error due to single tone 150Hz from carrier, +26dB below carrier: <20us

(NOTE: When the received test signal has passed through a PCM system, the sampling and quantising process of the system under test will cause spreading of results, with deviation of approximately 50 to 60us).

- b) Relative amplitude measurement Rx accuracy: +/-0.2dB nominal
- c) Frequency measurement Accuracy: +/-10Hz nominal

Digital Transmitter

Frequency range: 200 to 3600Hz Delay error introduced by Tx: nil Tx signal level: > -20dBm0 Tx carrier level accuracy: 0.3dB Note: 40% modulation adds approximately 0.33dB to signal level

Digital Receiver

Frequency range: 200 to 3600Hz Measurement range: relative delay - 0 to +/-10ms relative amplitude - 0 to +/-10dB Signal level range (Ref and Meas): > -30dBm0

a) Relative delay measurement

Rx error: +/-10us

(< +/-3dB relative attenuation, REF to MEAS; < 100ppm, signal freq to Rx freq) Typical additional error due to relative levels:

REF	to	MEAS (dB)	Error (us)
	<	+/-6 +/-10 -15	+/-10 +/-20 +/-60

Typical additional error for 1% f, signal freq to Rx freq: +/-15us Typical error due to gaussian white noise 26dB below carrier: < 20us RMS Typical error due to single tone, 150Hz from carrier, +26dB below carrier: < 20us

(NOTE: When the received test signal has passed through a PCM system, the sampling and quantising process of the system under test will cause spreading of results, with deviation of approximately 50 to 60us).

b) Relative amplitude measurement Accuracy: +/-0.2dB nominal

c) Frequency measurement Accuracy: +/-10Hz nominal

2. ABSOLUTE DELAY

Analog Transmitter

Signal: modulated fixed frequency carrier Carrier frequency range: 300 to 3500Hz


```
Modulation index:
3776A - 0.4 +/-0.05
3776B - 0.5 +/-0.05
```

```
Modulation frequency:
3776A - 41 2/3 +/-0.1%
3776B - 83 1/3 +/-0.1%
```

Analog Receiver

Signal range: >-40dBm Measurement error: <20us Measurement range: 3776A - 0 to 24ms 3776B - 0 to 12ms

Digital Transmitter

Signal: modulated, fixed frequency carrier Carrier frequency range: 300 to 3500Hz Modulation index: 3776A - 0.4 +/-0.05 3776B - 0.5 +/-0.05

Modulation frequency:

3776A - 41 2/3 +/-0.1% 3776B - 83 1/3 +/-0.1%

Digital Receiver

Signal level: >-20dBm0 Measurement error: <20us Measurement range: 3776A - 0 to 24ms 3776B - 0 to 12ms

(NOTE: When the received test signal has passed through a PCM system, the sampling & quantising process of the system under test will cause spreading of the results, deviating by a few micro-seconds.)

3. ENVELOPE DELAY

Analog Transmitter

Frequency range: 300 to 3500Hz Error introduced by Tx: <+/-10us Tx Signal level: >-40dBm Tx flatness: <+/-0.2dB

Analog Receiver

Frequency range: 300 to 3500Hz Measurement range: relative delay 3776A - +/-12ms 3776B - -3 to +9ms Signal level range: >-40dBm

a) Relative delay measurement

Measurement error:

Frequency (Hz)	Error (us)
> 300	< +/-20
> 500	< +/-15

(S/N Ratio > 35dB) Typical additional error (S/N Ratio of 24dB): < +/-10us

(NOTE: When the received test signal has passed through a PCM system, the sampling & quantising process of the system under test will cause spreading of the results, deviating by a few micro-seconds.)

- b) Relative amplitude measurement Rx accuracy: +/-0.2dB nominal
- c) Frequency measurement Accuracy: +/-10Hz nominal

Digital Transmitter

Frequency range: 300 to 3500Hz Delay error introduced by Tx: nil Tx signal level: > -20dBm0 Tx flatness: ideal

Digital Receiver

Frequency range: 300 to 3500Hz Measurement range: relative delay 3776A - +/-12ms 3776B - -3 +9ms Signal level range: >-20dBm0

a) Relative delay measurement

Measurement error (S/N ratio > 35dB): +/-5us Typical additional error (S/N ratio of 24dB): +/-10us

(NOTE: When the received test signal has passed through a PCM system, the sampling & quantising process of the system under test will cause

spreading of the results, deviating by a few micro-seconds.)

- b) Relative amplitude measurement Rx accuracy: +/-20dB nominal
- c) Frequency measurement Accuracy: +/-10Hz nominal

4. RE-MODULATION - 3776B ONLY

Analog Transmitter

Frequency range: 300 to 3500Hz Error introduced by Tx: <+/-10us Tx signal level: >-40dBm Tx flatness: <+/-0.2dB

Analog Receiver

```
Received frequency measurement accuracy: +/-10Hz
Rx Signal level: >-40dBm
Envelope delay introduced by receiver:
300 to 500Hz - <+/-50us
500 to 3500Hz - <+/-15us
```

Digital Receiver

Received frequency measurement accuracy: +/-10Hz Rx signal level: >-40dBm Envelope delay introduced by receiver: nil

5. PHASE JITTER

Analog Transmitter

Frequency range: 1010 to 1020Hz Level accuracy: +/-0.10dB (for levels >-30dBm)

Analog Receiver

Frequency range: 990 to 1030Hz Carrier level: >-40dBm Measurement range: 30 degrees p-p Measurement accuracy: +/-5% +/-0.2 degrees Spread of readings: <0.7 degrees Selectable filters Filter A - 20 to 300Hz Filter B - 4 to 300Hz Detection: true peak-to-peak


```
Settling time: (within 0.7° of final reading)
Filter A - <4 seconds
Filter B - <25 seconds
```

Typical white noise rejection at S/N ratio 30dB: <4 degrees p-p jitter Modulation measurement weighting characteristics (two tone method):

	☆f using filter A (Hz) ☆f using filter B (Hz) Reading (degree p-p)		5 1 <3	10 2 <8	- 4 9.2 to 12.2	- 6 10.2 to 12.2	12 - <10	20-240 8-240 10.8 to 12.2	300 300 10 to 12.2	500 500 <3	700 700 <1	
--	--	--	--------------	---------------	-----------------------------	------------------------------	----------------	---------------------------------------	--------------------------------	------------------	------------------	--

Amplitude modulation to phase modulation conversion:

 $3776A - \langle 0.2 \text{ degrees over } 20 \text{ to } 300\text{Hz}$ $3776B - \langle 1 \text{ degree p-p over } 2 \text{ to } 900\text{Hz}$

Averaging time:

_		
Gate frequency	5Hz	1Hz
Display variation	<10%	>40%

Digital Transmitter

```
Frequency range: 1010 to 1020Hz
Level accuracy: +/-0.01dB
(for levels >-30dBmO)
```

Digital Receiver

Frequency range: 900 to 1030Hz Carrier level: >-40dBm0 Measurement range: 30 degrees p-p Measurement accuracy: +/-5% +/-0.02 degrees Spread of readings: <0.7 degrees Selectable filters: Filter A - 20 to 300Hz Filter B - 4 to 300Hz Detection: true peak-to-peak Settling time: Filter A - <4 seconds Filter B - <25 seconds

Typical white noise rejection at S/N ratio 30dB: <4 degrees p-p jitter

Modulation measurement weighting characteristics (two tone method):

<pre></pre>	0.4 1	10 - 2 4 <8 9.2 to 12.	o to	12 - <10	20-240 8-240 10.8 to 12.2	300 300 10 to 12.2	500 500 <3	700 700 <1
-------------	-------	------------------------------------	------	----------------	---------------------------------------	--------------------------------	------------------	------------------

Amplitude modulation to phase modulation conversion:

```
3776A - \langle 0.2 \text{ degrees over } 20 \text{ to } 300Hz
3776B - \langle 1 \text{ degree } p-p \text{ over } 2 \text{ to } 900Hz
```

Averaging time:

.....

6. TRANSIENTS

Analog Transmitter

```
Frequency range: 1010 to 1020Hz
Level accuracy: +/-0.10dB
(for levels >-30dBm)
```

Analog Receiver

Simultaneous measurements of:

```
gain hits
phase hits
interruptions (3776A)
dropouts (3776B)
impulse noise (3-levels)
```

GENERAL

Measurement time: programmable between 1min and 9hr 59min in 1min steps; or continuous Count capacity: up to 9998 counts for each measurement; 9999 indicates overflow Carrier Rx frequency range: 995 to 1025Hz

a) GAIN HITS

Carrier level: >-40dBm Thresholds: selectable 2, 3, 4 or 6dB Accuracy: +/-0.5dB Qualification period: 3.5 to 4.5ms

Model 3776A/B

```
Loop recovery: with a 4dB change in carrier level in time T
       - to register 2dB hit: T <200ms
      - not to register 2dB hit: T>600ms
    Count rate:
      slow count - nominal 8 counts/s
      fast count (3776B only) - nominal 100 counts/s
  Phase to amplitude conversion: nominal 180 degrees phase change in
      <0.2ms does not count on 2dB threshold
    Dead time:
      slow - 125ms +/-10% nominal
      fast (3776B) - 10ms +/-20% nominal
b) PHASE HITS
  Carrier level: >-40dBm
  Threshold accuracy on slow count: +/-10\% of threshold +/-0.5 degrees
    Range: 5 degrees to 40 degrees in 5 degrees steps
    Qualification period: 3.5 to 4.5ms
    Loop recovery: with a linear phase variation of carrier over
                     100^{\circ} in either direction in time T
      - for 20° hit to be registered: T <20ms
      - for 20° hit not to register: T >50ms
    Count rate:
      slow - nominal 8 counts/s
      fast (3776B) - nominal 100 counts/s
  Amplitude to phase modulation conversion: 10dB gain hit in < 0.2ms
      does not record 10 degrees phase hit.
    Dead time:
      slow - 125ms +/-10% nominal
      fast (3776B) - 10ms +/-20% nominal
c) INTERRUPTIONS (3776A)
  Carrier level: >-30dBm at start of measurement
    Threshold/ref carrier level at start: -10dB +/-1dB
    Qualification period: 2.5 to 4.0ms
    Dead time:
      slow - 125ms +/-25ms nominal
               3ms +/- 1ms nominal
      fast -
  Lockout: an interruption blocks counting of other transients for
      duration of interruptions plus 1s +/-10% nominal.
d) DROPOUTS (3776B)
  Carrier level: >-28dBm at start of measurement
    Threshold/ref carrier level at
  start of measurement: -12dB +/-1dB
    Qualification period: 3.5 to 4.5ms
    Count rate:
      slow - nominal | counts/s
      fast - nominal 100 counts/s
  Interlock: (a dropout blocks counting of other transients)
      slow - duration of dropout plus 1s +/-10%
      fast - duration of dropout plus 6ms nominal
```

```
e) IMPULSE NOISE
  Thresholds: three thresholds; programmable in ldB steps
    Threshold spacing:
      3776A - +3dB
      3776B - +4dB
    Threshold range: (lowest threshold)
      3776A - -6 to -40dBm
      3776B - -8 to -40dBm
    Threshold accuracy (for thresholds >-25dBm): +/-1dB
    Carrier rejection: >55dB
    Filters:
      3776A - Selectable as
               Filter A: 200Hz high pass, with 1kHz notch
               Filter B: 600 to 3000Hz, with 1kHz notch
               Filter C: 300 to 500Hz, with 1kHz notch
      3776B - notched C-message
    Count rate:
      slow - nominal 8 counts/s
      fast - nominal 100 counts/s
    Dead time:
      slow - 125ms +/-10% nominal
      fast - 10ms +/-10% nominal
Digital Transmitter
 Frequency range: 1010 to 1020Hz
 Level accuracy: +/-0.01dB
  (for levels > -30dBmO)
Digital Receiver
 Simultaneous measurements of:
    gain hits
    phase hits
    interruptions (3776A)
    dropouts (3776B)
    impulse noise (3-levels)
  Measurement time: programmable between 1 min and 9hr 59min in 1min
    steps; or continuous
  Count capacity: up to 9998 counts for each measurement; 9999
    indicates over flow
  Carrier Rx frequency range: 995 to 1025Hz
a) GAIN HITS
  Carrier level: >-30dBm0
    Thresholds: selectable 2, 3, 4 or 6dB
    Accuracy: +/-0.5dB
    Qualification period: 3.5 to 4.5ms
    Loop recovery: with a 4dB change in carrier level in time T
      - to register 2dB hit: T <200ms
      - not to register 2dB hit: T >600ms
```



```
Count rate:
       slow - nominal 8 counts/s
       fast (3776B) - nominal 100 counts/s
   Phase to amplitude conversion: nominal 180 degrees phase change in
       <0.2ms does no count on 2dB threshold
    Dead time:
      slow - 125ms +/-10% nominal
      fast (3776B) - 10ms +/-20% nominal
b) PHASE HITS
  Carrier level: →-30dBm0
    Threshold accuracy on slow count: +/-10\% of threshold +/-0.5 degrees
    Range: 5 degrees to 40 degrees in 5 degrees steps
    Qualification period: 3.5 to 4.5ms
    Loop recovery: with a linear phase variation of carrier level over
                     100° in either direction in time T
      - for 20° hit to be registered: T <20ms
      - for 20° hit not to register: T >50ms
    Count rate:
      slow - nominal 8 counts/s
      fast (3776B) - nominal 100 counts/s
    Amplitude to phase modulation conversion:
      10dB gain hit in < 0.2ms does not record 10 degrees phase hit
    Dead time:
      slow - 125ms +/-10% nominal
      fast (3776B) - 10ms +/-20% nominal
c) INTERRUPTIONS (3776A)
  Carrier level: →-30dBm0
    Threshold/ref carrier level at start of measurement: -10dB +/-1dB
    Qualification period: 2.5 to 3.5ms
    Dead time:
      slow - 125ms +/-25ms nominal
      fast - 3ms +/- 1ms nominal
    Lockout: an interruption blocks counting of other transients for
      duration of interruption plus ls +/-10% nominally
d) DROPOUTS (3776B)
  Carrier level: >-18dBmO at start of measurement
    Threshold/ref carrier level at start of measurement: -12dB +/-1dB
    Qualification period: 3.5 to 4.5ms
    Count rate:
      slow - nominal 1 counts/s
      fast - nominal 100 counts/s
    Interlock: (a dropout blocks counting of other transients)
      slow - duration of dropout plus 1s +/-10% nominal
      fast - duration of dropout plus 6ms nominal
```

```
e) IMPULSE NOISE
  Thresholds: three thresholds; programmable in 1dB steps
    Threshold spacing:
      3776A - +3dB
      3776B - +4dB
    Threshold range: (lowest threshold)
      3776A - -9 to -40dBm0
      3776B - -11 to -40dBm0
    Threshold accuracy (for thresholds >-25dBm): +/-1dB
    Carrier rejection: >55dB
    Filters:
      3776A - selectable as
               Filter A: 200Hz high pass, with lkHz notch
               Filter B: 600 to 3000Hz, with 1kHz notch
               Filter C: 300 to 500Hz, with 1kHz notch
      3776B - notched C-message
   Count rate:
      slow - nominal 8 counts/s
      fast - nominal 100 counts/s
   Dead time:
      slow - 125ms +/-10% nominal
      fast - 10ms +/-10% nominal
```

Instrument	Critical Specifications	Recommended Model	Use*
AC Voltmeter/	MATH % ERROR X-Y/Y X 100	HP 3455A	PATO
DC Voltmeter	Capability, AC, 1V to 10V ranges accuracy approx +/-0.2% of the input for frequencies in the range 30Hz to 20kHz. DC, 1V to 10V ranges accuracy approx +/-0.1% of the input.		
AC Calibrator	Output 2 to 3V RMS +/-0.026% 200Hz to 4kHz	Fluke 5200A (The obsolete HP 745A can be used)	PO
Personal Computer	Unique	HP 85B Service Tool	РТО
	Note: HP 85B Service Tool comprises the following items:- HP 85B Mainframe HP-IB Interface 128k Memory Module ROM Drawer Advanced Programming ROM Plotter/Printer ROM Matrix ROM		
3776 Test Program Data Cartridge	Unique	03776-10001	PTO
Pulse Generator	External-Manual capability; pulse width range from 1m sec to 3 sec. Reptition rate range from 0.3 to 10Hz. Rise and fall time variation control from 200ms to 600ms.	HP 8005 B	ΡΤΟ
Two Function Generators	Frequency control of frequencies in the range 300Hz to 1200Hz via external VCO input; internal/external amplitude modulating capability; external frequency modulating input; gated or burst operation; ac voltage output amplitude (sinewave) of 50mV to 1V into 600ohms.	HP 3312A (only one required for troubleshoot- ing and Oper- ational Verif- ication).	ΡΤΟ

Table 1-4 Recommended Test Equipment

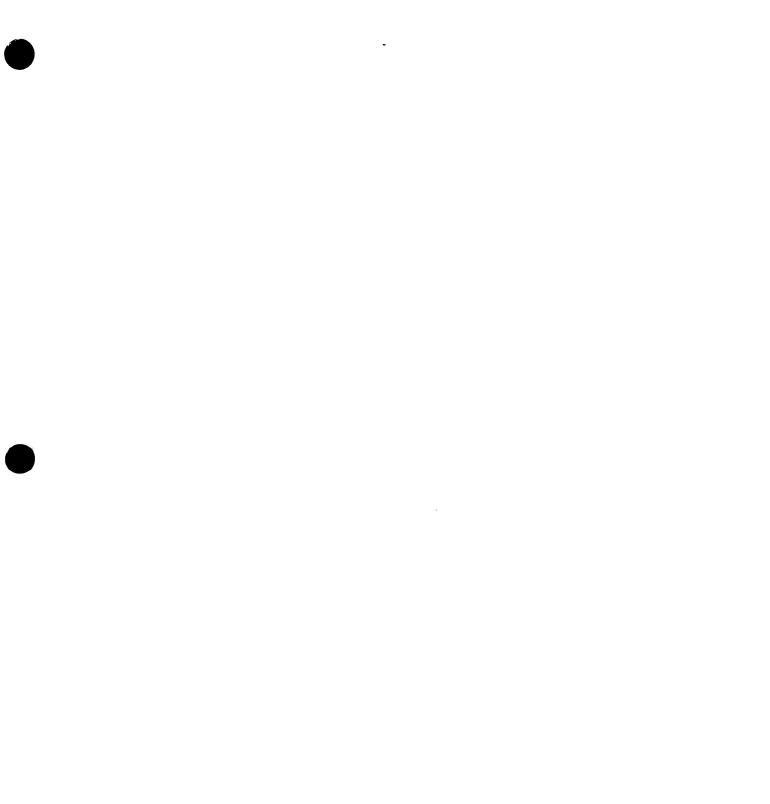
*P=Performance Tests, A=Adjustments, T=T'shooting, O=Operational Verification

Table 1-4	Recommended Test	Equipment (continued)
-----------	-------------------------	-----------------------

Instrument	Critical Specifications	Recommended Model	Use*
Storage ** Oscilloscope	Capable of monitoring a 0.25Hz complex signal.	HP 1741A	PO
Oscilloscope	0.005V/DIV to 5V/DIV sensitivity in ranges; 0.lus to 0.5s/DIV timebase in ranges; dual trace 20MHz bandwidth external trigger.	HP 180D/1801A/ 1821A	РТО
RMS Voltmeter	True RMS responding; ac coupled input; 100mV to 10V ranges; 10kHz bandwidth; input impedance 10Mohm shunted with <20pF; accuracy better than +/-0.4% of range.	HP 3403C	РТ
Frequency Counter	Frequency measurements in the range 200 to 4kHz.	HP 5328A	PATO
Two Oscillators	600ohm impedance; +10dBm to -80dBm output (into 600ohm); 20Hz to 20kHz frequency range; output attenuator with 90dB range in 10dB steps with an accuracy of +0.1dB at +10dBm and +/-0.2dB at < +10dBm.	HP 651B	PTO
Attenuator	600ohm input/output impedance unbalanced. 0 to 85dB attenuation range; accuracy better than +/-0.1dB at frequencies in the range 20Hz to 20kHz; 0.1dB resolution.	HP 4437A	ΡΤΟ
Three 200ohm Resistors	Tolerance nominal	HP 0757-0407	PTO
600ohm Resistor	Tolerance +/-0.01%	HP 0811-3502	P0
900ohm Resistor	Tolerance +/-0.01%	HP 0811-3504	P0
75ohm Resistor	Tolerance, nominal	HP 0757-0398	Р
100ohm Resistor	Tolerance +/-0.1%	HP 0757-0713 (3776B only)	Ρ
120ohm Resistor	Tolerance +/-0.1%. Two resistors, 110ohm +10ohm combined in series.	HP 0757-0713 HP 0757-0489 (3776A only)	Ρ

**This oscilloscope can be used for all oscilloscope applications. The storage capability is only used for one check in Section IV.

Instrument	Critical Specifications	Recommended Model	Use*
Matching Pad	50ohm to 75ohm, 1.5MHz to 2.1MHz	HP 11852A	Р
75ohm Attenuator	-6dB and -30dB nominal	HP 3750A	Р
@@BAL/UNBAL Converter	Z in 600 or 900ohm switchable. Z out <lohm, +="" -0.005db,="" 200hz="" 4khz<="" gain="" td="" to=""><td>SA1</td><td>P</td></lohm,>	SA1	P
@@UNBAL/BAL	Z in >10kohm, Z out 600 or 900ohm Switchable, gain +/-0.005dB, 200Hz to 4kHz	SA2	Ρ
Pulse Generator	2 separate channels which can be combined; Trigger input/output; repetition rate range from 4Hz to 4kHz; selectable polarity of pulse output; pulse width range from 0.2ms to 50ms.	HP 8160A Option 020	РТО
@Frame Word Error Detector	Unique	HP 3783A (3776A only)	Р
Decode Transformer	Ratio Accuracy +/-25ppm, 200Hz to 4kHz	ESI Dekatran Type DT72A	Ρ
Dual Power Supply	Dual DC Supply capable of supplying 0 to +15V, and 0 to ~15V at 100mA.	HP 6205B	Ρ
Spectrum Analyzer	5s/DIV timebase; 100Hz resolution bandwidth; Frequency Span /Div 2kHz.	HP 3580A	Р
**Power Splitter	Characteristic impedance; 600ohm attenuation between any two ports; 6.02dB +/-0.05dB, 40Hz to 40kHz.	SA3	Ρ
Test Oscillator	+10dBm into 600ohm Balanced, 200Hz to 4kHz.	HP 654A	Ρ


Table 1-4 Recommended Test Equipment (continued)

@ Used for checking the 3776A only.
** Unique Service Accessory for Performance Tests. See Section IV for details.
@ Service Accessory for Performance Tests.

@@ Service Accessory used for Performance Checks. See Section IV for details.

Instrument	Critical Specifications	Recommended Model	Use*
Two 75ohm UNBAL to 110ohm BAL Converters	75ohm unbal to 110ohm, 1.5MHz	HP 15508B (3776B only)	Ρ
Two 75ohm UNBAL to 120ohm BAL Converters	750hm unbal to 1200hm, 2MHz	HP 15508C (3776A only)	
Signature Analyzer	Qualified signature mode; adjustable thresholds.	5005A	T
Digital Multimeter	DC Current; 200uA range; accuracy; 0.4% of input.	HP 3435A	Т
DC Power Supply	Adjustable positive and negative output dc voltage in the range 0 to +/-2V, with relatively fine output voltage resolution.	HP 6282A	РТ
Synthesizer	600ohm Output,200Hz to 4kHz, +10dBm to -60dBm, 0.1Hz resolution. Frequency accuracy: +/-5 x 10 ⁻⁶ of programmed frequency. Frequency stability: +/-5 x 10 ⁻⁶ /day.	HP 3336A	Ρ
Adaptor	50ohm N-male to BNC female	HP 1250-1476	Ρ
Adaptor	70ohm N-female to BNC female	HP 1250-1536	Р

Table 1-4 Recommended Test Equipment (continued)

Installation

SECTION II INSTALLATION

2-1 INTRODUCTION

2-2 This section provides installation instructions for the Hewlett-Packard Models 3776A and 3776B PCM Terminal Test Sets and their accessories. This section also includes information about initial inspection and damage claims, preparation for use, packaging, storage and shipment.

2-3 INITIAL INSPECTION

WARNING

TO AVOID HAZARDOUS ELECTRICAL SHOCK, DO NOT PERFORM ELECTRICAL TESTS WHEN THERE ARE SIGNS OF SHIPPING DAMAGE TO ANY PORTION OF THE OUTER ENCLOSURE (COVERS, PANELS, METERS).

2-4 Inspect the shipping container for damage. If the shipping container or cushioning material is damaged, it should be kept until the contents of the shipment have been checked for completeness and the instrument has been checked mechanically and electrically. The contents of the shipment should be as shown in Figure 1-1; procedures for checking electrical performance are given in Section IV. If the contents are incomplete, if there is mechanical damage or defect or if the instrument does not pass the Performance Tests, notify the nearest Hewlett-Packard office. If the shipping container is damaged or the cushioning material shows signs of stress, notify the carrier as well as the Hewlett-Packard office. Keep the shipping materials for the carriers inspection. The HP office will arrange for repair or replacement at HP option without waiting for claim settlement.

2-5 PREPARATION FOR USE

WARNING

TO AVOID THE POSSIBILITY OF INJURY OR DEATH, THE FOLLOWING PRECAUTIONS MUST BE FOLLOWED BEFORE THE INSTRUMENT IS SWITCHED ON.

(A) NOTE THAT THE PROTECTION PROVIDED BY GROUNDING THE INSTRUMENT CABINET MAY BE LOST IF ANY POWER CABLE OTHER THAN THE THREE-PRONGED TYPE SUPPLIED IS USED TO COUPLE THE AC LINE VOLTAGE TO THE INSTRUMENT.

(B) IF THIS INSTRUMENT IS TO BE ENERGIZED VIA AN AUTO-TRANSFORMER TO REDUCE OR INCREASE THE LINE VOLTAGE, MAKE SURE THAT THE COMMON TERMINAL IS CONNECTED TO THE NEUTRAL POLE OF THE POWER SOURCE.

(C) THE POWER CABLE PLUG SHALL ONLY BE INSERTED INTO A SOCKET OUTLET PROVIDED WITH A PROTECTIVE EARTH CONTACT. THE PROTECTIVE ACTION MUST NOT BE NEGATED BY THE USE OF AN EXTENSION CORD WITHOUT A PROTECTIVE CONDUCTOR (GROUNDING).

2-6 Power Requirements

2-7 The instrument requires a power source of 115V or 240V ac, +10% -22%, 48 to 66Hz single phase. The maximum power consumption is 100VA. Refer to Para 2-49 for details of the internal battery associated with Assembly A14 (Memory).

2-8 Line Voltage Selection and Fuse

2-9 The line voltage is selected by the rear panel switch labelled 115V and 230V.

CAUTION

Before connecting the instrument to a power outlet ensure that the line voltage selector is correctly set, and that a fuse of the correct rating is fitted.

2-10 Fuse ratings are given in Table 2-1.

Nominal Line	Fuse Rating	HP Part Number
115V	3AT	2110-0381
230V	2AT	2110-0303

Table 2-1 Fuses

2-11 Power Cable

2-12 This instrument is equipped with a three-wire power cable. When connected to a power outlet, this cable grounds the instrument case. The type of power cable shipped with each instrument depends on the country of destination. Refer to Figure 2-1 for part numbers of the power cable and plug configurations available. The number shown below each plug is the Hewlett-Packard part number of a power cord equipped with that plug. If the appropriate power cord is not included with the instrument, notify the nearest Hewlett-Packard Sales and Service Office and a replacement will be provided.

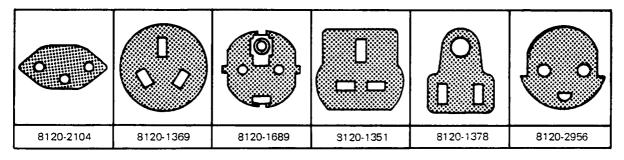


Figure 2-1 Power Receptacles

2-13 The colour code used in each power cable is given below:

Line:	Brown	Ground:	Green/Yellow
Neutral:	Blue		

2-14 Operating Environment

2-15 Temperature - The instrument may be operated in temperatures from 0 degrees centigrade to +55 degrees centigrade.

2-16 Humidity - The instrument may be operated in environments with humidity up to 95%. However, the instrument should also be protected from temperature extremes which may cause condensation within the instrument.

2-17 Altitude - The instrument may be operated at altitudes up to 4600m (15,000ft).

2-18 Air flow - The air intake to the instrument is via a fan mounted on the rear panel. The air exhaust is via the perforated side panels. To provide adequate cooling, an air gap of approximately 3 inch should be maintained around the instrument.

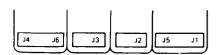
2-19 MATING CONNECTORS

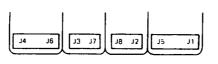
2-20 The connectors listed in Tables 2-2 and 2-3 mate with the 3776 PCM Terminal Test Set. Details of HP-IB cables are given in Table 2-4 and details of the mains power cables are given in 2-1. Figure 2-2 identifies the front panel connectors.

Reference	Function	HP Part Number	Mating Connector
J1 – J4	SEE NOTE BELOW		
1 8	DIG Tx CLOCK	1250-1253	Standard: 50Ω BNC to suit cable diameter. e.g.: Body: 1250-0052 Contact: 1250-0298 Bush/Clamp: 1250-0050
A23J2	HP-IB Connector	1251-4040	1251-0293
A23J3	DIG Rx DATA OUTPUT	1251-5503	1251-0219

Table 2-2 Rear Panel Connectors

Note: J1 - J4 fitted on rear panel on 3776B Option 004 only.


For details and connector configuration refer to Table 2-3 and Figure 2-2 on following page.


Fu	nction	Ref		3776A/B/ Option	Connector Type	HP Part Number	Mating Conn. Part No.
			A	STD, 001, 002	Siemens	1251-5586	5060-4444
	Rx	J1*	в	STD, 001 002 004	WECO 310 I240 Trompeter	1251-3677 1251-8589 1250-1639	1251-0695 Ord. Banana 5955-0331
		J5	A	STD, 001 002	BNC (75Ω) Siemens	1250-0610 1250-1077	1250-1448 1250-1078
DIGITAL			В	STD, 001	Bantam	1251-3059	† TT-253
DIGI			А	STD, 001, 002	Siemens	1251-5586	5060-4444
	Tx	J4*	В	STD, 001 002 004	WECO 310 1240 Trompeter	1251-3677 1251-8589 1250-1639	1251-0695 Ord. Banana 1250-1413
		Je	A	STD, 001 002	BNC (75Ω) Siemens	1250-0610 1250-1077	1250-1448 1250-1078
			В	STD, 001	Bantam	1251-3059	t TT-253
			А	STD, 001, 002	Siemens	1251-5586	5060-4444
	Rx	J2*	в	STD, 001 002 004	WECO 310 I240 Trompeter	1251-3677 1251-8589 1250-1639	1251-0695 Ord. Banana 5955-0331
TOG	ANALOG	J8	в	STD, 001	Bantam	1251-3059	† TT-253
ANA			A	STD, 001, 002	Siemens	1251-5586	5060-4444
		J3+	в	STD, 001 002 004	WECO 310 I240 Trompeter	1251-3677 1251-8589 1250-1639	1251-0695 Ord. Banana 5955-0311
		J7	в	STD, 001	Bantam	1251-3059	t TT-253

* Located on rear panel on 3776B Option 004.

† Manufacturer is Switchcraft Electronics.

3776B

3776B (Option 004)

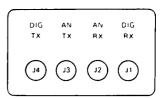


Figure 2-2 Connector Configuration

2-21 RACK MOUNTING

2-22 Illustrated in Figure 2-3 are the three Rack Mount Kits available with the 3776. See Paragraph 2-18 regarding the cooling of rack mounted instruments.

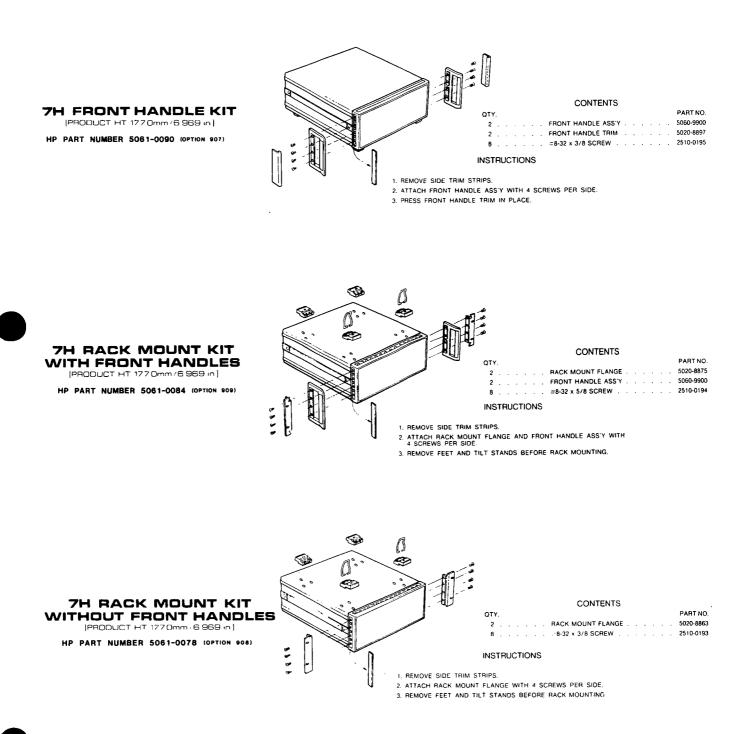


Figure 2-3 Rack Mount Kits

2-23 HEWLETT-PACKARD INTERFACE (HP-IB) BUS INSTALLATION

2-24 This section contains information and instructions on the installation of the 3776A and 3776B PCM Terminal Test Set into a Hewlett-Packard Interface Bus (HP-IB) system.

2-25 The HP-IB is Hewlett-Packard's implementation of the IEEE Standard 488-1978 (Digital Interface for Programmable Instrumentation). This standard defines a physical interface and protocol which enables the remote control of instrumentation systems.

2-26 Connection to the HP-IB

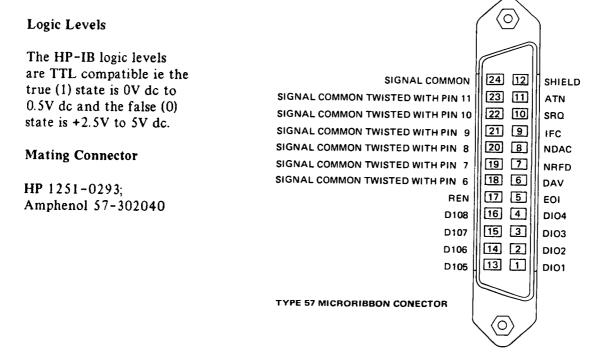


Figure 2-4 HP-IB (rear panel) Connector

2-27 The HP-IB connector on the rear panel of the 3776 provides the physical interface to connect the 3776 into an HP-IB system. Figure 2-4 illustrates the connector pin configuration. Devices in the HP-IB system may be interconnected in any suitable arrangement (star, delta, etc) using the HP-IB cables listed in Table 2-4 provided the restrictions given in Paragraph 2-28 are obeyed.

Table 2-4 HP-IB Interfa	ce Cables
-------------------------	-----------

HP-IB Part Numbers	Cable Lengths
HP10833A	lm (3.3ft)
HP10833B	2m (6.6ft)
HP10833C	4m (13.2ft)
HP10833D	0.5m (1.6ft)

2-28 To achieve design performance, restrictions are placed on the length of HP-IB system cable as follows:

- 1 The total length of HP-IB cable used to interconnect devices on the HP-IB must not exceed 2 metres (6 feet) times the number of devices in the system.
- 2 The total length of HP-IB cable used to interconnect all devices must not exceed 20 metres (65 feet).

2-29 3776 CONFIGURATION

2-30 The 3776 may be configured either in the TALK only mode in an HP-IB system containing a printer/plotter or as a device (addressable) under the remote control of a separate system controller (normally a computer or computing controller).

2-31 3776 in TALK ONLY Mode

2-32 In the talk only mode, an output suitable for a printer or plotter is provided at the rear panel HP-IB connector.

2-33 When the rear panel HP-IB ADDRESSABLE/TALK ONLY switch is set to TALK ONLY, the required output format is selected with the HP-IB ADDRESS/PRINT FORMAT switches (A23S1).

2-34 The output formats available are illustrated in Table 2-5.

2-35 Suitable 80 column printers are: Hewlett Packard HP 2631B, HP 2671A/G and HP 2673A.

2-36 Suitable HP GL plotters are the Hewlett Packard HP 7470A or for programmable paper advance, HP 9872C/D.

2-37 3776 Configured as an Addressable Device

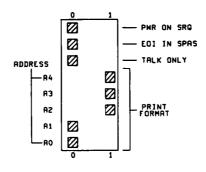
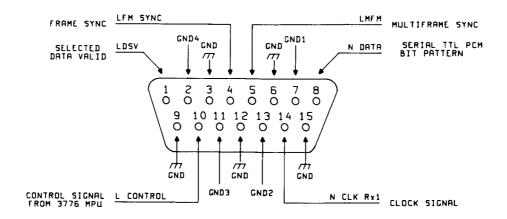


Figure 2-5 HB-IB Switches - 3776 as an Addressable Device

2-38 The setting of the TALK ONLY switch (see Figure 2-5) on the 3776 rear panel to the OFF (0) position configures the 3776 as an HP-IB addressable device under the remote control of a separate HP-IB controller. Each device in the HP-IB system requires a unique address to enable the system controller to differentiate between the devices. The address switches A0 to A4 shown in Figure A2-5 define the 3776 address (addresses range from 0 to 31).


Table 2-5	HP-IB Output Format	

Binary value of PRINT FORMAT switches (A0 to A4)	Output format	Typical HP-IB ADDRESS/PRINT FORMAT Switch Setting
0 1	ASCII BINARY	
2	The 80 column printer output format comprises a header which includes the measurement code, operating mode and meas- urement parameters; and the measurement results output.	$ \begin{array}{c} 0 & 1 \\ \hline 0 & 1 \\ \hline 0 & - \\ $
		Setting for 80 column printer output.
8 to 31	Plotter outputs HP-GL* A3 or A4 must = 1 A3 and A4=1 not title axes A4=1 no CCITT mask A2=1 auto paper advance A1=1 Y axis scaled A0=1 X axis scaled	$ \begin{array}{c} 0 & 1 \\ \hline \hline \hline \hline \\ \hline \\$
		Setting for HP-GL* plotter output. with title and axes with CCIT mask without programmable paper advance with fixed X and Y axes

*HP-GL Hewlett-Packard Graphics Language

2-39 DIG Rx DATA OUTPUT (rear panel) Connector

2-40 PCM bit patterns applied to the 3776 front panel DIG Rx input may be applied to other measuring equipment through a suitable TTL interface via the 3776 rear panel DIG Rx DATA OUTPUT. Figure 2-6 illustrates the pin connections of the DIG Rx DATA OUTPUT. N DATA is the serial TTL data and is formatted low true. The signals shown in Figure 2-6 originate on A11/A111.

Figure 2-6 DIG Rx DATA OUTPUT Connector

2-41 STORAGE AND SHIPMENT

2-42 Environment

2-43 The instrument may be stored or shipped in environments within the following limits:

Temperature	40 degrees centigrade to
	+75 degrees centigrade
Humidity	
Altitude	

2-44 The instrument should also be protected from temperature extremes which may cause condensation within the instrument.

2-45 Packaging

2-46 Tagging for Service - If the instrument is being returned to Hewlett-Packard for service, please complete one of the blue repair tags located at the front of this manual and attach it to the instrument.

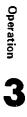
2-47 Original Packaging - Containers and material identical to those used in the factory packaging are available through Hewlett-Packard offices. If the instrument is being returned to Hewlett-Packard for servicing, attach a tag indicating the type of service required, return address, model number, and full serial number. Also mark the container "FRAGILE" to ensure careful handling. In any correspondence, refer to the instrument by model number and full serial number.

2-48 Other Packaging - The following general instructions should be used for re-packing with commercially available materials:

(a) Wrap instrument in heavy paper or plastic. (If shipping to Hewlett-Packard office or service centre, attach a tag indicating type of service required, return address, model number and full serial number.)

(b) Use strong shipping container. A double-walled carton of 350-pound test material is adequate.

- (c) Use a layer of shock absorbing material 70 to 100mm (3 to 4 inch) thick around all sides of the instrument to provide firm cushioning and prevent movement inside the container. Protect the control panel with cardboard.
- (d) Seal shipping container securely.
- (e) Mark the shipping container "FRAGILE" to ensure careful handling.
- (f) In any correspondence, refer to instrument by model number and full serial number.


2-49 INTERNAL BATTERY

WARNING

DO NOT INCINERATE OR MUTILATE THE BATTERY. IT MIGHT BURST OR RELEASE TOXIC MATERIALS CAUSING PERSONAL INJURY.

2-50 The lithium battery on A14 (used as a power supply to the non-volatile memory) should be checked annually. Life expectancy of the battery is approximately 5 years.

.

٠

SECTION III OPERATION

3-1 INTRODUCTION

3-2 Operating instructions are NOT available with this manual, refer to the Operating Manual or the Operators Guide for 3776 operating information.

.

Performance Tests

SECTION IV PERFORMANCE TESTS

4-1 INTRODUCTION

4-2 This section contains procedures which test the instrument's electrical performance using the specifications listed in Table 1-3 as the performance standards.

4-3 Due to the complex nature of the digital signals, some of the individual A-D, D-D, D-A and Digital Transmitter/Receiver specification parameters cannot be readily and independently verified using normally available commercial test equipment. Since the instrument is, however, effectively a generator-receiver pair, it has been possible to include self-test routines to provide internal verification for most of these parameters. These routines are performed automatically by the POWER ON test sequence and Self-test. In the event of failure, an error code is displayed (see Section VIII).

4-4 The individual parameters referred to above may be checked using a suitable PCM Multiplex terminal; however, due to the wide variety of such equipment, no attempt has been made to detail procedures for such tests - the assumption being made that the user of such standard equipment will be sufficiently familiar with its capability and operation to devise the necessary procedures.

4-5 In the following performance test procedures, the instrument's specification parameters are verified in one of three ways:

- (a) independently,
- (b) by self-test,
- (c) by inference from other tests.

A basic operating knowledge of the 3776A/B is assumed throughout the tests. If no previous operating experience has been obtained refer to the GETTING STARTED paragraphs in the Operating Manual.

4-6 Table 4-2 gives a list of specification parameters and indicates which Performance Checks are required to verify the parameters.

4-7 OPERATIONAL VERIFICATION

4-8 To ensure (with >90% confidence) that the instrument is performing properly without testing all the specifications in Table 1-3, Operational Verification Procedures (summarised in Table 4-1) and an Abbreviated Test Record are provided.

NOTE: It is recommended that only the SELF TEST and TEST PROGRAM Tests be carried out after instrument repair or during routine maintenance.

4-9 CALIBRATION CYCLE

4-10 This instrument requires periodic verification of performance. Depending on the use and environmental conditions, the instrument should be checked, using the Operational Verification Tests, at intervals of approximately one year.

4-11 OPTIONS

4-12 The performance tests apply to all instrument options except where specified in the test procedure. Parameters for option instruments are given as an alternative to Parameters for the standard instrument where appropriate.

4-13 PERFORMANCE TEST LIST

4-14 Table 4-1 below and Table 4-3 (page 4-69) provide lists of Operational Verification Procedures and Performance Tests respectively, together with page references.

4-15 If a complete check of the analog and digital specifications is not required, Operational Verification Procedures are provided which give a better than 90% confidence level that the instrument is meeting its full specification (see Paragraph 4-21).

NOTE: It is recommended that only the SELF TEST and TEST PROGRAM Procedures be carried out after instrument repair or during routine maintenance.

4-16 EQUIPMENT REQUIRED

4-17 Equipment required for the Performance Tests and the Operational Verification Procedures is listed in the Recommended Test Equipment table in Section I. The equipment for individual tests is also listed with the test. Any equipment that satisfies the critical specifications given in the table may be substituted for the recommended model(s).

4-18 Special Service Accessories are required for full performance testing of the instrument. Details of these and the parts required to construct them are given in Appendix A at the end of this section.

4-19 TEST RECORDS

4-20 Results of the performance tests may be recorded on the Test Record at the end of the performance tests, or on the Abbreviated Test Record at the end of the operational verification procedures, as appropriate. The test records list the tested specifications and their acceptable limits. The results recorded at incoming inspection can be used for comparison in periodic maintenance, when troubleshooting, and after repairs or adjustments.

IMPORTANT NOTE SAVING AND RE-INITIALISING NON-VOLATILE MEMORY

Before performing the Operational Verification Checks, or Performance Tests, the 3776 NVM must be re-initialised. It is recommended that customer pre- programmed measurement sequences and other data held in NVM be saved before reinitialising the NVM. See General Service Sheet G1 Section VIII of this Service Manual for procedures used for saving and re-initialising the NVM.

No.	Operation Verification Procedure	Para.	Page
1	Power On Sequence	4-24	4-3
2	Self-Test	4-26	4-6
3	Absolute Level Check	4-27	4-9
4	Te st Program	4-28	4-11
5	Interruptions (3776A OPT 001) or		
	Dropouts (3776B OPT 001)	4-30	4-24
6	Impulse Noise (3776B OPT 001 Only)	4-31	4-27
7	Impulse Noise (3776A OPT 001 Only)	4-32	4-29
8	Gain Hits (OPT 001)	4-33	4-31
9	Phase Hits (OPT 001)	4-34	4-34
10	Phase Jitter (OPT 001)	4-35	4-41
11	Sequence Test	4-36	4-44
12	Dual-Tone Multi-Frequency (DTMF)		
	Signalling Test	4-37	4-45
13	3776B PCM Tests	4-38	4-48
14	3776A PCM Tests	4-39	4-55

Table 4-1 Operational Verification Procedures

4-21 OPERATIONAL VERIFICATION PROCEDURES

4-22 INTRODUCTION

4-23 If the Operational Verfification Procedures are succesfully completed, then this gives a greater than 90% confidence level that the instrument will meet specification. Results of the Operational Verification Procedures may be tabulated on the Test Record at the end of the procedures.

4-24 POWER-ON SEQUENCE

DESCRIPTION

The power-on sequence is automatically implemented at switch-on and takes approximately 3 seconds. During this time initialisation and verification of instrument control, memory etc takes place. At the end of the sequence the instrument measurement configuration is set. If the sequence checks fail an error code will be displayed in the RESULTS window. Sequence details are given in paragraph 4-25. Normally this will not need to be read, however, the information may be useful in the event of a fault preventing the completion of the power-on sequence.

PROCEDURE

- 1. Re-initialise 3776 NVM (see IMPORTANT NOTE on page 4-2).
- 2. Set the rear panel HP-IB switch to the addressable mode (ADDR).
- 3. Power-up the 3776 and check that no error codes are displayed in the RESULTS window during the power-up sequence. If an error code is displayed refer to section VIII.

NOTE: The instrument HP-IB address will be displayed for a short time in the RESULTS window.

4. When the sequence is complete, check that the following conditions are set on the front panel:

OPERATING MODE - ANTx, ANRx FREQUENCY kHz - 1.01 MEAS (3776B), 0.81 (3776A) LEVEL - 0.0dBmO MEASUREMENTS - GAIN TONE

NOTE: If the instrument was switched off during a TRANSIENT measurement run, then the instrument will power-up in the TRANSIENT mode.

4-25 SEQUENCE DESCRIPTION

1. 68A21 PIA INITIALISATION

Port B of the PIA (connected to the green leds on the processor board) and bits 5 and 6 of port A (connected to test pins TP1 and TP2) are configured as outputs. Bits 0, 4 and bit 7 of port B (connected to the switches and LPWRFAIL line respectively) are configured as inputs. The CB1, CB2 and CA1 pins are configured as interrupts inputs, although their capability is left disabled for the present. Port B of the PIA is then loaded with the hex word OFF to turn off all the leds.

2. 8291A HP-IB CHIP RESET

This initialises the 8291A HP-IB chip and loads the HP-IB address/Talk Only mode as set by the rear panel switches.

3. FRONT PANEL CLEAR

The front panel display ram is cleared and the display enabled. The Self Test and Run leds are then lit to indicate that the power-on self-test sequence is running.

4. PROCESSOR BOARD RAM TEST

This implements an optimal ram test algorithm due to KNAIZUK and HARTMAN (IEEE Transactions on Computers, vol C-26, 11 November 1977). The algorithm detects all combinations of stuck faults in the address decode circuitry or data cells. If this test fails Error 100 is displayed on the front panel. A faulty processor ram is catastrophic and no further progress can be made with the system initialisation.

5. PROVISIONAL HARDWARE INITIALISATION

Once the ram has been verified as working bus timout NMIs (Non Maskable Interrupts) can be enabled by setting bits 0 and 3 in PIA control register B. A hardware initialisation is now implemented to clear possible hardware IRQs and to make sure the A2, A6 and A7 boards have not powered-up in a potentially damaging state.

6. ACTIVATION OF SYSTEM MONITOR AND RESET PROGRAM

The final operation in this part of the power-on sequence is the activation of the multitasking monitor. After constructing the monitor tables and process descriptors and assigning stack area, the RESET program is scheduled and entered via the dispatcher. All subsequent power-on checks and configurations are done by the RESET program. When successfully scheduled the RESET program writes 01000 to the processor board leds.

7 SWITCH SEI ECTED SELF-TESTS

The switch selected tests are now called if switch S2 5 on the A13 processor board is set to "1" (up). Note that some switch selected tests run in a continuous loop, never returning to the rest of the power-on sequence. See General Service Sheet G1 in Section VIII of the Service Manual.

8. FRONT PANEL DISPLAY TEST

The front panel bus and display ram are now checked. During this test the front panel leds are kept disabled and so no display will be visible. Note: A fault in the front panel is not regarded as catastrophic as the instrument can operate normally under HP-IB control.

9. INSTRUMENT BUS TEST

The instrument bus test checks for jammed data, address and handshake lines. A working A3 board is required as the test uses the read/write coarse attenuator register on this board.

10. INSTRUMENT BUS PORT CHECKS

After the instrument bus has been verified as working, all defined ports on the bus are accessed. This makes sure all boards are loaded and their bus handshake circuitry is working. Note: The option boards are only accessed if the A4 board option link is set.

11. NON-VOLATILE AREA VERIFICATION

The non-volatile ram (A14, U43) is split into the following four logically distinct areas:-

- 1. The instrument configuration saved at the last power-fail.
- 2. Measurement parameters saved by the STORE key.
- 3. Measurement sequence list.
- 4. Dialling parameters for multifrequency and signalling bit dialling.

Each area is protected by a CRC (Cyclic Redundancy Code) and these are now checked. If a CRC is found to be wrong the corrupt area is initialised to a default state.

12. GROUP DELAY RAM TEST

This runs the ram test routine on the group delay ram (A14, U33).

13. DISPLAY OF HP-IB MODE

The HP-IB mode of operation is now displayed on the front panel result display. If addressable mode is selected, the HP-IB address is displayed as "Addr.=nn". If talk only mode is selected, the print format (as selected by the lower four HP-IB address switches) is displayed.

14. GO/NO GO CHECK

All power-on tests have now been completed. Before the instrument configuration is carried out, a final go/no go check is performed. This makes sure that ROM C, ROM A and ROM 20 on the memory board are loaded. These three roms are the minimum required to configure the 3776 to its stop-idle state. If they are

missing or A14 is faulty an error code is displayed and the instrument freezes.

15. INSTRUMENT CONFIGURATION

The instrument configuration sequence is as follows:

a. The default configuration is loaded from ROM and all instrument hardware and measurement software set up according to this configuration.

b. The CRC of non-volatile area 1 is then checked and if in order, the instrument configuration saved at the last power-fail is loaded. A flag in this configuration indicates if the last power-fail was successful. If at the last power-down the processor did not receive a power-fail interrupt, or the processor was previously reset by the A13 reset switch, this flag will be clear and an error will be reported. In this case the configuration loaded will be that of the instrument at the last successful power-down.

c. The newly loaded configuration is then checked to see if a power-fail protected measurement (e.g. Transients) was running at the last power-down. If so the measurement parameters and results are recovered and the measurement re-scheduled. Otherwise a GAIN measurement in A-A mode is selected and the instrument put into the stop state.

d. The four transmitter and receiver programming routines are now called to initialise the measurement software and hardware to the current configuration. Power fail interrupts are enabled by setting the appropriate mask bit in the PIA control register A. The current configuration is now copied back to non-volatile area 1 with the power-fail flag clear.

e. The local control, remote control and idle calibration programs are now scheduled.

f. The initialisation sequence is now complete and the reset program suspends itself, waiting for a device clear from the HP-IB.

4-26 SELF-TEST

PROCEDURE

- 1. Press SELF TEST CAL will be displayed.
- 2. Press RUN and after approximately 18 seconds, check that CAL PASS 0 is displayed. This confirms pts 2 to 11 in the SELF TEST have been checked (see SELF TEST DESCRIPTION below).
- 3. Press the NEXT PARAM key (pt 2 will be displayed). Continue to press the NEXT PARAM key until pt 12 is displayed.
- 4. Press RUN and check that no FAILS or ERROR CODES are displayed during or after the run. When the test is complete the LED on the STOP key will be illuminated.
- 5. Repeat step 4 for pts 13 to 21.

SELF TEST DESCRIPTION

a. Pt 2 TX GAIN

Measures the gain of the analog transmitter (atx) and tests against a predefined limit, returns pass/fail plus the actual result over the HP-IB.

b. Pt 3 RX GAIN

Measures the gain of the analog receiver (arx) and tests against a predefined limit; returns pass/fail plus the actual result over the HP-IB.

c. Pt 4 AUTORANGE GAIN PATHS

Measures the gains of the arx autorange paths and tests them against predefined limits; returns pass/fail for each point plus each actual result over the HP-IB.

d. Pt 5 AUTORANGE GAINS

Combines the autorange paths results to give the gains for all used paths and stores them in the relevant cal figure table; returns pass/fail and gain correction (mB/32) for each path over HP-IB.

e. Pt 6 ATTENUATOR GAIN PATHS

As for autorange gain paths but testing the analog transmitter (atx) attenuator.

As for autorange gains but using attenuator gain path values and cal figure table.

g. Pt 8 ATX 16 FLATNESS

Measures the Gain versus Frequency (G v F) of the atx 16kHz path at a number of points across the band and tests each against a predefined limit; returns pass/fail for each point and each actual result over the HP-IB.

h. Pt 9 ARX FLATNESS

Measures the GvF of the arx at a number of points across the band and tests each against a predefined limit, returns pass/fail for each point and each actual result over the HP-IB.

i. Pt 10 ATX 8 FLATNESS

Measures the GvF of the atx 8kHz path at a number of points across the band and tests each against a predefined limit, returns pass/fail for each point plus each actual result over the HP-IB.

j. Pt 11 TRANSIENTS GAIN

If option 001 is loaded, measures the transients circuits and test against a predefined limit; returns pass/fail plus the actual result over the HP-IB.

k. Pt 12 ARX WEIGHTING CHECK

As ARX FLATNESS but uses a different set of limits that ensure that the combined arx path ripple and the WEIGHTING filter are within the CCITT weighting mask limits.

I. Pt 13 ROM CHECK

Generates the CRC code for each rom and checks that it is correct, returning pass/fail for each rom plus a revision code as the result over the HP-IB.

m. Pt 14 NVRAM CHECK

Verifies correct operation of the non-volatile ram (A14 U43). Then re-initialises and checks the CRC of each of the four non-volatile areas contained in this ram. Returns pass/fail and failure code over the HP-IB.

n. Pt 15 GROUP DELAY RAM CHECK

Verifies correct operation of the A14 U33 ram chip, returns pass/fail and failure code over the HP-IB.

o. Pt 16 INSTRUMENT BUS CHECK

Tests that the Interface Bus will transfer data; returns pass/fail and failure code over the HP-IB.

p. Pt 17 FRONT PANEL CHECK

Tests that data can be transfered to and from the front panel ram, returns pass/fail and failure code over the HP-IB.

q. Pt 18 TX-RX CONTINUITY

Tests that a signal from the synthesizer can be received by the digital filter via the atx and arx with the analog looping relay looped, returns pass/fail over the HP-IB.

r. Pt 19 PCM CONTINUITY

Tests that a signal from the synthesizer can be received by the digital filter via the dtx and drx with the digital looping relay looped; returns pass/fail over the HP-IB.

s. Pt 20 DIGITAL FILTER TEST

Operation of the digital filter is checked by running the following tests:-

Programming test Interrupt rate arx/drx 16kHz Digital Filter Bus test arx Digital Filter Bus test drx Digital Filter Clear test Addition test (tests the Carry-Out counter) Arithmetic and Hardware overflow test Instruction Set test, (leaves the digital filter in the Signature Analysis state)

t. Pt 21 PCM FUNCTION TEST

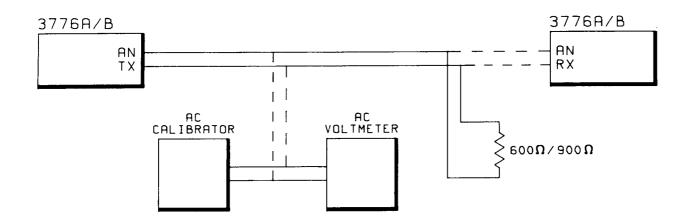
Runs a variety of tests for the drx via the internal dtx-drx loop relay:

Checks that drx alignment is okay Tests that correct codes are sent and received on A11/A111 code port. Peak Codes tests Drx to digital filter handshake test

Note: Pt 22 (ie NATTER) is not a Self-Test Check. It allows the user to set up a two way conversation over the currently selected tx and rx MODE. If digital tx or rx are selected then the current channel selection is used.

4-27 ABSOLUTE LEVEL CHECK

SPECIFICATION


Transmitter Output and Receiver Input Level Accuracy at +10dBm: +/-0.09dB

EQUIPMENT

AC Voltmeter	
AC Calibrator	
+/-0.01% 6000hm Resistor	
+/-0.01% 900ohm Resistor	

PROCEDURE

- 1. Connect the equipment as shown with the 600ohm resistor connected.
- 2. Set the 3776 to ANTx/ANRx LEVEL, SEL FILTER and 600ohms BAL.
- 3. Set the 3776 LEVEL to +10dBmO, ensure that the I/FACES Tx and Rx are set to 0.0dB.

Figure 4-1 Absolute Level Test Set-up

- 4. Set the 3776 Frequency to 1.01kHz if a 3776B or 0.81kHz if a 3776A.
- 5. Set the AC Calibrator to 2.44948V/1.01kHz (3776B) or 2.44948V/0.81kHz (3776A).
- 6. With the AC Calibrator connected to the AC Voltmeter, select AC volts range on the AC Voltmeter and store the reference AC Calibrator voltage as Y.
- 7. Disconnect the AC Calibrator from the AC Voltmeter and connect the AC Voltmeter across the termination resistor.
- 8. Press % Error $(X-Y/Y \times 100)$ on the AC Voltmeter.
- 9. Convert the % Error displayed on the AC Voltmeter to a power level as follows:

AdBmO = $20\log (Vin/0.7746)$ where, Vin = 2.44948v (1 + %Error/100)

Record the computed value AdBmO.

- 10. Check that AdBmO is +10dBm +/-0.09dB.
- 11. Disconnect the 600ohm resistor and connect the 3776 AnTx output directly to the 3776 AnRx input.
- 12. Press RUN and check that the displayed result is within AdBmO +/-0.09dB.
- 13. Repeat steps 1 to 12 with the 9000hm resistor used in place of the 6000hm resistor and the ANALOG TRANSMIT and RECEIVE impedances set to 9000hm. In Step 5 the AC Calibrator should be set to 3.0000V and in Step 9 the fomulas are:-

AdBmO = 20log (Vin/0.9487) where, Vin = 3.0V (1+ %Error/100)

3776 A MODELS

DON'T THY STE 9000 FOR

4-28 TEST PROGRAM

EQUIPMENT

Personal Computer	HP 85B Service Tool
3776 Test Program Data Cartidge	

- 1. Connect the HP 85 to the 3776 via the HP-IB interface.
- 2. Connect the 3776 DIGITAL TRANSMIT to the DIGITAL RECEIVE and connect the ANALOG TRANSMIT to the ANALOG RECEIVE.
- 3. Note the 3776 HP-IB address. This can be checked by switching the power on and checking that Addr = is displayed for approx 2 secs, or by checking the rear panel address switch setting (see SECTION II for ADDRESS SELECTION).
- 4. Load the 3776 Test Program Data Cartridge into the HP 85 with the power off.
- 5. Switch the HP 85 power on to run Autost (Auto start).
- 6. When "Autost" is loaded into the HP 85, enter day, month and year and press ENDLINE.
- 7. Enter current time Hours: Minutes and press ENDLINE.
- 8. The "TEST76" program is now automatically loaded into the Controller.
- 9. When "Enter HP-IB address of 3776?" is displayed, enter the address noted in Step 3 and press ENDLINE.
- 10. When "Error log (1 = CRT, 2 = PRINTER)?" is displayed, enter 1 and press ENDLINE if displayed error results are required or enter 2 and press ENDLINE if printed error results are required.
- 11. When "Enter test cycle limit, or 0 for continuous testing?" is displayed, enter the amount of program cycles required. Only 1-cycle is required for Operational Verification, enter 1 and press ENDLINE. This facility is particularily useful if continuous testing is required, i.e. if 0 is entered the program will continually cycle and any intermittant out of limit errors will be printed or displayed. Each program cycle takes about 10 minutes.
- 12. When "Attempts per measurement point?" is displayed, enter 1 and press ENDLINE. This facility enables individual measurements e.g. A-A Gain-Tone, to be tested a number of times before the test program steps on to the next measurement which again will be tested the same number of times.
- 13. When "Enable idle cal? 0 = OFF, 1 = ON" is displayed, enter 0 and press ENDLINE. This facility is useful when continuous testing is required, ie. if 1 is entered, the instrument automatically calibrates when the instrument is in the STOP state.
- 14. When "Enter error limit. After this number of errors the program will be aborted. Enter 0 if no error limit required?" is displayed, enter 0 and press ENDLINE. When running the TEST76 program over a long period (see Step 11), this facility is useful for limiting the number error print-out, in the event of a failure occuring in an unattended instrument.
- 15. When "Enable Idle cal? 0 = OFF, 1 = ON" is displayed, enter 0 address ENDLINE. The program will now

run and the following heading will be printed or displayed. After running the program proceed to Paragraph 4-30.

**** 3776 PERFORMANCE TESTS **** 3776A OPT 001, ADDRESS 2 FIRMWARE REV: 1.3 CYCLE LIMIT: 1 ATTEMPTS PER POINT: 1 NO ERROR LIMIT IDLE CAL OFF

Cycle 1 12/12/83 06:12

A program cycle lasts for approx 10 minutes. Any out-of-limit results will be printed or displayed.

NOTE: The 3776 FIRMWARE REV number may change from that printed or displayed.

4-29 TEST PROGRAM DESCRIPTION

INTRODUCTION

The following checks and back-to-back measurements are performed by the TEST 76 program.

NOTE: By performing these measurements, the HP-IB Basic Functions (ie Talker, Listener, Serial Poll etc) are exercised.

CALIBRATION ROUTINE (See Para 4-26 Steps a to j) A-A GAIN/TONE A-A GAIN v FREQ A-A GAIN v LEVEL/NOISE (3776A ONLY) A-A GAIN v LEVEL/TONE A-A NOISE + TONE A-A NOISE + TONE A-A IDLE STATE A-A LEVEL/SEL FILTER A-A LEVEL/SEL FILTERS A-A QUANT DIST/NOISE (3776A ONLY) A-A QUANT DIST/TONE A-A I/MOD DIST/TWO TONE A-A I/MOD/FOUR TONE (3776B ONLY) A-A DELAY/GROUP DELAY (3776A ONLY)

A-A OTHER MEAS/ENVEL DELAY (3776B ONLY) A-A PHASE JITTER A-A GAIN/TONE (Tx TLP/dBr = -20, Rx TLP/dBr = +10) **D-D GAIN/TONE** D-D GAIN/DIG MW D-D GAIN/DIG Tx-Rx D-D GAIN v FREQ D-D GAIN v LEVEL/NOISF (3776A ONLY) D-D GAIN v LEVEL/TONE D-D GAIN v LEVEL/SYNC (2kHz) D-D NOISE +TONE (3776A) or C-NOTCH NOISE (3776B) D-D IDLE STATE/PCM CODES (Average Codes) D-D LEVEL/C-MESS FILTER (3776B) OR PSOPH FILTER (3776A) D-D LEVEL/SEL FILTER D-D LEVEL/PCM CODES (Peak Codes) **D-D LEVEL/OTHER FILTERS D-D LEVEL/SEL FILTER** D-D QUANT DIST/NOISE (3776A ONLY) **D-D QUANT DIST.TONE** D-D GROUP DELAY (3776A ONLY) D-D LEVEL/PCM CODES (CHANNEL TESTS)

1. CALIBRATION ROUTINE (see para 4-26 Steps a to j).

2. A-A GAIN/TONE.

(a)

FREQUENCY kHz	LEVEL dBm0	TERMINATION	TEST LIMIT dB
0.210	+10.0	600ohm BAL	0 +/-0.05
1.010	+10.0	600ohm BAL	0 +/-0.05
3.890	+10.0	600ohm BAL	0 +/-0.05

- (b) As (a) with 6000hm UNBAL selected.
- (c) As (a) with 9000hm BAL selected.
- (d) As (a) with 9000hm UNBAL selected.
- (e) As (a) to (d) but with -30dBmO selected.
- (f) As (a) to (d) but with -76dBmO selected and TEST LIMITS set to 0 + -0.30dB.

Notes:

- 1. The A-A GAIN/TONE measurements checks the hardware ability to transmit and receive the correct level for several levels, frequencies and impedances.
- 2. For all other measurements, 6000hm BAL is selected unless otherwise stated.

3. A-A GAIN v FREQ

(a)

Parameters Selected

REF FREQ	MEAS FREQ	LEVEL	TEST LIMITS
1010Hz	210Hz to 3890Hz in 200Hz steps	+10dBm0	0 +/-0.10dB

(b) As (a) but with -30dBm LEVEL selected.

4. A-A GAIN v LEVEL/NOISE (3776A ONLY)

(a)

Parameters Selected

REF LEVEL	MEAS LEVEL	TEST LIMITS
-10dBm	0dBm to -40dBm in 10dB steps	0 +/-0.15dB
-10dBm	-50dBm and -60dBm	0 +/-0.2dB
-10 dBm	-75dBm	0 +/-0.3dB

.

5. A-A GAIN v LEVEL/TONE

(a)

REF FREQ	REF LEVEL	MEAS LEVEL	TEST LIMITS
210Hz	-10dBm	-10dBm to -40dBm in 10dB steps	0 +/-0.12dB
210Hz	-10dBm	-50dBm and -60dBm	0 +/-0.16dB
210Hz	-10dBm	-75dBm	0 +/-0.30dB

Parameters Selected

(b) As (a) but with REF. FREQ of 1010Hz.

(c) As (a) but with REF. FREQ of 3890Hz.

6. A-A NOISE + TONE (Noise Floor Check)

Parameters Selected 3776B

FREQ	LEVEL	LIMITS
1010Hz	+10dBm	<48dBrnCO

Parameters Selected 3776A

FREQ	LEVEL	LIMITS
810Hz	+10dBm	<-42dBmOp

7. A-A IDLE STATE (Noise Floor Check)

Parameters Selected

INSTRUMENT	FILTER	LIMITS
3776A	PSOPH	<-100dBmOp
3776B	C-MESS	<-10dBrnCo

8. A-A LEVEL/SEL FILTER (Selective Filter Check)

Parameters Selected

LEVEL	REF FREQ	MEAS FREQ	LIMITS
+10dBm	1010Hz	2020Hz	<-55dBm0
+10dBm	1010Hz	3030Hz	<-55dBm0

9. A-A LEVEL/OTHER FILTERS (Filters Check)

Tx FREQ	Tx LEVEL	FILTER	LIMITS MAX	(dBm0) MIN
3010Hz	+10dBm0	A	7.0	6.6
3010Hz	+10dBm0	B	10.1	9.9
4200Hz	+10dBm0	C	10.2	9.8

10. A-A QUANT DIST/NOISE (3776A ONLY) (Noise Floor Check)

LEVEL (dBm)	LIMIT (dB)	LEVEL (dBm)	LIMIT (dB)
0	>52.00	-35	>51.79
-5	>52.00	-36	>51.74
-10	>52.00	-37	>51.67
-15	>52.00	-38	>51.59
-20	>52.00	-39	>51.49
-25	>51.98	-40	>51.37
-29	>51.95	-41	>51.21
-30	>51.94	-45	>50.24
-31	>51.92	-50	>47.88
-32	>51.90	-55	>44.21
-33	>51.87	-60	>39.74
-34	>51.84	-66	>33.94

Parameters Selected

Parameters Selected

LEVEL	LIMITS
+10dBm 0dBm -20dBm -40dBm -60dBm	>52dB >52dB >52dB >52dB >52dB >41.5dB

Frequency set to 810Hz in the 3776A and 1010Hz in the 3776B.

12. A-A I/MOD DIST/TWO TONE

With the LEVEL set to 0dBm, Frequency F1 = 320Hz and F2 = 470Hz, third order product i.e. 2F2-F1 = 620Hz is measured at the Receiver. Limit set to <-60dB.

13. A-A I/MOD/FOUR TONE (3776B ONLY)

With Output LEVEL set to -5dBm 2nd and 3rd order product limits set to <-60dB.

14. A-A DELAY/GROUP DELAY (3776A ONLY)

(a)

LEVEL	REF FREQ	MEAS FREQ	LIMITS	ATTEN LIMITS
-5dBm	1810Hz	210Hz 1010Hz 1810Hz 1980Hz 2590Hz 3590Hz	0 +/-0.045ms 0 +/-0.020ms 0 +/-0.020ms 0 +/-0.020ms 0 +/-0.020ms 0 +/-0.020ms 0 +/-0.020ms	0 +/-0.2dB 0 +/-0.2dB 0 +/-0.2dB 0 +/-0.2dB 0 +/-0.2dB 0 +/-0.2dB 0 +/-0.2dB

Parameters Selected

(b) As (a) but with output level set to -30 dBm.

15. A-A OTHER MEAS/ENVEL DELAY (3776B ONLY)

(a)

LEVEL	REF FREQ	MEAS FREQ	LIMITS	ATTEN LIMITS
-5dBm -5dBm	1810Hz 1810Hz	310Hz 610Hz 1010Hz 1510Hz 1810Hz 2010Hz 2510Hz 3010Hz 3490Hz	0 +/-0.030ms 0 +/-0.030ms 0 +/-0.025ms 0 +/-0.025ms 0 +/-0.025ms 0 +/-0.025ms 0 +/-0.025ms 0 +/-0.025ms 0 +/-0.025ms 0 +/-0.025ms	0 +/-0 2dB 0 +/-0 2dB

(b) As (a) but with LEVEL set to -30dBm.

16. A-A PHASE JITTER

- (a) Output LEVEL set to 0dBm, frequency set to 1010Hz and FIL A selected. Limits 0 to 0.7 degrees.
- (b) As (a) but with FIL B selected.

17. A-A GAIN/TONE (Tx TLP/dBr =-20, Rx TLP/dBr =+10)

- (a) Level set to 0dBmO, frequency to 1010Hz, Tx TLP/dBr =-20, Rx TLP/dBr =+10 and 600ohm terminated and bridged. Limits set to -30 +/-0.05.
- (b) As (a) but ANALOG RECEIVE set to 600ohm BRIDGED. Limits set to -24.03 +/-0.05.

18. D-D GAIN/TONE

(a) With the instrument configured as detailed below, LEVEL is set to 0dBmO and FREQUENCY to . 1010Hz. Limit set to 0.01 +/-0.04 (3776A) or 0.02 +/-0.04 (3776B).

3776A Configuration

3776B Configuration

DIGITAL TRANSMIT SYNTH PCM DIGITAL TRANSMIT SYNTH PCM DIGITAL RECEIVE TERM DIGITAL RECEIVE TERM TX TIMESLOT 1 Tx CHANNEL 1 Rx CHANNEL 1 Rx TIMESLOT 1 FT FORMAT 30 Audio Channels AMI (AZS) CODE HDB3 CODE CCS CAS INT CLK INT CLK

- (b) As (a) but with LEVEL set to -20dBmO and Limits set to -0.02 +/-0.04 (3776A) or 0.00 +/-0.04 (3776B).
- (c) As (a) but with LEVEL set to -40dBmO and Limits set to 0.02 +/-0.04 (3776A) or 0.03 +/-0.04 (3776B).
- (d) As (a) but with LEVEL set to -50dBmO and Limits set to 0.09 +/-0.08 (3776A) or 0.04 +/-0.08 (3776B).
- (e) As (a) but with LEVEL set to -60dBmO and Limits set to 0.70 +/-0.10 (3776A) or 0.20 +/-0.10 (3776B).

19. D-D GAIN/DIG MW

Runs DIG MW with Limits set to 0 + -0.02dB.

20. D-D GAIN/DIG Tx-Rx

Codes set to +127, -0 (3776A) or +85, -42 (3776B). Limits set to +127, -0 (3776A) or +85, -42 (3776B).

21. D-D GAIN v FREQ

LEVEL	REF FREQ	MEAS FREQ	LIMITS
-20dBm0	1010Hz	210Hz 1010Hz 3590Hz	0 +/-0.05dB 0 +/-0.05dB 0 +/-0.05dB

Parameters Selected

22. D-D GAIN v LEVEL/NOISE (3776A ONLY)

Parameters Selected

REF LEVEL	MEAS LEVEL	LIMITS
-20dBm0	-5dBm0 -20dBm0 -40dBm0 -55dBm0 -60dBm0	0 +/-0.08dB 0 +/-0.08dB 0 +/-0.08dB 0.4 +/-0.12dB 0.16 +/-0.18dB

23. D-D GAIN v LEVEL/TONE

REF LEVEL	MEAS LEVEL	3776A LIMITS	3776B LIMITS
-20dBmO	+2.1dBm0	0.03 +/-0.08dB	0.01 +/-0.08dB
	0.0dBm0	0.03 +/-0.08dB	0.02 +/-0.08dB
	-20dBm0	0.0 +/-0.08dB	0.0 +/-0.08dB
	-40dBm0	0.04 +/-0.08dB	0.03 +/-0.08dB
	-50dBm0	0.09 +/-0.12dB	0.04 +/-0.12dB
	-60dBm0	0.72 +/-0.30dB	0.30 +/-0.30dB

24. D-D GAIN v LEVEL/SYNC (2kHz)

Parameters Selected

REF CODE	MEAS CODE	3776A LIMITS	3776B LIMITS
92	127(3776A) or 126 (3776B) to 16	0.0 +/-0.05	0.0 +/-0.05
	15 to 3	0.0 +/-0.06	0.0 +/-0.08

25. D-D NOISE + TONE (3776A) or C-NOTCH NOISE (3776B)

(a) In the 3776A, 0dBmO LEVEL/810Hz FREQ is selected and the LIMIT is set at <-35dBmOp.

(b) In the 3776B, 0dBmO LEVEL/1010Hz FREQ is selected and the LIMIT is set at <55dBrnCO.

26. D-D IDLE STATE/PCM CODES (Average Codes)

The average of approx 800 timeslots or Quiet Tone codes is measured. The Limit is set at 0 + -0.01.

27. D-D LEVEL/C-MESS FILTER (3776B) or PSOPH FILTER (3776A)

Parameters Selected

Tx FREQ	Tx LEVEL	LIMITS 3776A	LIMITS 3776B
3010Hz	0dBmO	-5.99 +/-0.3dBmOp	86.5 +/-0.3dBrnCO

28. D-D LEVEL/SEL FILTER

Tx FREQ	Tx LEVEL	LIMITS 3776A	LIMITS 3776B
3010Hz	0dBmO	0.01 +/-0.3dBmO	0.02 +/-0.3dBmO

29. D-D LEVEL/PCM CODES (Peak Codes)

Parameters Selected

T× FREQ	Tx LEVEL	LIMITS
301 0H z	0 dBm0	+118 -118

30. D-D LEVEL/OTHER FILTERS

Parameters Selected

Tx FREQ	Tx LEVEL	FILTER	LIMITS 3776A	LIMITS 3776B
3010Hz	0dBm0	A B	-3.2 +/-0.20dBm0 0.0 +/-0.20dBm0	-3.2 +/-0.20dBmO 0.0 +/-0.20dBmO

31. D-D LEVEL/SEL FILTER

REF or Tx FREQ	Tx LEVEL	MEAS or Rx FREQ	LIMITS	
1010Hz	0dBm0	3030Hz	<-50dBm0	

32. D-D QUANT DIST/NOISE (3776A ONLY)

LEVEL	LIMITS	LEVEL	LIMITS
(dBm0)	(dBm0)	(dBm0)	(dBm0)
-5	- 37 . 4	-19	- 37.29
-9	- 37 . 39	-20	- 37.26
-10	- 37 . 39	-21	- 37.18
-11	- 37 . 38	-25	- 36.86
-12	- 37 . 38	-30	- 35.86
-13	- 37 . 37	-35	- 33.7
-14	- 37 . 36	-40	- 20.19
-15	- 37 . 35	-45	- 25.79
-16	- 37 . 33	-50	- 21
-17	- 37 . 31	-55	- 16.07
-18	- 37 . 29	-60	- 11.09

Parameters Selected

33. D-D QUANT DIST/TONE

FREQ	FREQ	LEVEL	LIMITS
(3776A)	(3776B)	(dBm0)	
810Hz	1010Hz	+3 -20 -40 -55 -60	-35 -34.84 -28.03 -13.97 -8.99

34. D-D GROUP DELAY (3776A Only)

(a)

Parameters Selected

LEVEL	REF FREQ	MEAS FREQ	DELAY LIMITS	ATTEN LIMITS
∽5dBm	1810Hz	210Hz 1010Hz 1810Hz 1980Hz 2590Hz 3590Hz	0 +/-70us 0 +/-70us 0 +/-70us 0 +/-70us 0 +/-70us 0 +/-70us	0 +/-0.2dB 0 +/-0.2dB 0 +/-0.2dB 0 +/-0.2dB 0 +/-0.2dB 0 +/-0.2dB

(b) As (a) but with output level set to -30dBm.

35. D-D LEVEL/PCM CODES (CHANNEL TESTS)

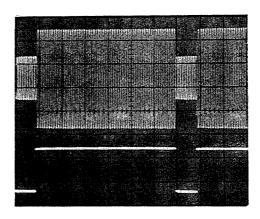
Digital Tx Foreground codes are set to +/-118 and Digital Rx Background codes are set to +/-15.

- (a) Tx Foreground Timeslot/Channel set to 10 and Rx Timeslots/Channels 1 to 24 (3776B) or 1 to 30 (3776A) are checked. Limit set for Rx Foreground Timeslot/Channel is +/-118 and all other Timeslots/Channels is +/-15.
- (b) As (a) but with Tx Foreground Timeslot/Channel 21 selected.
- (c) As (a) but with Tx Foreground Timeslot/Channels set to 1..24 (3776B) or 1..30 (3776A).
- (d) As (a) but with Tx Timeslot/Channel set to -10.
- (e) As (a) but with Tx Timeslot/Channel set to -21.

4-30 INTERRUPTIONS (3776A)/DROPOUTS (3776B) OPTION 001

SPECIFICATION

3776B Threshold/ref carrier level at start of measurement: -12dB +/-1dB


Qualification Period: 3.5 to 4.5ms

3776A Threshold/ref carrier level at start of measurement: -10dB +/-1dB

Qualification period: 2.5 to 4.0ms

DESCRIPTION

Dropouts or Interruptions are tested by amplitude modulating a sinewave carrier using a pulse. By adjusting the amplitude of the pulse, the depth of level of the dropout or interruption can be varied (see Figure 4-2).

HOLDING TONE

NEGATIVE-GOING PULSES

Figure 4-2 Dropout or Interruption Test Waveform

EQUIPMENT

Pulse Generator	HP 8005B
Function Generator	
Oscilloscope Mainframe	
Dual Channel Vertical Amplifier Plug-in	
Time Base Plug-in	
AC Voltmeter	
Frequency Counter	

PROCEDURE

Threshold

1. Set the 3776 as follows:

OPERATING MODE	ANRx
MEASUREMENTS	TRANSIENTS
ANALOG RECEIVE	

2. Using the PARAMETERS and SET keys, set the 3776 for SLO Count; 1.00hr; -12dB d.out (3776B) or -10 Irpt (3776A).

3. Connect the equipment as shown in Figure 4-3.

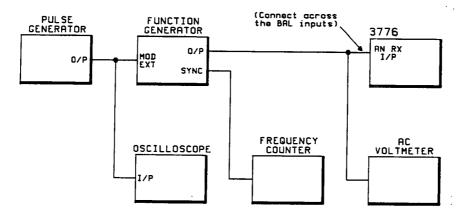


Figure 4-3 Dropouts/Interruptions Test

- 4. Set the Pulse Generator to provide a 4Hz repetition rate negative pulse of width 10ms as displayed on the Oscilloscope.
- 5. Set the Pulse Generator operating mode to GATED. The level displayed on the Oscilloscope should be 0V ac.
- 6. Set the Function Generator to give a sinewave output at 1010Hz +/-10Hz (if using HP 3312A see settings below) as displayed on the Frequency Counter. Adjust the Function Generator amplitude control for a reading of 2.450 +/-0.002V (+10dBm into 6000hm) as displayed on the AC voltmeter.

3312A settings:

MODULATION	EXT, AM, % control to mid-range
FUNCTION	~
TRIGGER PHASE	FREE RUN
RANGE Hz	100Hz
OFFSET	CAL
SYM	

7. Set the 3776 CONTROL to RUN and press the NEXT PARAM key to display -12dB d.out (3776B) or -10dB Irpt (3776A).

Note: The 3776 will use the level measured at the beginning of the run as a reference.

- 8. Set the Pulse Generator operation to normal and adjust the pulse amplitude to obtain the point where the 3776 just begins to accumulate counts in the results window.
- 9. Set the Pulse Generator PULSE WIDTH control to its maximum (preferably about 3 secs) and check that the AC Voltmeter reading is between 0.690 and 0.548V (ie between -1dBm and -3dBm) if the instrument is a 3776B or between 0.869 and 0.690 (ie between +1dBm and -1dBm) for the 3776A, during the 3 second pulse periods.

Guard Interval

10. Adjust the Pulse Generator Amplitude to give an AC Voltmeter indication of 0.435V +/-0.002 during the 3 second pulse periods (ie -15dB below the +10dBm reference level) for the 3776B or 0.581V +/-0.002V (ie -12.5dB below the +10dBm reference level) if the instrument is a 3776A.

Note: These levels will ensure dropouts (interrupts) are counted for the next step.

- 11. Reduce the Pulse Generator pulse width to obtain the point where the counts just stop accumulating in the 3776 RESULTS window.
- 12. Check that the output pulse width displayed on the Oscilloscpe is between 3.5 and 4.5ms (3776B) or between 2.5 and 4.0ms (3776A).

4-31 IMPULSE NOISE (3776B Only) OPTION 001

SPECIFICATION

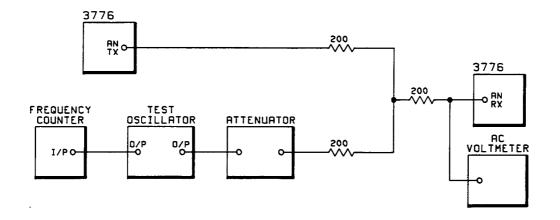
Threshold Range: Low; Selectable in 1dB steps between -8dBm0 to -40dBm0. Mid; always 4dB above Low (i.e. range between -4dBm0 to -36dBm0). High; always 4dB above Mid (i.e. range between 0dBm0 to -32dBm0).

Threshold Accuracy for threshold >-25dBm : +/- 1dB

DESCRIPTION

The Impulse Noise threshold range and accuracy tests use a 1810Hz sinewave of known amplitudes to test the three thresholds. A 1010Hz sinewave is combined with the 1810Hz sinewave to ensure that impulse counts are not inhibited by other Transient measurements. The 1010Hz holding tone is notched out by the 3776B and therefore does not affect the impulse noise thresholds.

NOTE: Thresholds set correspond to peak values (e.g. a count/no count condition occurs when the threshold is set to 0dBmO and a sinewave used as a source of impulse noise is at a level of -3dBmO).


EQUIPMENT

Test Oscillator	HP 651B
AC Voltmeter	HP 3455A
Frequency Counter	HP 5328A
Attenuator (600ohm)	
Three 2000hm Resistors	.HP 0757-0407

PROCEDURE

Threshold Range and Threshold Accuracy

1. Connect up the test circuit as shown in Figure 4-4 with the Attenuator set to 0dB.

Figure 4-4 3776B Impulse Noise Threshold Range and Threshold Accuracy and Test Set-up

- 2. Set the Test Oscillator output voltage to its minimum.
- 3. Set the 3776 to 600ohms UNBAL/A-A TRANSIENTS with the REF Frequency set to 1010Hz and LEVEL set to +6dBm0. Press RUN and check that approximately 0.7745V is displayed on the AC Voltmeter. Press STORE.
- 4. Press STOP on the 3776.
 - Note: If Option 002 is fitted, set the Test Oscillator output level and frequency to give 0.7745V +/-0.0005V displayed on the AC Voltmeter and 1810Hz +/-10Hz displayed on the Frequency Counter then go to Step 7.

5. Set the 3776 to A-A, IDLE STATE, C-MESS FILTER or A-A IDLE STATE, WEIGHTED if Option 002 is fitted.

- 6. Press RUN/REPEAT on the 3776 and set the Test Oscillator output level and frequency to give 90dBrnC0 displayed on the 3776B RESULTS display and 1810Hz +/-10Hz displayed on the Frequency Counter.
 - Note: Setting the 3776 to IDLE STATE, C-MESS FILTER or WEIGHTED FILTER then adjusting the test oscillator output level to give 90dBrnCo on the 3776 display compensates for the loss (approximately 1.5dB) in the C-MESS or WEIGHTED filter at 1810Hz.
- 7. Press STOP; set the 3776 to A-A TRANSIENTS and press RECALL.

8. Set the 3776 to TRANSIENTS, SLO Count/1.00hr/40 degrees P.hit/-8.0dBm0 I.cnt/Low Threshold and press RUN.

Note: If option is fitted, select Fil. A on the Lont display. Setting the P.hit threshold to 40 degrees ensures that phase hits, which inhibit inpulse counts, are not detected.

9. Set the LOW Threshold as shown in Table 1. At each setting, scroll the appropriate threshold count in turn (i.e. LOW, MID and HIGH) and adjust the Attenuator to give a count/no count condition on the 3776 display. Check when the count/no count condition is reached that the Attenuator setting is within the limits given in Table 1.

LOW Threshold Setting (dBm0)	Atte	LOW nuator nits	MID Attenuator Limits		ator Attenuator	
	Max	Min	Max	Min	Max	Min
-8 -10 -20 -25	12 14 24 29	10 12 22 27	8 10 20 25	6 8 18 23	4 6 16 21	2 4 14 19

Tal	ble	1
-----	-----	---

4-32 IMPULSE NOISE (3776A Only) OPTION 001

SPECIFICATION

Threshold Range: Low; Selectable in 1dB steps between -6dBm0 to -40dBm0.

Mid; Always 3dB above Low (ie range between -3dBmO to -37dBmO).

High; Always 3dB above Mid (ie range between 0dBmO to -34dBmO).

Threshold Accuracy for threshold >-25dBm : +/- 1dB.

Weighting Filters:

- Filter A: 200Hz High Pass, with 1kHz Notch.
- Filter B: 600Hz to 3000Hz, with 1kHz Notch.
- Filter C: 300Hz to 500Hz, with 1kHz Notch.

DESCRIPTION

The Impulse Noise threshold range and accuracy tests use a 1810Hz sinewave to test the threshold when Filter A is selected. A 1010Hz sinewave is combined with the 1810Hz sinewave to ensure that impulse counts are not inhibited by other Transient measurements. The 1010Hz tone is notched out by the 3776A Rx and therefore does not affect the impulse noise thresholds. Filters B and C characteristics are checked by Self Test.

EQUIPMENT

Test Oscillator	HP 651B
Attenuator (600ohm)	HP 4437A
Three 2000hm resistors	HP 0757-0407
AC Voltmeter	HP 3455A

PROCEDURE

Threshold Range and Threshold Accuracy

1. Connect the equipment as shown in Figure 4-5.

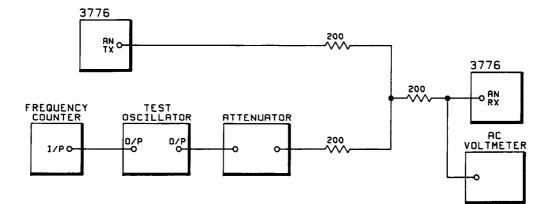


Figure 4-5 3776A Impulse Noise Threshold Range and Threshold Accuracy Test Circuit.

- 2. Set the Test Oscillator output voltage to its minimum.
- 3. Set the 3776 to 600ohms UNBAL/A-A TRANSIENTS with REF Frequency set to 1010Hz and the LEVEL set to +6.00dBm0. Press RUN and check that approximately 0.7745V is displayed on the AC Voltmeter.
- 4. Press STOP and set the 3776 to AnRx only.

- 5. Set the Attenuator set to 02.0dB, and set the Test Oscillator to give 0.7745V +/-0.0005V displayed on the AC Voltmeter and 1810Hz +/-10Hz displayed on the Frequency Counter.
- 6. Set the 3776 to A-A TRANSIENTS/SLO Count/1-00hr/40 degrees P.hit/Fil.A, -6dBm0, I.cnt and press RUN. The combined AnTx and Test Oscillator output should now be applied to the 3776 AnRx input.
 - Note: Setting the P.hit threshold to 40 degrees ensures that the impulse counts are not inhibited by phase hits.
- 7. Set the LOW Lont threshold as shown in Table 1. At each setting, scroll the appropriate threshold count in turn (ie LOW, MID and HIGH) and adjust the Attenuator to give a count/no count condition on the 3776 display. Check that when the count/no count condition is reached the Attenuator setting is within the limits given in Table 1.

LOW Threshold Setting (dBm0)	Attenu	LOW Attenuator Limits (dB)		MID Attenuator Limits (dB)		GH uator s (dB)
	Max	Min	Max	Min	Max	Min
-06 -10 -20 -25	9 13 23 28	7 11 21 26	6 10 20 25	4 8 18 23	3 7 17 22	1 5 15 20

Та	ble	1

4-33 GAIN HITS (OPT 001)

SPECIFICATION

Thresholds: 2, 3, 4 and 6dB

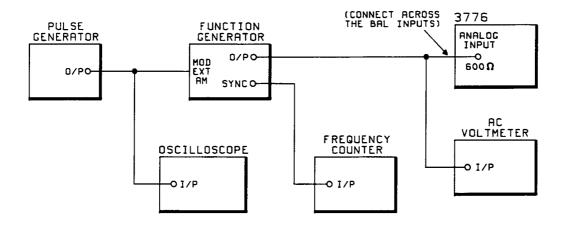
Threshold Accuracy: +/-0.5dB

Guard Interval or

Qualification Period: If the test tone exceeds a threshold by 1dB and returns to its original value within 3.5ms, a Gain Hit should not be counted. If the test tone returns to its original level after 4.5ms, a Gain Hit should be counted.

DESCRIPTION

A Gain-hit is classified as an abrupt change in gain of a received test tone.



EQUIPMENT

Pulse Generator	HP 8005B
Function Generator	HP 3312A
Oscilloscope Mainframe	
Vertical Amplifier Plug-in	
Time Base Plug-in	HP 1821A
AC Voltmeter	HP 3455A

PROCEDURE

Threshold Accuracy

Figure 4-6 Gain Hits Test Set-up

- 1. Connect the equipment as shown in Figure 4-6.
- 2. Set the 3776 as follows:

OPERATING MODE	ANRx
MEASUREMENTS	TRANSIENTS
ANALOG RECEIVE	6000hm (Terminated)

- 3. Using the PARAMETERS and SET keys, set the 3776 for SLO Count; 1.00hr; 2dB G.hit.
- 4. Set the Pulse Generator to give a positive going pulse with a pulse width of approx 3 seconds displayed on the Oscilloscope.

Note: The Pulse Generator transition times should be set to minimum. The DC offset control should be switched off.

5. Set the Pulse Generator to EXT-MAN.

- 6. The level displayed on the Oscilloscope should be OV ac.
- 7. Set the Function Generator to give a sinewave output at 1010Hz +/-10Hz (if using a HP 3312A see settings below) as displayed on the Frequency Counter. Adjust the Function Generator amplitude control for a reading of 1.1590V +/-0.001V (ie 3.5dBm/600ohms) displayed on the AC Voltmeter.

3312A settings

MODULATIONEXT,	DULATIONEXT, AM, % control to mid-range	
FUNCTION	~~	
TRIGGER PHASE	FREE RUN	
RANGE Hz	100Hz	
OFFSET	CAL	
SYM	CAL	

- 8. Set the 3776 CONTROL to RUN and press the NEXT PARAM key to display 2dB G.hit.
- 9. Continually press the Pulse Generator EXT-MAN pushbutton, and adjust the Pulse Generator amplitude controls to obtain a count/no count condition (Gain-hit threshold) displayed on the 3776 RESULTS display.
 - Note: Each time the EXT-MAN pushbutton is depressed, the Pulse Generator produces a 3-second positive-going pulse. If the pulse amplitude is sufficient, two gain-hits will be registered. One gain-hit is registered at the positive-going edge of the pulse and the other at the negative-going edge of the pulse. The following procedure refers to the gain-hit which is registered at the positive-going edge of the 3 second pulse.
- 10. Check that the voltage displayed on the AC Voltmeter during the 3 seconds after the EXT MAN pushbutton is pressed, is between 1.3774V and 1.5455V. This corresponds to +2dB hit limits.
- 11. Adjust the controls of the Pulse Generator to give a negative-going pulse with a pulse width of 3 seconds. This can be achieved by connecting the Function Generator MOD EXT input to the Pulse Generator OUTPUT (-). Using the oscilloscope, check that no DC offset is introduced when the Pulse Generator OUTPUT (-) is selected.
- 12. Repeat Step 9.
- 13. Check that the voltage displayed on the AC Voltmeter during the 3 seconds after the EXT-MAN pushbutton is pressed, is between 0.8691V and 0.9752V. This corresponds to -2dB limits.
- 14. Press the 3776 STOP key and set the 3776 gain-hit threshold to 3dB. Press the 3776 RUN key.

15. Repeat Step 9.

- 16. Check that the voltage displayed on the AC Voltemeter during the 3 seconds after the EXT-MAN pushbutton is pressed, is between 0.7746V and 0.8691V. This corresponds to -3dB hit limits.
- 17. Connect the Function Generator MOD EXT input to the Pulse Generator OUTPUT (+), (ie positive going 3 second pulse output).
- 18. Repeat Step 9 and check that the voltage displayed on the AC Voltmeter during the 3 seconds after the

EXT-MAN pushbutton is pressed, is between 1.7341V and 1.5455V. This corresponds to +3dB hit limits.

- 19. Press the 3776 STOP key and set the 3776 gain-hit threshold to 4dB. Press the 3776 RUN key.
- 20. Repeat Step 9 and check that the voltage displayed on the AC Voltmeter during the 3 seconds after the EXT-MAN pushbutton is pressed, is between 1.9457V and 1.7341V. This corresponds to +4dB hit limits.
- 21. Connect the Function Generator MOD EXT input to the Pulse Generator OUTPUT (-), (ie negativegoing 3 second pulse output).
- 22. Repeat Step 9 and check that the voltage displayed on the AC Voltmeter during the 3 seconds after the EXT-MAN pushbutton is pressed is between 0.6904V and 0.7746V. This corresponds to -4dB hit limits.
- 23. Press the 3776 STOP key and set the 3776 gain hit threshold to 6dB. Press the 3776 RUN key.
- 24. Repeat Step 9 and check that the voltage displayed on the AC Voltmeter during the 3 seconds after the EXT-MAN pushbutton is pressed, is between 0.5484V and 0.6153V. This corresponds to -6dB limits.
- 25. Connect the Function Generator MOD EXT input to the Pulse Generator OUTPUT (+), (ie positivegoing 3 second pulse output).
- 26. Repeat Step 9 and check that the voltage displayed on the AC Voltmeter during the 3 seconds after the EXT-MAN pushbutton is pressed is between 2.4495V and 2.1831V. This corresponds to +6dB hit limits.

Guard Interval or Qualification Period

- 27. Continually press the Pulse Generator EXT-MAN pushbutton and adjust the Pulse Generator amplitude controls to give 2.5V displayed on the AC Voltmeter. Gain-hits should now be registered every time the EXT-MAN pushbutton is pressed.
- 28. Adjust the controls of the Pulse Generator to give a positive-going pulse with a pulse width of approx 10ms and a repitition rate of approx 4Hz, displayed on the oscilloscope.
- 29. Gently reduce the Pulse Generator pulse width control until the point is just reached where no further counts register on the 3776 Gain hits display.
- 30. Check that the Pulse Generator output pulse width, displayed on the oscilloscope is between 3.5ms and 4.5ms.

4-34 PHASE HITS (OPT 001)

SPECIFICATION

Threshold Accuracy:	+/-10% of the PHASE threshold switch setting
	+/-0.5 degrees for phase changes occuring in less
	than 0.2ms

Threshold Range: 5 degrees to 40 degrees in 5 degree steps.

Guard Interval or Qualification Period:

A phase-hit exceeding a threshold by 5 degrees is not counted if the holding tone returns to its original phase at any time within the 3.5ms, and is counted if the tone returns to its original phase any time after 4.5ms.

DESCRIPTION

Phase Hit

A Phase Hit is classified as an abrupt change in phase of a received sinewave.

A sudden phase change (i.e. phase hit) of a sinewave can be generated by changing the sinewave frequency for a brief period. As the frequency is changed, the phase of the sinewave with respect to the original sinewave will increase proportionally with time. The amount of phase change will also be proportional to the amount of frequency change.

This technique is used in the performance tests to generate phase hits. Figure 4-7 illustrates this process.

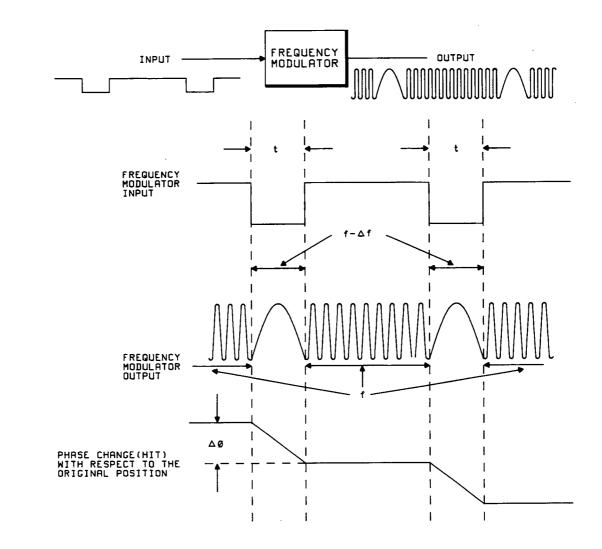


Figure 4-7 Phase Hits Test Signal Generation

Performance Tests

The amount of phase change ϕ in degrees is given by:

$$\Delta \phi = 360 \text{ x} \Delta f \text{ x} t$$

where

 Δf = frequency difference between sinewaves (Hz)

t = time at new frequency $f_1 - \Delta f$

Guard Interval or Qualification Period

By applying a negative-going pulse followed by a positive-going pulse into the Frequency Modulator (see Figure 4-8), the sinewave frequency at the output of the Frequency Modulator can be increased and decreased by an amount Δf . This frequency change causes a phase change as previously described for Phase Hits.

The direction of the phase change however is reversed by the dual polarity input signal to the Frequency Modulator. Figure 4-8 illustrates this phase change.

This technique is used in the performance tests to test the Qualification Period.

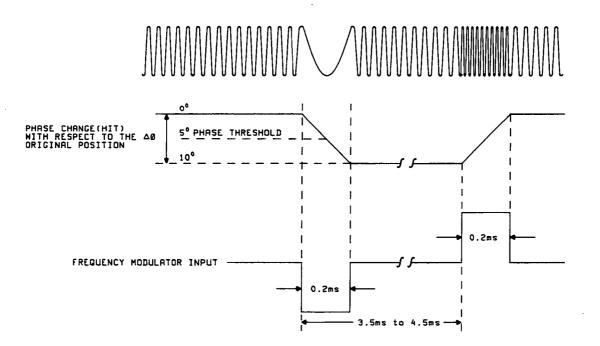
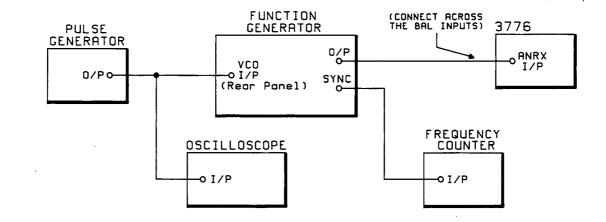


Figure 4-8 Phase Hit Qualification Period Test Signal Generation


EQUIPMENT

Pulse Generator	
Function Generator	HP 3312A
Oscilloscope Mainframe	HP 180A
Dual Channel Vertical Amplifier	
Plug-in	HP 1810A
Time Base Plug-in	
Frequency Counters	
AC Voltmeter	

PROCEDURE

Threshold Range and Threshold Accuracy

1. Connect the equipment as shown in Figure 4-9.

Figure 4-9 Phase Hits Threshold Range and Threshold Accuracy Test Set-up

- 2. Set the Pulse Generator to give -1V negative-going pulses with a repetition rate of approx 1kHz and a pulse width of exactly 0.2ms. The oscilloscope timebase should be set to 20us/DIV for best resolution.
- 3. Set the Pulse Generator repetition rate to approx 4Hz.
- 4. Set the Pulse Generator to the EXT-MAN mode (ie, the level displayed on the oscilloscope should be 0V ac).

5. Adjust the frequency control of the Function Generator to give 1010Hz displayed on the Frequency Counter. When a 3312A Function Generator is used, the front panel controls should be set as follows:

MODULATION $\sim \sim 1$	switches all out switch depressed
TRIGGER PHASE	
RANGE Hz	
OFFSET	CAL
SYM	
AMPLITUDE	

6. Set the 3776 as follows:

OPERATING MODE	ANRx
ANALOG RECEIVE	
MEASUREMENT	LEVEL-SEL FILTER

- 7. Press the 3776 NEXT PARAM key, set the MEAS frequency to 1.01kHz and press RUN/REPEAT.
- 8. Adjust the output amplitude of the Function Generator to give 0dBm +/-0.1dBm displayed on the 3776 RESULTS display.
- 9. Press the 3776 STOP key.
- 10. Set the 3776 as follows:

OPERATING MODE	ANRx
ANALOG RECEIVE	
MEASUREMENT	

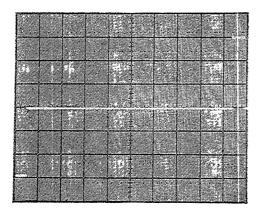
11. Scroll the transient parameters using the NEXT PARAM key and set as follows:

SLO Count 1-00 hr 5 deg P. hit

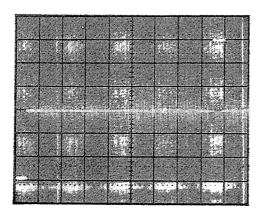
- 12. Press the 3776 RUN key and press the NEXT PARAM key to display 5 deg P. hit.
- 13. Set the Pulse Generator to normal mode, (ie, 0.2ms, -1V -ve-going pulse at approx 4Hz repetition rate).
- 14. Adjust the Pulse Generator output amplitude to obtain the condition where the phase hit counts just register on the 3776 P.hit display. This point is the 5 deg phase hit threshold.
- 15. Set the Pulse Generator repetition rate to 1Hz and pulse width to 0.5 seconds displayed on the oscilloscope.
- 16. Set the Frequency Counter Function to PERIOD and TIMEBASE to 0.1us. The period displayed on the counter will alternate between the carrier frequency (1010Hz = 990us +/-5us) and the frequency f2 which was inserted during the 0.2ms pulse period.
 - Note: If an HP 5345A Counter is available, the Pulse Generator output can be used to gate the 5345A input. This enables only the period of interest (ie, f2) to be displayed.

- 17. Check that the f2 period (see Step 16) displayed on the Frequency Counter is between 1096us and 1064us.
- 18. Select the 3776 phase hit thresholds shown in Table 1 and using the procedure given in Steps 9 to 17 check that the f2 periods obtained are within the limits given.

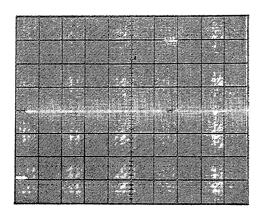
3776 Phase Hit Threshold Setting (degrees)	f2 Period Limits (us)	
Setting (degrees)	Мах	Min
10	1197	1140
15	1317	1227
20	1465	1329
25	1649	1450
30	1887	1595
35	2206	1771
40	2653	1992


Ta	ble	1
----	-----	---

Guard Interval


19. Press the 3776 STOP key.

- 20. Scroll the transient parameters using the NEXT PARAM key and set the 3776 as follows:
 - SLO Count 1-00 hr 5 deg P.hit
- 21. Set the Pulse Generator to Channel A + Channel B mode.
- 22. Adjust the controls of the Pulse Generator to give a combined Channel A and Channel B signal with 0.2ms negative-going and 0.2ms positive-going pulses as shown (Figure 4-10) and a repetition rate of approx 4Hz. The oscilloscope timebase should be set to 20us/DIV for best resolution when setting the 0.2ms pulse widths.
- 23. Press the 3776 RUN key and press the NEXT PARAM key to display 5 deg P. hit. Phase Hits should register on the 3776 RESULTS display.
- 24. Using the Pulse Generator Pulse Delay Control, set the delay between the negative and positive going pulses to 4.5ms as shown (Figure 4-11) and check that counts register on the 3776 Phase display.
- 25. Set the delay between the negative and positive-going pulses to 3.5ms as shown (Figure 4-12) and check that counts do not register on the Phase display.



0.5ms/DIV 0.1V/DIV

0.5ms/DIV 0.1V/DIV

0.5ms/DIV 0.1V/DIV

Figure 4-10

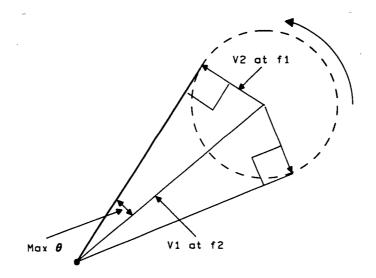
Figure 4-11

Figure 4-12

2

4-40

4-35 PHASE JITTER (OPT 001)


SPECIFICATION

Measurement Accuracy: +/-5% +/-0.2 degrees

Measurement Range: 0 degree to 30 degrees peak to peak

DESCRIPTION

Phase Jitter Measurement Technique: A waveform with a known amount of phase jitter can be constructed by adding together two sinewaves of known frequency and amplitude. The voltage amplitude ratio of the two added sinewaves is proportional to the phase jitter. This action is illustrated vectorially in Figure 4-13.

Figure 4-13 Phase Jitter Generation Vector Diagram

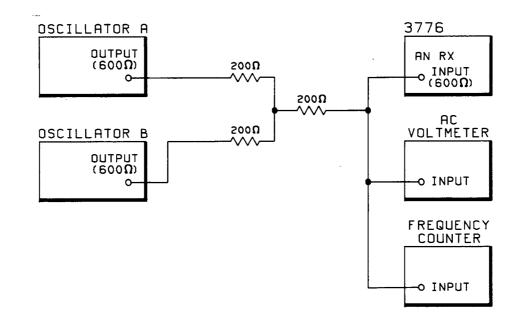
 $Max\Theta = sin^{-1} V2/V1$

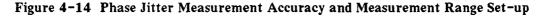
Total peak deviation = $2(Max\theta)$

The voltage ratios (V2/V1) versus corresponding peak-to-peak jitter readings are given in Table 1.

Phase Jitter (Degrees pk-pk)	Voltage Ratio	dB Ratio
0.0114	10000	80
0.115	1000	60
0.363	316	50
1 15	100	40
3.63	31.6	30
11 48	10	20
20	5.76	15.20
30	3.86	11.74

Table 1 Voltage Ratios Versus Peak-to-Peak Jitter


EQUIPMENT


Two Test Oscillators (A and B)	HP 651B
Frequency Counter	
A.C. Voltmeter	HP 3455A
Three 2000hm Resistors	HP 0757-0407
Three 2000hhr Resistors	

PROCEDURE

Measurement Accuracy and Measurement Range

- 1. Set the 3776 to 600ohm UNBAL.
- 2. Set the 3776 MEASUREMENT to PHASE JITTER.
- 3. Connect the equipment as shown in Figure 4-14.
- 4. Adjust the controls of Oscillator A to give an output frequency of 1010Hz displayed on the Frequency Counter and a voltage of 0.7745V displayed on the AC Voltmeter.
- NOTE: To set the output voltage or frequency from either Oscillator accurately and also maintain the circuit impedances, the output voltage from the other Oscillator(s) must be set to their minimum level. (If 651B Oscillators are used, the OUTPUT ATTENUATOR switch should be adjusted to reduce the output voltage to its minimum.)
- 5. Adjust the output frequency from Oscillator B to give a frequency of 910Hz displayed on the Frequency Counter.

- 6. Adjust the output voltage from Oscillator B to give the voltage steps given in Table 2(a) displayed on the AC Voltmeter and check that at each voltage step, the Phase Jitter readings are within the limits specified.
- NOTE: After adjusting Oscillator B to the voltages specified in Table 2(a), return Oscillator A OUTPUT ATTENUATOR switch to the position set in Step 4 and press RUN/REPEAT on the 3776.
- 7. With the output voltage from Oscillator B set to 0.0775V, change Oscillator B Attenuation switch to reduce the output level in 10dB steps as given in Table 2(b).
- 8. Check that at each Attenuator switch setting the Phase Jitter readings are within the limits specified in Table 2(b).

Table 2	Phase Jitter	• Measurement	Range and	Accuracy
---------	--------------	---------------	-----------	----------

Oscillator 'B' Output Voltage (Volts)	Phase Jitter Readings (Degrees)
0.201	28.3 to 31.7
0.134	18.8 to 21.2
0.0775	10.8 to 12.2

(a)

Table 2 Phase Jitter Measurement Range and Accuracy

(b)

Oscillator 'B' Additional Attenuation (dB)	Phase Jitter Readings (Degrees)
10	3.2 to 4.0
20	0.9 to 1.3
30	0.16 to 0.56
40	0 to 0.2
50	0 to 0.2

4-36 SEQUENCE TEST

DESCRIPTION

A sequence of up to approximately 240 measurement points can be stored in the 3776. An HP-IB controller is required to compile and store the sequence in the 3776 non-volatile memory. The sequence can only be run by pressing the 3776 front panel SEQ key. If the SEQ key is pressed and no sequence is stored, ERROR 20 is displayed.

EQUIPMENT

HP-IB Controller	
ROM Drawer	
Input/Output ROM	
HP 85 Advanced Program ROM	
HP-IB Interface	

PROCEDURE

CAUTION

This procedure clears all sequence measurements stored in memory.

- 1. Set the 3776 operating mode to ANTx ANRx and Tx/Rx I/FACES to 0.0dB.
- 2. Set the 3776 to DIGTx DIGRx and Tx/Rx CHANNELS/T-SLOT to 1.
- 3. Loop the ANTx to ANRx and DIGTx to DIGRx.
- 4. Connect a HP 85 controller to the 3776 via HP-IB.
- 5. Set the 3776 HP-IB address to 2. Switch the power on.
- 6. Type OUTPUT 702; "CS" on the controller and press the controller END LINE key.

- 7. Press the 3776 LOCAL key, then press the SEQ key.
- 8. Check that the SEQ key cannot be illuminated and either ERROR 18 or 20 is displayed on the 3776. Error 18 or 20 indicates that the SEQ memory is clear.
- 9. Select ANTx to ANRx GAIN V FREQ measurement on the 3776.
- 10. Set the REF Frequency to 1.81kHz, MEAS Frequency to 0.21kHz and LEVEL to 0.0dBm.
- 11. Type OUTPUT 702; "AS" on the controller and press the controller END LINE key. This action appends the measurement selected in Steps 9 and 10 to the sequence.
- 12. Press the 3776 LOCAL key.
- 13. Select DIGTx to DIGRx LEVEL SEL FILTER measurement, set the REF and MEAS frequencies to 2.81kHz and LEVEL to 0.0dBm.
- 14. Type OUTPUT 702; "AS" on the controller and press the ENDLINE key. This action appends the measurement selected in Step 13 to the sequence.
- 15. Press the 3776 LOCAL key.
- 16. Press the 3776 SEQ key.
- 17. Check that the SEQ key is illuminated and Pt 1 is displayed on the 3776.
- 18. Press the 3776 RUN key and check that the measurements appended to the sequence in Steps 9, 10 and 13 are performed.
- 19. When the 3776 STOP key led comes on, type OUTPUT 702; "RS?" on the controller and press END LINE. This action causes the 3776 to return the total number of measurements in the stored sequence (ie 2).
- 20. Type ENTER 702; A\$ on the controller and press END LINE.

21. Type DISP A\$ on the controller and check that RS 2 is displayed on the controller.

4-37 DUAL-TONE MULTI-FREQUENCY (DTMF) SIGNALLING TEST

DESCRIPTION

Multi-Frequency dialling or signalling tones can be loaded into the 3776 using the following command on HP-IB.

MD, on time, off time, level, tone, pair 1,

tone pair 2, etc.

Where tone on/off times are in seconds to a resolution of 0.001 seconds and level is the transmitted level of the two-tone signal.

The default DTMF values conform to the Bell System and are as follows:-

1 On time = 0.4 second

2 Off time= 0.1 second

3 Level = 0.0dBm

4 Tones are as shown in Table 1.

Га	ble	1
----	-----	---

FREQUENCY (Hz)	1209	1336	1477	1633
697	digit 1	2	3	13 = A
770	4	5	6	14 = B
852	7	8	9	15 = C
941]] = *	10 = #	12 = 0	16 = D

Example:

To set the above default Bell System DTMF signalling, send the following to the 3776: "MD, 0.4, 0.1, 0.0, 697, 1209, 697, 1336, 697, 1477, 770, 1209, 770, 1336, 770, 1477, 852, 1209, 852, 1336, 852, 1477, 941, 1336, 941, 1209, 941, 1477, 697, 1633, 770, 1633, 852, 1633, 941, 1633, CRLF".

These parameters are stored in N.V.M. and are retained when the 3776 is powered down. Once the DTMF parameters have been established, dialling can now be performed by sending the MP2 command followed by the number required.

Example:

"MP 2, 10, 3, 1, 3, 3, 1, 1, 10, 10, 10"

Note: When dialling always use the tone pair number, not the digits dialled. See Table 2.

its Dialled
1 to 9 0 * # A B C D

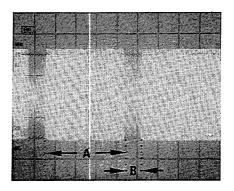
Table	2
-------	---

EQUIPMENT


HP-IB Controller	
ROM Drawer	
Input/Ouput ROM	
HP-IB Interface	
Storage Oscilloscope	HP 1741A

PROCEDURE

- 1. Set the 3776 to ANTx and Tx I/FACE to 0.0dB.
- 2. Connect the ANALOG TRANSMIT output to the ANALOG RECEIVE input and set the ANALOG TRANSMIT output to 6000hm UNBAL.
- 3. Connect the HP 85 to the 3776 and load the DTMF program listed, into the HP 85 Controller.


10 DIM A\$[250], B\$[250], C\$[250] 20 DIM D\$[250] 30 D\$=", 1,2,3,4,5,6,7,8,9,10,11 ,12,13,14,15,16,5,5,5,5,5,5,5 5,5,5,5,5,5,5,5,5,5,5,5,5 60 A\$="0.4,0.1,0.0,697,1209,697 ,1336,697,1477,770,1209,770, 1336,770,1477,852,1209,852,1 336" 70 B\$=",852,1477,941,1336,941,1 209,941,1477,697,1633,770,16 33,852,1633,941,1633" 80 C\$=A\$&B\$ 90 OUTPUT 708 "ST" 100 OUTPUT 708 "CA OFF" 110 OUTPUT 708 "MO4;ME40" 120 OUTPUT 708 "MO";C\$ 140 OUTPUT 708 "MP2";D\$ 160 OUTPUT 708 "SS" 170 END

4. Connect a storage oscilloscope across the ANALOG TRANSMIT output as shown in Figure 4-15 and run the DTMF program.

Figure 4-15

- 5. Check that the following occurs when the program is run:-
- (a) 2 MEAS appears in the FREQUENCY display and 1 incrementing to 9 then 0, Star, hash, A, b, C and d. After d, 5 is displayed.
- (b) The waveform shown in Figure 4-16 can be obtained. Note, that the waveform is present for only approx 20 seconds. Re-run the DTMF program, if required, until a satisfactory waveform is obtained.

0.2V/DIV (10:1 Probe) 0.1s/DIV

ON TIME(A) : 0.36-0.44s OFF TIME(B) : 0.09-0.11s

Figure 4-16

4-38 3776B PCM TESTS

SPECIFICATIONS

Frame Format:	Selectable. Standard frame format conforms to BSTR Pub 43801 (CCITT Rec G. 733); Extended Super-Frame (ESF) format conforms to AT & T Technical Advisory No. 70.
Signalling:	Channel Associated Signalling (CAS) or Common Channel Signalling (CCS).
Led Status Indicators:	No signal; loss of frame alignment; all ones; loss of multi- frame alignment.

DESCRIPTION

The following manual checks perform virtually the same tests as running the PCM76B program. The procedure provided therefore serves as a description of the PCM76B program.

Basically, the following tests are performed.

- 1. DIGTx to DIGRx LEVEL-SEL FILTER, AZS code measurement checked with CAS then CCS selected. Checks that the No SIG, ALL 1s, FA LOSS and MFA LOSS leds are all off.
- 2. In CCS, Terminal Framing or FA LOSS is checked.
- 3. In CCS, Signalling Bits Check.
- 4. In CAS, Signalling Framing Check or MFA LOSS check.
- 5. CAS Terminal Farming loss causing Signalling Framing Loss.
- 6. Signalling Bits in Signalling Channels A and B checked. During this test, the NO SIG, ALL 1s, FA LOSS and MFA LOSS leds are checked.
- 7. Tests 1 to 6 are repeated with the line code set to B8ZS.

- 8. In CCS, Terminal Framing or FA LOSS is checked with Extended Framing (FE) selected.
- 9. In FE/CCS mode, the CRC default word checked.
- 10. In FE/CAS, the A to D signalling bits default value checked.
- 11. In FE/CAS mode, the CRC default word is checked ? Also NO SIG, ALL 1s, FA LOSS and MFA LOSS checked.
- 12. In FE/CAS, CRC Default value checked.
- 13. In FE/CCS mode, Idle codes versus CRC bits are checked.
- 14. In FE/CAS mode, A to D signalling bits are sequencially checked. Also NO SIG, ALL 1s, FA LOSS and MFA LOSS are checked.
- 15. Digital Tx to Digital Rx LOOP TIMING check.

EQUIPMENT (No equipment is required if performing manual checks)

Controller	
HP-IB Interface	
ROM Drawer	
Input/Output ROM	
3776 DATA CARTRIDGE	

PROCEDURE (using the PCM 76B Program)

- 1. Connect the Controller to the 3776B via the HP-IB Interface and connect the DIGITAL TRANSMIT output to the DIGITAL RECEIVE input.
- 2. Load the PCM76B Program into the Controller.
- 3. Run the PCM 76B Program and check that no error codes are displayed on the HP 85 Controller. Note: only one program cycle is required for performance checking.

PROCEDURE (Manual)

(Perform this procedure only if the PCM76B Program is not available)

DIGTx to **DIGR**x LEVEL - SEL FILTER Check

- 1. Connect the 3776B DIGITAL TRANSMIT output to the DIGITAL RECEIVE input.
- 2. Reset the 3776 to its default values as follows:

WARNING

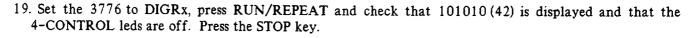
This procedure requires the removal of the instruments protective covers and should only be performed by Service trained personnel who are aware of the hazards involved.

- (a) Remove the top cover and pc assemblies metal retaining cover.
- (b) set A13S2 switches to 10010 and press A13S1 reset button.
- (c) After approx 5 seconds, set A13S2 switches back to 00000.
- 3. Set the 3776B as follows:

OPERATING MODE	DIGTx to DIGRx
I/FACES	Tx/Rx T-SLOTS 1/1
GAIN/DIG Tx-Rx	
(Press STORE after setti	ng this backgroung code)
MEASUREMENTS	LEVEL SEL FILTER
FREQUENCY kHz	1.01 REF and MEAS
LEVEL	As in Table 1 in Step 4
SYNTH PCM/THRU PCM	
TERM/MON	
CAS/CCS	See Procedure
B8ZS/AZS	AZS
FE/FT	FT

4. Set the LEVEL, in turn, to values given in Table 1 and check at each level that the 3776 displayed result (for CAS and CCS) is within the corresponding limits given in the Table.

LEVEL (dBmO)	3776 Displayed Result Limits			
	CAS (dBmO)	CCS (dBmO)		
+3 -19 -35 -46 -60	2.88 to 3.04 -18.92 to -19.08 -34.89 to -35.05 -45.76 to -46.22 -59.47 to -59.93	2.88 to 3.04 -18.94 to -19.10 -34.91 to -35.07 -45.77 to -46.23 -59.37 to -59.83		


Table 1

5. Check that the CONTROL leds (NO SIG, ALL 1s, FA LOSS and MFA LOSS) are all off.

FT/CCS Mode Terminal Framing Check

- 6. Set the 3776 to DIGTx only.
- 7. Set the MEASUREMENT to FRAMING + SIG BITS FT/FE BITS and check that 101010 is displayed on the 3776 RESULTS display. Check that 101010 is displayed with the CAS/CCS switch set to either CAS or CCS.
- 8. Set the CAS/CCS switch to the CCS position and press the MEASURMENTS STORE key.

- 9. Set the 3776 to DIGRx only, press RUN/REPEAT and check that 101010 is displayed on the RESULTS display.
- 10. Check that the CONTROL leds (NO SIG, ALL 1s, FA LOSS and MFA LOSS) are all off. Press the STOP key.
- 11. Set the 3776 to DIGTx only, change the FT bits to 001010 (10) and press the STORE key.
- 12. Set the 3776 to DIGRx only and press the RUN key.
- 13. Check that the 3776 displays 001010 (10) or 100010 (34) or 101000 (40).
- 14. Check that the CONTROL leds (NO SIG, ALL 1s, FA LOSS and MFA LOSS) are all off. Press the STOP key.
- 15. Set the 3776 to DIGTx only and change the FT bits to 011010 (26). Press the STORE key.
- 16. Set the 3776 to DIGRx only and press RUN/REPEAT.
- 17. Check that Error 21 is displayed and that the NO SIG, ALL 1s and MFA LOSS leds are off and that the FA LOSS led is on. Press the STOP key.
- 18. Set the 3776 to DIGTx only, change the FT bits back to 101010 (42) and press the STORE key.

CCS mode Signalling Bits Check

- 20. With the 3776 set to DIGRx only, select FRAMING + SIG BITS FS/CRC BITS and press the RUN key.
- 21. Check that 111111 is displayed and press STOP.
- 22. Set the 3776 to DIGTx only.
- 23. Change the FS bits to 100110 (38) and press STORE.
- 24. Set the 3776 to DIGRx only and press the RUN key.
- 25. Check that 100110 (38) or 101001 (41) or 011010 (36) is displayed. Press the STOP key.
- 26. Set the 3776 to DIGTx only, change the FS bits back to 111111 (63) and press STORE.

CAS Signalling Framing or MFA LOSS Check

- 27. Set the Rear Panel CAS/CCS switch to CAS.
- 28. With the 3776 set to DIGTx, select FRAMING + SIG BITS FS/CRC BITS and check that the 3776 displays 001110 (14). Press STORE.
- 29. Set the 3776 to DIGRx only, press RUN/REPEAT and check that 001110 (14) is displayed. Check also

that the 4-Control leds are off. Press STOP.

- 30. Set the 3776 to DIGTx, change the FS bits to 101110 (46) and press STORE.
- 31. Set the 3776 to DIGRx and press RUN/REPEAT.
- 32. Check that 101110 (46) is displayed. Check also that the 4-Control leds are off. Press STOP.
- 33. Set the 3776 to DIGTx and change the FS bits to 101111 (47). Press STORE.
- 34. Set the 3776 to DIGRx only and press RUN/REPEAT.
- 35. Check that 101111 (47) is displayed and the 4-Control leds are off. Press STOP.
- 36. Set the 3776 to DIGTx only and change the FS bits to 111110 (62). Press STORE.
- 37. Set the 3776 to DIGRx only and press RUN/REPEAT.
- 38. Check that ERROR 21 is displayed. Check also that CONTROL led MFA LOSS is on and the other 3-CONTROL leds are off. Press STOP.
- 39. With the 3776 in the DIGRx mode, select the FT/FE BITS and press RUN/REPEAT.
- 40. Check that ERROR 21 is displayed. Check also that CONTROL led MFA LOSS is on and the other 3-CONTROL leds are off. Press STOP.
- 41. Set the 3776 to DIGTx only and select FS/CRC BITS.
- 42. Change the FS BITS back to 001110 (14) and press STORE.
- 43. Set the 3776 to DIGRx only, press RUN/REPEAT and check that 001110 (14) is displayed and that all 4-CONTROL leds are off. Press STOP.

CAS Terminal Framing Loss causing Signalling Framing Loss Check

- 44. Set 3776 to DIGTx only and select FT/FE BITS.
- 45. Change the FT bits to 001010 (10) and press STORE.
- 46. Set the 3776 to DIGRx only and press RUN.
- 47. Check that 001010 (10) is displayed. Check also that the 4-CONTROL leds are off. Press STOP.
- 48. Set the 3776 to DIGTx only and change the FT bits to 011010 (26). Press STORE.
- 49. Set the 3776 to DIGRx and press RUN/REPEAT.
- 50. Check that ERROR 21 is displayed and that FA LOSS and MFA LOSS leds are on and the NO SIG and ALL 1s leds are off. Press STOP.
- 51. Set the 3776 to DIGTx only and change the FT bits back to 101010 (42). Press STORE.

52. Set the 3776 to DIGRx and press RUN/REPEAT.

53. Check that 101010 (42) is displayed and that all 4-CONTROL leds are off. Press STOP.

Signalling Bits in Signalling Channels A and B Check

54. Set the 3776 to DIGTx.

55. Set the Tx TLP/T-SLOT to 1..24 (ie Barrage Loaded).

56. Select FRAMING + SIG BITS - SIG BITS and check that the 3776 displays A = 0, B = 0.

57. Set the rear panel CAS/CCS to CCS and check that the display blanks. Set the switch back to CAS.

58. Change the SIG BITS in turn as given below and perform the following procedure, for each signalling A and B bit combination.

- (a) Change the A and B bits.
- (b) Press STORE.
- (c) Set the 3776 to DIGRx only.
- (d) Press RUN/REPEAT.
- (e) Check that the displayed A and B bits correspond to the appropriate combination set below. Check also that the 4-CONTROL leds are off. Press STOP.
- (f) Change the OPERATING MODE back to DIGTx only.

A =	B =
1	0
1	1
0	1
0	0

59. Set the Tx TLP/T-SLOT to 1.

B8ZS Checks

60. Set the Rear Panel AMI/B8ZS switch to B8ZS and repeat Steps 1 to 59 of the Manual Procedure.

CCS/FE Terminal Framing or FA LOSS Check

61. Set the Rear Panel FT/FE switch to FE.

- 62. With the 3776 set to DIGTx only, and Tx and Rx TLP/T-SLOT set to 1, select FRAMING + SIG BITS FT/FE BITS measurement.
- 63. Check that 001011 (11) is displayed.
- 64. Set the CAS/CCS switch to CCS and check that 001011 (11) is displayed. Press STORE.

- 65. Set the 3776 to DIGRx only and press RUN/REPEAT.
- 66. Check that 001011 (11) is displayed and that all 4-CONTROL leds are off. Press STOP.
- 67. Set the 3776 to DIGTx only and change the FT bits to 001000 (8). Press STORE.
- 68. Set the 3776 to DIGRx only and press RUN/REPEAT.
- 69. Check that ERROR 21 is displayed. Check also that the FA LOSS led is on and the other 3-CONTROL leds are off. Press STOP.
- 70. Set the 3776 to DIGTx and change the FT bits back to 001011 (11). Press STORE.
- 71. Set the 3776 to DIGRx, press RUN/REPEAT and check that 001011 (11) is displayed. Check also that all 4-CONTROL leds are off. Press STOP.
- CAS/FE Signalling channels A to D Default value Check
- 72. With the 3776 set to DIGTx only, change the Rear Panel CAS/CCS switch to CAS.
- 73. Select FRAMING + SIG BITS SIG BITS and check that A-d = 0000 is displayed. Press STORE.

CAS/FE CRC Default Value Check

- 74. Set the 3776 to DIGRx and select FRAMING + SIG BITS FS/CRC BITS.
- 75. Press RUN/REPEAT and check that 100111 (39) is displayed. (!Check this word!). Check also that the 4-CONTROL leds are off. Press STOP.

CCS/FE Idle Codes Versus CRC bits Check

- 76. Set the 3776 to DIGTx only and rear panel CAS/CCS switch to CCS.
- 77. Select GAIN DIGTx-Rx measurement and set CODE to 0/0 (ie, remove negative code sign). Press STORE.
- 78. Set the 3776 to DIGRx only and select FRAMING +SIG BITS FS/CRC BITS.

79. Press RUN and check that 010011 (19) is displayed. Press STOP.

80. Repeat Steps 76 to 79 using the codes given below and check that the corresponding CRC bits are displayed.

Idle	Code Inserted	CRC Bits Displayed		
	(Step 77)	(Step 79)		
	-127/-127	000010 (2)		
	-112/-112	000011 (3)		
	-42/-42	001101 (13)		
	+85/+85	011100 (28)		
	+15/+15	010010 (18)		
	+0/-0	100011 (35)		

CAS/FE A to D Signalling Bits Check

- 81. Set the 3776 to DIGTx only and set the rear panel CAS/CCS switch to CAS
- 82. Set the TxTLP/T-SLOT to 1..24 (Barrage Loaded).
- 83. Select FRAMING + SIG BITS SIG BITS and check that A-d = 0000 is displayed.
- 84. Change the CAS/CCS switch to CCS and check that the display blanks. Set the CAS/CCS switch back to CAS.
- 85. With the 3776 set to DIGTx and A-d = 0000, press STORE.
- 86. Set the 3776 to DIG Rx and press RUN/REPEAT.
- 87. Check that A-d = 0000 is displayed. Check also that the 4-CONTROL leds are off. Press STOP.
- 88. Repeat Steps 85 to 87, setting the A-d bits as shown below. Check at each setting of the A-d bits that the displayed result (Step 87) corresponds to the A-d bits set (Step 85).

Where A-d = A, b, C, d AbCd 0 0 0 1 0 0 1 0 0 1 0 1 1 0 1 0 1 1 1 1

89. Set the 3776 to DIGTx and A-d = 0000. Press STORE.

DIGTx to **DIGR**x LOOP TIMING Check

90. Set the 3776 to DIGTx and DIGRx.

- 91. Select FRAMING + SIGBITS LOOP TIMING.
- 92. With the DIGTx looped to the DIGRx, press the RUN/REPEAT key and check that a stationary segment pattern is obtained. Press STOP.

4-39 3776A PCM TESTS

SPECIFICATION

Frame Format:	Conforms to C selected.	CITT Rec G.73	2; 30 or	31 audio	channels may be
Signalling:	Channel Associa (CCS).	ted Signalling	(CAS) or	Common C	hannel Signalling

Led Status Indicators:	No signal; loss of frame alignment; all ones; loss of multi-frame alignment.
Frame Word Error Rate:	Generates Frame Word Errors over defined periods to give 1 x 10^{-5} , 5 x 10^{-5} , 1 x 10^{-4} , 5 x 10^{-4} and 1 x 10^{-3} error rates.

DESCRIPTION

The following manual checks perform virtually the same tests as running the PCM76A program. The procedure provided therefore, serves as a description of the PCM76A program. Basically, the following tests are performed.

- 1. DIGTx to DIGRx LEVEL-SEL FILTER measurement with HDB3 code selected. Checks that the NO SIG, ALL 1s, FA LOSS and MFA LOSS leds are all off.
- 2. Non-Frame Word Check.
- 3. Frame Word Check.
- 4. Frame Word Loss of Alignment Check (Using the 4-word sequence of good/bad frame words).
- 5. AIS (Alarm Indication Signal) Check.
- 6. Signal Loss (NO SIG) Check.
- 7. Re-Gain Alignment Check.
- 8. Frame Word in CAS mode check.
- 9. Multi-frame Alignment (MFA LOSS) Check.
- 10. Distant Multi-frame Alarm Bit Check.
- 11. Frame Word Loss of Alignment Check (using a sequence of Frame Word bit errors).
- 12. Signalling Bits Check.
- 13. Frame Alignment Word Error Rate. This check is not performed by the PCM76A program.

EQUIPMENT

(Only the Frame Word Error Detector is required if performing manual checks)

Controller	
HP-IB Interface	
ROM Drawer	
Input/Output ROM	HP 00085-15003
3776 Data Cartridge	
Frame Word Error Detector	HP 3783A

PROCEDURE (using the PCM76A Program)

- 1. Connect the Controller to the 3776A via the HP-IB interface and connect the DIGITAL Tx output to the DIGITAL Rx input.
- 2. Load the PCM76A Program into the Controller.
- 3. Run the PCM76A Program and check that no error codes are displayed on the HP 85 Controller.

Note: only one program cycle is required for performance checking.

4. Perform Steps 70 to 81 of the Manual Procedure.

PROCEDURE (Manual)

(Perform this procedure only if the PCM76A Program is not available)

DIGTx to DIGRx LEVEL-SEL FILTER Check

- 1. Connect the 3776A DIGITAL TRANSMIT output to the DIGITAL RECEIVE input.
- 2. Reset the 3776A to its default values as follows:

WARNING

This procedure requires the removal of the instruments protective covers and should only be performed by Service trained personnel who are aware of the hazards involved.

- (a) Remove the top cover and pc assemblies retaining cover.
 - (b) Set A13S2 switches to 10010 and press A13S1 reset button.
 - (c) After approx 5 seconds, set A13S2 switches back to 00000.
- 3. Set the 3776A as follows:

OPERATING MODE	DIGTx to DIGRx
I/FACES	Tx/Rx CHAN 1/1
TERM/MON	
CAS/CCS	CCS
HDB3/AMI	
30 CHAN/31 CHAN	
SYNTH PCM/THRU PCM	SYNTH PCM
GAIN/DIG Tx-Rx	+/-0 (Press STORE after setting
	this Background code)
LEVEL/SEL FILTER	See Table 1 in Step 4 for
	LEVEL settings. Set the REF
	and MEAS Frequency to 0.81kHz.

4. Set the LEVEL in turn, to the values given in Table 1 and check at each level that the 3776 displayed

result is within the corresponding limits given in the Table.

Table 1

Level (dBmO)	3776A Displayed Result Limits (dBmO)
+3	2.99 to 3.03
-20	-19.98 to -20.04
-36	-35.97 to -36.03
-44.7	-44.58 to -44.71
-60	-59.21 to -59.39

Non-Frame Word Check

- 5. Set the 3776A to DIGTx mode only and select FRAMING + SIG BITS/NON-FM WORD.
- 6. Check that 11011111 (223) is displayed on the 3776A RESULTS display.
- 7. Set the 3776A to DIGRx only and press RUN/REPEAT.
- 8. Check that 11011111 (223) is displayed. Check also that the 4-CONTROL leds NO SIG, ALL 1s, FA LOSS and MFA LOSS are all off. Press STOP.
- 9. Set the 3776A to DIGTx only and change the NON-FM word to 11111111 (255). Press STORE.
- 10. Set the 3776A to DIGRx only, press RUN/REPEAT and check that 11111111 (255) is displayed. Check also that the 4-CONTROL leds are off. Press STOP.
- 11. Set the 3776A to DIGTx only, change the NON-FM WORD back to 11011111 and press STORE.

Frame Word Check

- 12. With the 3776A in the DIGTx mode only, select FRAMING + SIG BITS/FRAME WORD.
- 13. Check that 10011011 (155) is displayed. Press STORE.
- 14. Set the 3776A to DIGRx only, press RUN/REPEAT and check that 10011011 (155) is displayed. Check also that the 4-CONTROL leds are off. Press STOP.

Frame Word Loss of Alignment Check (Using the 4-word sequence of GOOD/BAD Frame Words)

- 15. Set the 3776A to DIGTx only and press RUN.
- 16. Press the NEXT PARAM key until "2 in 4" is displayed.
- 17. Check that the 4-CONTROL leds NO SIG, ALL 1s, FA LOSS and MFA LOSS are all off.
- 18. Press the NEXT PARAM key and check that "1 in 2" is displayed. Check also that the 4-CONTROL

leds are off

19. Press the NEXT PARAM key and check that "3 in 4" is displayed. Check that the NO SIG, ALL 1s and MFA LOSS leds are off and FA LOSS is on. Note that multiframe alignment is lost but MF LOSS led is off. This is due to the 3776A being set in CCS mode (the status word, returned on HP-IB, indicates MFA LOSS).

AIS (Alarm Indication Signal) Check

- 20. Press the NEXT PARAM key and check that "AIS" is displayed.
- 21. Check that the NO SIG and MFA LOSS leds are off and the ALL 1s and FA LOSS leds are on. See note in Step 19 regarding MFA LOSS.

Signal Loss (NO SIG) Check

- 22. Press the NEXT PARAM key and check that "OFF" is displayed.
- 23. Check that the ALL 1s and MFA LOSS leds are off and the NO SIG and FA LOSS leds are on. See note in Step 19 regarding MFA LOSS.

Re-Gain Alignment Check

- 24. Press the PREVIOUS PARAM key until "1 in 2" is displayed.
- 25. Check that the NO SIG, ALL 1s and MFA LOSS leds are off and the FA LOSS led is on. See Step 19 note regarding MFA LOSS.
- 26. Press the PREVIOUS PARAM key until "2 in 4" is displayed.
- 27. Check that the 4-CONTROL leds (NO SIG, ALL 1s, FA LOSS and MFA LOSS) are all off. Press STOP.

Frame Word in CAS mode Check

- 28. Set the rear panel CAS/CCS switch to CAS and set the OPERATING MODE to DIGRx only.
- 29. Press RUN/REPEAT and check that 10011011 (155) is displayed. Check that the 4-CONTROL leds are off. Press STOP.

Multi-Frame Alignment (MFA LOSS) Check

- 30. Set the 3776A to DIGTx only and select FRAMING + SIG BITS/TS16 FM0.
- 31. Check that 00001011 (11) is displayed on the RESULTS display. Press STORE.
- 32. Set the 3776A to DIGRx only and press RUN/REPEAT.
- 33. Check that 00001011 (11) is displayed and that the 4-CONTROL leds are off. Press STOP.
- 34. Set the 3776A to DIGTx only.
- 35. Change the TS16 FM0 word to 10001011 (139) and press STORE.

36. Set the 3776A to DIGRx only, press RUN/REPEAT and check that ERROR 21 is displayed. Check also that the NO SIG, ALL 1s and FA LOSS leds are off and that the MFA LOSS led is on. Press STOP.

Distant Multi-Frame Alarm Bit Check

- 37. Set the 3776A to DIGTx only.
- 38. Change the TS16 FM0 word to 00001111 (15) and press STORE.
- 39. Set the 3776A to DIGRx only and press RUN/REPEAT.
- 40. Check that 00001111 (15) is displayed and the 4-CONTROL leds are off. Press STOP.
- 41. Set the 3776A to DIGTx only and change the TS16 FM0 word back to 00001011 (11). Press STORE.

Frame Word Loss of Alignment Check (Using a sequence of Frame Word bit errors)

- 42. Select FRAMING + SIG BITS/FRAME WORD and check that 10011011 (155) is displayed. Press STORE.
- 43. Set the 3776A to DIGRx only and press RUN/REPEAT.
- 44. Check that 10011011 (155) is displayed. Check also that the 4-CONTROL leds are off. Press STOP.
- 45. Set the 3776A to DIGTx only and change the FRAME WORD to 11011011 (219). Press STORE.
- 46. Set the 3776A to DIGRx only and press RUN/REPEAT.
- 47. Check that ERROR21 is displayed and that the NO SIG and ALL 1s leds are off and the FA LOSS and MFA LOSS leds are on.
- 48. Set the 3776 to DIGTx only, change the FRAME WORD to 00011011 (27) and press STORE.
- 49. Set the 3776 to DIGRx only and press RUN/REPEAT.
- 50. Check that 00011011 (27) is displayed and that the 4-CONTROL leds are all off. Press STOP.
- 51. Set the 3776A to DIGTx only and change the FRAME WORD back to 10011011. Press STORE.
- 52. Set the 3776A to DIGRx and press RUN/REPEAT.
- 53. Check that 10011011 (155) is displayed and that the 4-CONTROL leds are off. Press STOP.

Signalling Bits Check

- 54. Set the 3776A to DIGTx only and select FRAMING + SIG BITS/TS16 SIG BITS.
- 55. Check that 0101 (5) is displayed and press STORE.
- 56. Set the 3776A to DIGRx only and press RUN/REPEAT.
- 57. Check that 0101 (5) is displayed and the 4-CONTROL leds (NO SIG, ALL 1S, FA LOSS and MEA LOSS)

are off. Press STOP.

58. Set the 3776A to DIGTx only and change the TS16 SIG BITS to 1010 (10). Press STORE.

59. Set the 3776A to DIGRx only and press RUN/REPEAT.

60. Check that 0101 (5) is displayed. Check also that the 4-CONTROL leds are off. Press STOP.

61. Set the Tx CHAN I/FACES to 1..30 (i.e. barrage loaded).

62. Set the 3776 to DIG Tx only and check that 0101 (5) is displayed.

63. Change the TS16 SIG BITS to 1010 (10) and press STORE.

64. Set the 3776A to DIGRx only and press RUN/REPEAT.

65. Check that 1010 (10) is displayed and the 4-CONTROL leds are all off. Press STOP.

66. Set the 3776A to DIGTx and change the TS16 SIG BITS to 0101 (5). Press STORE.

67. Set the Tx CHAN I/FACES back to 1.

68. Set the rear panel CAS/CCS switch to CCS.

69. Check that 11111111 (255) is displayed.

Frame Alignment Word Error Rate

70. Connect the 75ohm UNBAL DIGITAL TRANSMIT output to the HP 3783A SIGNAL INPUT.

71. With the 3776 set as follows, press the NEXT PARAM key to set the 3776 to 1.10E-5.

OPERATING MODE	DIGTx
SYNTH PCM/THROUGH PCM	SYNTH PCM
I/FACES Tx/Rx CHAN	I/I
CAS/CCS	
HDB3/AMI	
30 CHAN/31 CHAN	

72. Set the HP 3783A as follows:

AUDIO INDICATION	OFF
MODE	FA
DIG SIG	
ALARM	.FREERUN/AUTO RESET

^{73.} Press the 3776A RUN key and check after approx 60 seconds that 10⁻⁵ ERROR RATE is displayed on the 3783A. Check also that the LINE, AIS, FRAME and M-F leds on the 3783A are off and that the ERROR led is on. The ERROR COUNT display on the 3783A should be incrementing at a rate of approx 3 in 10 seconds.

- 74. Press the 3776A NEXT PARAM key and check that 5. 10E-5 is displayed on the RESULTS display.
- 75. Press the 3783A RESET key and check that after approx 7 seconds the ERROR RATE exponent displayed on the 3783A is 5. Check also that the 3783A ERROR COUNT increments at an approx rate of 15 in 10 seconds.
- 76. Press the 3776A NEXT PARAM key and check that 1. 10E-4 is displayed on the 3776A RESULTS display.
- 77. Press the 3783A RESET key and check that after approx 4 seconds, the ERROR rate exponent displayed on the 3783A is 4. Check also that the 3783A ERROR COUNT increments at an approx rate of 30 in 10 seconds.
- 78. Press the 3776A NEXT PARAM key and check that 5. 10E-4 is displayed on the 3776A RESULTS display.
- 79. Press the 3783A RESET key and check that the ERROR rate exponent displayed on the 3783A is 4. Check also that 3783A ERROR COUNT increments at an approx rate of 150in 10 seconds.
- 80. Press the 3776A NEXT PARAM key and check that 1. 10E-3 is displayed on the 3776A RESULTS display.
- 81. Press the 3783A RESET key and check that the ERROR rate exponent displayed on the 3783A is 3. Check also that the 3783A ERROR COUNT increments at an approx rate of 300 in 10 seconds.

PERFORMANCE TESTS

The remainder of Section VI contains the Performance Tests.

Table 4-2 and 4-3 enables specification parameter to be checked quickly. Table 4-2 gives a list of specification parameters and indicates which Performance Checks are required to verify the parameters. Table 4-3 lists the Performance Tests and check number together with page references.

											đ	PERFORMANCE	DRM	ANC	с Щ	HEC	X	CHECK NUMBER	ĨER									
PARAMETER	-	2 3	4	5 6	6 7	8	9 10	=	12	13	14 1	15 16	6 17	18	19 2	20 2	21 22	23	24 2	25 26	6 27	28	29 3	30 31	1 32	33	34 3	35 36
GAIN T				<u> </u>		<u> </u>	┣																					
GAIN V FREQ																												
GAIN V LEVEL N	*	-	1			*	 						<u> </u>		<u>† ^</u>	*		[<u> </u>
GAIN V LEVEL T	Ö																											
NOISE + TONE											_																	
IDLE STATE WTD															<u> </u>													
IDLE STATE SEL																												
IDLE STATE OTHER																												
LEVEL WTD																												
LEVEL OTHER															_				_									
LEVEL SEL																												
QUANT DIST N	¥	*									*	*				*												
QUANT DIST T																												
1/MOD 2T																												
1/MOD 4T	<u> </u>	77									☆.	☆☆	يد			☆☆	ہر											
GAIN T							L			_																		
GAIN V FREQ																												
GAIN V LEVEL N	×	*		*	سلم ا	*													¥									
E GAIN V LEVEL T																												
NOISE + TONE					_																							
IDLE STATE WTD																												
IDLE STATE SEL																												
IDLE STATE OTHER																												
IDLE STATE PCM CODES																				.								
I EVEL WTO		┞	ļ			╞	ļ	ļ	I		t			ļ	ł			Ī	ł	ł		F	ł	ł		I		I

4-63

	SPECIFICATION											đ	ERF	"OR	MA	PERFORMANCE CHECK NUMBER	с ш	1EC	Z ¥	IWN	BER										
	PARAMETER	1 2	m	4	9 9	2 7	8	9 10	=	12	13	14	15	16 1	111	18 1	19 20	0 21	1 22	23	24	25 2	26 2	27 28	8 29	30	31	32 3	33 34	35	36
<u> </u>	LEVEL OTHER			Ē	H	_					<u> </u>		 		\vdash								┢				\uparrow	╞	+		
	LEVEL SEL							 					<u> </u>			\vdash											1	-			
tnóa	LEVEL PCM CODES											1			-	┼		<u> </u>	ļ			+			<u> </u>		1				1
L	QUANT DIST N	*			*	-	<u> </u>	<u> </u>				1	*	+	1		+				*	+		+	-		1	+	+	-	
	QUANT DIST T		_					 					†			+			<u> </u>			┼──		 	-	1	1	+			
<u>i</u>	I/MOD 2T											1		+	+				<u> </u>			+					1	+			
L	I/MOD 4T	牧牧	N-		なな			<u> </u>			L	1	4	┼─-		-	-	*	<u> </u>		₩	+			-	1	+			<u> </u>	
	GAIN T														\vdash	-		<u> </u>			1		\vdash	-	<u> </u>		1	┢			
L	GAIN DIG MW							<u> </u>								\vdash					1			-		1			-		
	GAIN V FREQ													 	 	<u> </u>		<u> </u>			1	<u> </u>				1	<u>†</u>		-	ļ	
	GAIN V LEVEL N	**	L-		××	2				*			<u> </u>	-			*	 	★	*	1	†					+	\vdash	-		
	GAIN V LEVEL T												<u> </u>		-			-			ĺ	<u> </u>			 						
	GAIN V LEVEL SYNC						ļ	ļ				1			\vdash	\vdash					1	+	<u> </u>		ļ						
	NOISE + TONE													<u> </u>	-			<u> </u>			1			<u> </u>	ļ				<u> </u>	<u> </u>	
	IDLE STATE WTD				8			-										<u> </u>			<u> </u>						<u> </u>			<u> </u>	
NA -	IDLE STATE SEL						-				<u> </u>	1						<u> </u>							_		†			<u> </u>	
	IDLE STATE OTHER		_					-			<u> </u>			+	<u> </u>			<u> </u> _			†	\vdash					\square	+	–-	<u> </u>	
	LEVEL WTD															-		-						<u> </u>			†				
	LEVEL SEL																	-			1		┼		 			+			
	LEVEL OTHER		_			므							-		<u> </u>	-								<u> </u>			1	+	-		
	QUANT DIST N	*		Ĺ	*							★				-	*	 	★	*							1	1			
	QUANT DIST T									[<u> </u>		┣		_			1				<u> </u>		<u> </u>	1			I
	I/MOD 2T												-					<u> </u> _				$\left \right $		-	ļ						
	I/MOD 4T	샆な			삹☆	2						☆		*			*	b -	☆	*		<u> </u>		 					-		
					<u> </u>																	<u> </u>	┝	\vdash			<u> </u>				

1	SPECIFICATION											đ	RF	ORI	MAN	VCE	CHI	ECK	N	PERFORMANCE CHECK NUMBER									
	. <u> </u>	1 2	3	4 5	9	~	68	10	:	12	13	14 15	151	16 1	17 18	3 19	20	21	22	23 24 2	25 26	27 2	28 2	29 30	0 31	32	33	34 35	5 36
<u> </u>	GAIN T																												
<u> </u>	GAIN DIG MW		<u> </u>					 																					
L	GAIN DIG Tx-Rx																												
	GAIN V FREQ																												
1	GAIN V LEVEL N	*		*	×														*	* ×									
<u> </u>	GAIN V LEVEL T					_																							
	GAIN V LEVEL SYNC																												
<u> </u> זר	NOISE + TONE							ļ																			_		
	IDLE STATE WTD	R			믐			L																					
	IDLE STATE SEL							<u> </u>					1		L														
	IDLE STATE OTHER																												
	IDLE STATE PCM CODES	B		⊢⊔																									
I				╎╝																									
I																													
L	LEVEL OTHER																												
L	LEVEL PCM CODES					<u> </u>		 						<u> </u>															
l	QUANT DIST N	*		*	*							-	-			-			*	××									
<u> </u>	QUANT DIST T			⊢ᆜ		_																							
I	I/MOD 2T			닏																									
L	1/MOD 4T	なな		4	☆☆														*	☆☆									
	GAIN T						σ																						
	GAIN V FREQ																												
	GAIN V LEVEL N	**					*																				-		
AN/	GAIN V LEVEL T																												
<u>L.</u>			Ľ	╞	╞	F	-	Ļ	L	Ĺ		ľ		┝			_			-	_				-	Ļ			_

						ł													2					.									
	SPECIFICATION DADAMETED		- H-	- H	- H		- H-	- H			_		-	╏┝					5	<u>ן</u> נ	Ž	5		• [ſ	Ē	F	ŀ	ŀ	·	-	Ī	-
ļ	TANAMETER	-	2	с М	4	2	<u>-</u>	8	6	2	11	12 1	13 1	14	15 1	16 1	17 18	8 19	3 20	21	22	23	24	25	26	27	28	29 3	30 3	31 32	2 33	34	35 36
	IDLE STATE																	L	ļ										┣	-			╉──
(p,1	LEVEL					<u> </u>							<u> </u>			 	<u> </u>		<u> </u>									$\left \right $	$\left \right $	-		1	
uoo	QUANT DIST N	★	×			<u> </u>	<u> </u>	×			1	1	1	<u> </u>	<u>†</u>	-		 		<u> </u>	ļ							+	+	+	_	+	+
) × I	QUANT DIST T				-	\square	┨──				1			╞═╴	\Box	+		÷									1	+	+				
NA	I/MOD 2T											t	t –	┢═			<u> </u>	<u> </u>	<u> </u>								1			+			+
	I/MOD 4T	*	☆☆		t	\vdash	<u> </u>	*		1	1	1	1		☆	-	╂	┼	<u> </u>	☆								-	-				
	GAIN T				<u>⊢</u>		<u> </u>							t			<u> </u>	┣	_								1	╞	+				+
	GAIN DIG MW				<u> </u>							<u> </u>	<u>+</u>		-												1	<u> </u>	 		_	1	
L	GAIN DIG Tx-Rx					HH							<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	ļ								1	-	+	+		<u> </u>	
	GAIN V FREQ						_													ļ							†			<u> </u>			
X	GAIN V LEVEL N	*	*		<u> </u>	* *	بد													ļ	*	*					1		+				
<u>ו – –</u> אר ו	GAIN V LEVEL T								<u> </u>								ļ	<u> </u>									1		┝──				+
4TI6	NOISE + TONE						-																					+	\vdash		<u> </u>		
	IDLE STATE																 	[<u> </u>							<u> </u>		1	 				+
	LEVEL																										1		+		ļ		
	QUANT DIST N	≭	*			*	-				<u> </u>	 	<u> </u>				 	<u> </u>	 		*	*				Ī	1	+				<u> </u>	
	QUANT DIST T					님							 					<u> </u>	<u> </u>							1	1	+					
	1/MOD 2T				<u> </u>										<u> </u>												1				[1	
	I/MOD 4T	쏬	X		r	☆☆	-						 			[┣—		<u> </u>		\$	*					1	-	╀──	<u> </u>		<u> </u>	
1	GAIN T															<u> </u>											†	+				1-	-
<u></u>	GAIN DIG MW																										<u> </u>	+	\vdash	-			-
 חפ	GAIN V FREQ																			. 					 	<u> </u>		-					
	GAIN V LEVEL N	×	*									¥							*						 		<u> </u>			<u> </u>			
₩ ₩	GAIN V LEVEL T																	L															
	GAIN V LEVEL SYNC						Ć												C										-	╞			

SPECIFICATION											PEI	RFO	RM	ANC	с щ	HEC	X	ΜŪ	PERFORMANCE CHECK NUMBER	•									
PARAMETER	1 2	3 4	4 5	9	7 8	6	2	=	2	13 1/	14 15	5 16	11	18 19	19 2	20 2	21 22	2 23	24 25		26 2	27 2	28 2	29 30	31	32	33 3	34 35	36
NOISE + TONE		 	├	Ē																									
IDLE STATE WTD															_														
IDLE STATE SEL								<u> </u>		<u> </u>																			
IDLE STATE OTHER								<u> </u>																					
LEVEL WTD			 																							_			
LEVEL SEL																													
LEVEL OTHER			<u> </u>												-														
QUANT DIST N	*									*	*					¥													
QUANT DIST T		-													-														
I/MOD 2T																													
I/MOD 4T	자자									~	¥	☆	<u> </u>			*													
GAIN T																													
GAIN DIG MW																													
GAIN DIG Tx-Rx																													
GAIN V FREQ																													
GAIN V LEVEL N	××		★	×															¥										
GAIN V LEVEL T																													
GAIN V LEVEL SYNC		<u> </u>																											
NOISE + TONE																													
IDLE STATE WTD									 																				
IDLE STATE SEL																													
IDLE STATE OTHER																													
IDLE STATE PCM CODES																													
LEVEL WTD																													
] [ļ	\vdash	F				-	┝	-	-			-	-							-			-		

	SPECIFICATION														R	RF	PERFORMANCE CHECK NUMBER	MA	S	С Щ	H	S	ž	IW	BEf	~			•				·				
	PARAMETER	-	2	3	4	S	9	7 8	6	2	:	12	13		14 1	151	16 1	11	181	19 2	20	21	22	23	24	25	26	27	28	3 29	30	31	1 32	2 33	34	35	36
	LEVEL OTHER								<u> </u>		 	 		╂──	<u> </u>	┨───	╟──	╟		-	t	1	1						 	┨	_		-		-		1
(p,1(LEVEL PCM CODES	Ō								L	 	Ļ			<u> </u>				-	<u> </u>									ļ	 			<u> </u>	1		<u> </u>	
	QUANT DIST N	*	*		Ľ,	×	*	<u> </u>	<u> </u>	ļ	 		<u> </u>			┣──	<u> </u>	1	┝	+	+	1	1		*						-		-	+	+	 	<u> </u>
I	QUANT DIST T			1	1	怙		<u> </u>	ļ		<u> </u>	ļ	_							\uparrow	1	1	1						_							+	1
	I/MOD 2T				<u> </u>							<u> </u>	<u> </u>	┣───			-			<u> </u>		1		1					 	_			<u> </u>	 	ļ	ļ	<u> </u>
	I/MOD 4T	なな	*			, ₹	☆		<u> </u>		<u> </u>		 	┣					\vdash	†		1	1		☆			ļ	 							 	
Ē	FRAME WORD	*	×	[<u> </u>				 		┣─	╂	╆━──	┣	╂──	╂──	 		1	1						 	_		╂—	<u> </u>		_	_	1
STI	NON-FM WORD	*	★					<u> </u>				<u> </u>	 	<u> </u>		┼──	+	┼		†		1							ļ			-	<u> </u>		-	1	ļ
	TS 16 FM 0	*	¥			<u> </u>		<u> </u>		L	Ļ	 					<u> </u>					İ							 	<u> </u>	 		<u> </u>	–			<u> </u>
L	TS 16 SIG BITS	*	×				<u> </u>				 	ļ	<u> </u>	<u> </u>	<u> </u>			<u> </u>				1	1					ļ	 		_		<u> </u>	 	 	<u> </u>	<u> </u>
	FT/FE BITS	なな	☆			<u> </u> _		<u> </u>				<u> </u>	<u> </u>	<u> </u>				+			<u>† – –</u>	<u>†</u>	1					ļ	 	_	 			 	<u> </u>	.l	<u> </u>
	FS BITS	なな	☆											ļ		<u> </u>		<u> </u>			<u> </u>	1						ļ		₋				 			<u> </u>
	SIG BITS	なな	*										Ļ				\vdash	-	-			1					ļ			<u> </u>	 	┣		<u> </u>	 	ļ	ļ
_	LOOP TIMING	☆	☆																		<u> </u>						L		<u> </u>	<u> </u>	<u> </u>	ļ				 	<u> </u>
· —	HP-IB FUNCTIONS											ļ				—										Ĺ		ļ	 				<u> </u>	_	 _	 	
	SEQ TEST												<u> </u>					<u> </u>	<u> </u>		<u> </u>								ļ	<u> </u>				<u> </u>	 	 	<u> </u>
	DT MF										_	<u> </u>	ļ		┼──	╞──	\vdash	┼──	+	+	<u> </u>	1						_			<u> </u>	 	<u> </u>	_		<u> </u>	<u> </u>
snc																						 	<u> </u>					L	ļ		<u> </u>	 	<u> </u>	<u> </u>	<u> </u>	 	
																													 					ļ			Ļ
																												<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>	
																												L					<u> </u>	<u> </u>			
																														 	ļ		<u> </u>	<u> </u>		L	_
																													Ļ								L
															ļ	<u> </u>				<u> </u>	<u> </u>									ļ	<u> </u>	ļ	<u> </u>			ļ	L
			·										<u> </u>		<u> </u>									Γ						 	\vdash	<u> </u>	<u> </u>	<u> </u>	 		L

MODELS 3776A & B EQUIPPED WITH OPTION 001	21 22 23 24 25 26 27					1	- 1				 		 		_	 	 	
ADDITIONA MODELS 37	22 23 24					_			•	•				 				
A D D D D D D D D D D D D D D D D D D D	~ ~	┠──┼												 		 		
U	СНЕСК 20 21													 				
	17 18 19										 			 			 	
	PERFOR																	
	12 13 14										 		 	 		 		
	11 01 6																	
	6 7 8																	
	3 4 5															 		
	1 2	•	•	•	•	•	•	•	•	•	 	-						

4-69

.

Table 4-3 Performance Tests

No	Title	Para	Page
-1	Power-On Sequence	4-24	4-3
-2	Self Test	4-26	4-6
3	Sequence Test	4-36	4-44
4	Dual-Tone Multi-Frequency (DTMF) Signalling Test	4-37	4-45
5	3776B PCM Tests	4-38	4-48
6	3776A PCM Tests	4-39	4-55
7	Analog Receiver Levels and Linearity	4-40	4-71
8	Analog Transmitter Levels and Linearity	4-41	4-75
9	Analog Transmitter Flatness	4-42	4-80
10	Analog Receiver Flatness	4-43	4-82
11	Analog Receiver Digital Filter	4-44	4-83
12	Analog Receiver Noise Linearity (3776A ONLY)	4-45	4-86
13	Analog to Analog (A-A) Gain	4-46	4-88
14	Analog Receiver Noise Floor	4-47	4-89
15	Analog Transmitter Spurious	4-48	4-89
16	Analog Receiver Inter-modulation Floor	4-49	4-90
17 18	} Not applicable to this instrument		
19	Analog Receiver Out-of-Band Rejection	4-52	4-91
20	Analog Receiver Anti-Aliasing Filter Flatness	4-53	4-92
21	Analog Transmitter Frequency Accuracy	4-54	4-93
22	Digital Transmitter External Clock Input	4-55	4-95
23	Digital Transmitter PCM Waveforms	4-56	4-96
24	Digital Receiver Sensitivity	4-57	4-97
25	Phase Jitter (OPTION 001)	4-58	4-98
26	Phase Hits (OPTION 001)	4-59	4-109
27	Gain Hits (3776B OPTION 001)/Amplitude Hits (3776A)	4-60	4-119
28	Dropouts (3776B OPT 001)/Interruptions (3776A OPT 001)	4-61	4-123
29	Impulse Noise (3776B OPTION 001 ONLY)	4-62	4-126
30	Impulse Noise (3776A OPTION 001 ONLY)	4-63	4-129
31	Envelope Delay Distortion (3776B OPTION 001) and		
	Group Delay (3776A OPTION 001)	4-64	4-132

4-70

4-40 ANALOG RECEIVER LEVELS AND LINEARITY

PARAMETERS TESTED

- (a) Linearity of the A7 Analog to Digital Converter.
- (b) Imperfections in Self-Cal of the Receiver Gain.
- (c) Imperfections in Self-Cal of the Receiver Autoranging.
- (d) Gain of the A7 Analog to Digital Converter plus the Analog Receiver Input.
- (e) Low-Level check.

SPECIFICATIONS

With reference to the input level; Analog Receiver displayed Level and Linearity accuracy (Internal Source):

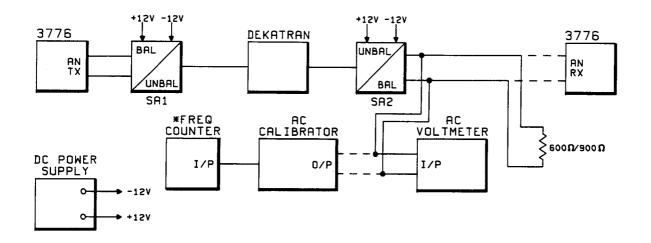
Receiver Input Level	Level Limits	Linearity Limits (With reference to -30dBm)
- 10 dBm	+/-0.09dB	0.06dB
0	+/-0.09dB	0.06dB
- 10 dBm	+/-0.09dB	0.06dB
- 20 dBm	+/-0.09dB	0.06dB
- 30 dBm	+/-0.09dB	-
- 40 dBm	+/-0.11dB	0.06dB
- 50 dBm	+/-0.11dB	0.08dB
- 60 dBm	+/-0.11dB	0.10dB
- 70 dBm	+/-0.13dB	0.12dB
- 76 dBm	+/-0.13dB	0.18dB

Table 1 Analog Rx Level and Linearity Limits

DESCRIPTION

Analog Receiver Level and Linearity are tested by measuring the Receiver input voltage, converting this to dBm0 and comparing the computed dBm0 value with the displayed value. Displayed results at different input range settings are then compared to the initial displayed value. The Dekatran Attenuator is used to maintain the 3776 Tx output at +10dBm and -30dBm. This eliminates Transmitter linearity errors.

EQUIPMENT


AC Voltmeter	
AC Calibrator	
Attenuator	DEKATRAN

BAL/UNBAL Converter	SA1 (see Appendix D)
UNBAL/BAL Converter	SA2 (see Appendix D)
Dual Power Supply	
+-0.01% 600 ohm Resistor	
+-0.01% 900 ohm Resistor	
*Frequency Counter	HP 5328A

*Required only if AC Calibrator does not have a Frequency display.

PROCEDURE

1. Connect the equipment as shown in Figure 4-17 with the 600 ohm resistor connected.

Figure 4-17 Analog Receiver Levels and Linearity Test Set-up

- 2. Set the 3776A/B to A-A LEVEL-SEL and 600 ohms BAL.
- 3. Set SA1 and SA2 to 600 ohm.
- 4. Set the Dekatran to 0.0100000 (-40dB).
- 5. Ensure that the Tx and Rx channel interface is set to 0dBr, and set the output level to +10dBm0.
- 6. Set the AC Calibrator to 24.4948mV/0.81kHz (3776A) or 24.4948mV/1.02kHz (3776B) and connect it direct to the HP 3455A AC Voltmeter only.
- 7. Select AC volts range on the AC Voltmeter and store the reference AC Calibrator voltage as Y.
- 8. Disconnect the AC Calibrator from the AC Voltmeter and connect the AC Voltmeter as shown in the test circuit, with SA2 driving the 600 ohm load.
- 9. Set the 3776 to RUN/REPEAT.
- 10. Press MATH % Error (X-Y/Y x 100) on the AC voltmeter.

11. Convert the % Error displayed on the AC Voltmeter to a power level as follows:

 $AdBm0 = 20 \log (Vin/0.7746)$

where; Vin = 24.4948mV (1+%Error/100)

Record the computed value AdBm0.

The following HP 85 BASIC program can be used to convert % Error to AdBmO (-30dBm/600ohms)

10 DISP "ENTER %ERROR & PRESS ENDLINE" 20 INPUT B 30 V=.024495*(1+B/100) 40 A=20*LGT(V/,7746) 50 PRINT "COMPUTED LEVEL=";A 70 END 30027

12. Disconnect the 600 ohm load and connect the output from SA2 to the 3776 Receiver.

- 13. Record the reading on the 3776 display, call this BdBm0.
- 14. Check that BdBm0 is within AdBm0 +/-0.09dB. Record the error (ie AdBm0 BdBm0).
- 15. Set the Dekatran as shown in Table 2. At each setting calculate the Linearity and Level Errors and check that they are within the limits given in Table 2.

Notes:

1. Linearity Error = 3776 Displayed value +/-(BdBmO-D) where BdBmO = value recorded in Step 13, and D = difference between Dekatran setting in Step 4 and settings given in Table 2.

2. Level Error or Total Error = Error noted in Step 14 +- Linearity Error.

3. Take several readings at each setting and compute the average Receiver Level.

Table 2 Analog Rx Linearity and Level Limits (+10dBm to -30dBm)

Dekatran Setting (dB Value)	Rx I/P LEVEL	Linearity Error Limits (See Step 15 Note 1)	Level Error Limits (See Step 15 Note 2)	D (See Step 15 Note 1)
0.0316228 (-30) 0.1000000 (-20) 0.3162277 (-10) 1.0000000 (0)	-20 dBm -10 dBm 0 dBm +10 dBm	0.06dB 0.06dB 0.06dB 0.06dB 0.06dB	+/-0.09dB +/-0.09dB +/-0.09dB +/-0.09dB	+10dB +20dB +30dB +40dB

16. Set the 3776A/B Tx level to -30dBm.

17. Set the Dekatran to 1.0000000 (0dB).

- 18. Set the AC Calibrator to 24.4948mV (-30dBm/600ohm) and connect it to the HP 3455A AC Voltmeter.
- 19. Store the AC Calibrator voltage as Y in the AC Voltmeter.
- 20. Disconnect the AC Calibrator and connect the AC Voltmeter as shown in the test circuit, with SA2 output driving the 600 ohm load.
- 21. Press % Error $(X-Y/Y \times 100)$ on the AC Voltmeter.
- 22. Convert the % Error displayed on the AC Voltmeter to a power level as follows:

 $CdBm0 = 20 \log (Vin/0.7746)$

where; Vin = 24.4948mV (1+ %Error/100)

Record the computed value CdBm0.

Note: See Step 11 for program to convert % Error to CdBm0.

- 23. Disconnect the 600 ohm load and connect the output from SA2 to the 3776 Receiver.
- 24. Record the reading in the 3776 display, call this XdBm0.
- 25. Check that XdBm0 is within CdBm0 +-0.09dB. Record the error (ie, CdBm0 XdBm0).
- 26. Set the Dekatran as shown in Table 3. At each setting calculate the Linearity and Level Errors and check that they are within the limits given in Table 3.

Notes:

1. Linearity Error = 3776 Displayed value +/-(XdBmO-D); where XdBmO = value recorded in Step 24 and D = Difference between the Dekatran Setting in Step 17 and settings given in Table 3.

- 2. Level Error or Total Error = Error noted in Step 25 +- Linearity Error.
- 3. Take several readings at each setting and compute the average Receiver level.

Dekatran Setting Rx I/P Linearity Error Level Error D (dB Value) Level Limits (See Step Limits (See Step (See Step 26 Note 1) 26 Note 1) 26 Note 1) 0.3162277 (-10) -40dBm 0.06 +/-0.11 -10 0.1000000 (-20) -50dBm 0.08 +/-0.11-20 0.0316227 (-30) -60dBm 0.10 +/-0.11 -30 0.0100000 (-40) -70dBm 0.12 +/-0.13 -40 0.0050118 (-46) -76dBm 0.18 +/-0.13-46

Table 3 Analog Rx Linearity and Level Limits (-40dBm to -76dBm)

27. Repeat Steps 1 to 15 with the Analog Rx set to 600 ohm - BRIDGED. In Step 12 do not disconnect the 600 ohm load when connecting to the Analog Rx.

28. Repeat Steps 1 to 15 with Analog Tx/Rx set to 900 ohm BAL. In Step 6 the AC Calibrator should be set to a level of 30.000mV (ie -30dBm/900 ohm) and the formula used to convert to a power level in Step 11 is:

```
AdBm0 = 20 \log (Vin/0.9487)
```

where; Vin = 30.000 mV (1 + % Error / 100)

The following HP 85 BASIC program can be used to convert %Error to AdBmO (-30dBm/900ohms).

```
10 DISP "ENTER %ERROR & PRESS ENDLINE
20 INPUT B
30 V=.03*(1+B/100)
40 A=20*LGT(V/.9487)
50 PRINT "COMPUTED LEVEL=";A
70 END
```

Also, remember to use the 900 ohm resistor (HP Part Number 0811- 3504). SA1 and SA2 should be set to 900 Ohm.

29. Repeat Steps 1 to 15 with the Analog Rx set to 900 ohm - BRIDGED. In Step 12 do not disconnect the 900 ohm load when connecting to the Analog Rx.

4-41 ANALOG TRANSMITTER LEVELS AND LINEARITY

PARAMETERS TESTED

(a) Linearity of the A3 D/A Converter.

- (b) Imperfections in Self-Cal. of the A3 Analog Attenuator and Analog Transmitter Gain.
- (c) Gain of the A7 A/D Converter (used in the Self-Cal of the A3 Analog Attenuator).

(d) Gain of the Analog Transmitter Output.

(e) Low-Level test.

SPECIFICATION

Analog Transmitter Output Level and Linearity Accuracy (Internal Source):

Table 1 A	nalog Tx	Level and	Linearity	Limits
-----------	----------	-----------	-----------	--------

Transmitter Output Level	Level Limits	Linearity Limits (With reference to -30dB
+10dBm	+/-0.09dB	0.05dB
0 dBm	+/-0.09dB	0.05dB
-10dBm	+/-0.09dB	0.05dB
-20dBm	+/-0.09dB	0.05dB
-30dBm	+/-0.09dB	0.05dB
-40dBm	+/-0.11dB	0.05dB
-50 dBm	+/-0.11dB	0.06dB
-60dBm	+/-0.11dB	0.07dB
-70 dBm	+/-0.13dB	0.09dB
-76dBm	+/-0.13dB	0.12dB

Table 2 summarises the technique used, assuming no loss in the Dekatran.

Check Sequence	Tx O/P	Dek. Set.	Rx Approx Disp Value
2 3 4 5 1	+10 00 -10 -20 -30	-40 -30 -20 -10 00	-30 -30 -30 -30 Ref level and absolute level error computed and recorded. This error used to compute all level errors.
6 7 8 9 10 11 12 13 14 15	-30 -40 -30 -50 -30 -60 -30 -70 -30 -76	-10 00 -20 00 -30 00 -40 00 -46 00	Linearity Ref Value for Tx-40 Linearity Ref Value for Tx-50 Linearity Ref Value for Tx-60 Linearity Ref Value for Tx-70 Linearity Ref Value for Tx-76

Table 2

DESCRIPTION

The absolute Transmitter level is measured at -30dBm using the AC Calibrator, AC Voltmeter and termination load. The 3776 AnTx is then connected via the Dekatran to the AnRx and an initial Receiver reference displayed result recorded. Using the Dekatran to maintain the AnRx at a constant level, the AnTx output is set at different range settings and the AnRx displayed results are compared with the initial reference result.

EQUIPMENT

AC Voltmeter	
AC Calibrator	FLUKE 5200A
Attenuator	DEKATRAN
0.01% 600 Ohm Resistor	HP 0811-3502
BAL/UNBAL Converter	SA1 (See Appendix D)
UNBAL/BAL Converter	SA2 (See Appendix D)
Dual Power Supply	
0.01% 900 Ohm Resistor	HP 0811-3504
*Frequency Counter	HP 5328A

*Required only if AC Calibrator does not have a Frequency display.

PROCEDURE

- 1. Ensure that the Tx and Rx Channel Interface is set to 0dBr.
- 2. Set the 3776A/B to A-A LEVEL SEL FILTER and 600ohm BAL.
- 3. Connect the equipment as shown in Figure 4-18, with the Analog Transmitter connected to the 600 Ohm load.

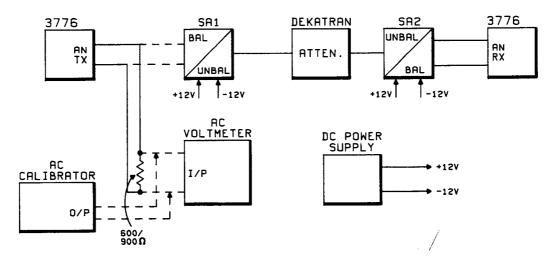


Figure 4-18 Analog Transmitter Levels and Linearity Test Set-up

- 4. Set the 3776A/B to -30dBm0.
- 5. Connect the AC Calibrator to the AC Voltmeter and select AC Volts on the AC Voltmeter.
- 6. Set the AC Calibrator to 24.4948mV/0.81kHz (3776A) or 24.4948mV/1.01kHz (3776B). If a 9000hm resistor is used, set the AC Calibrator to 30.000mV.
- 7. Store the voltage on the AC Voltmeter as Y.
- 8. Disconnect the AC Voltmeter from the AC Calibrator and connect the AC Voltmeter across the 6000hm resistor.
- 9. Press RUN/REPEAT on the 3776.
- 10. Press % ERROR $(x-y/y \times 100)$ on the AC Voltmeter.
- 11. Check that the % ERROR displayed is within +-1.04% (+-0.09dB = +-1.04% Error). Note the % Error.
- 12. Convert the % Error to dBm as follows:

 $AdBm0 = 20 \log (Vout/0.7746)$

where; Vout = 24.4950mv (1 + (% Error/100))

record the calculated actual transmitted power AdBm0.

The following HP 85 BASIC program can be used to convert % Error to AdBmO (-30dBm/600ohms).

10 DISP "ENTER %ERROR & PRESS ENDLINE" 20 INPUT B 30 V=.024495*(1+B/100) 40 A=20*LGT(V/.7746) 50 PRINT "COMPUTED LEVEL=";A 70 END

13. Record the output level error ie AdBmO - -30dBmO.

14. Set the Dekatran to 1.0000000 (0dB).

- 15. Disconnect the load resistor and AC Voltmeter and connect the 3776 Analog Transmitter output directly to SA1 (see Test Set-up).
- 16. Press RUN/REPEAT on the 3776 and record the reading on the 3776 display, call this BdBmO, (BdBmO should be approx. -30dBmO).
- 17. Set the 3776 Tx Output Level and Dekatran as shown in Table 1. At each setting calculate the ... Linearity and Level errors and check that they are within the limits given in Table 1.

Notes:

1. Linearity Error = BdBm0 - Displayed value, where BdBm0 is the value recorded in step 16.

2. Level Error or Total Error = Error noted in Step 13 +- Linearity Error.

3. Take several readings at each setting and compute the average Receiver Level.

3776 Tx Output	Dekatran	Linearity Error Limits	Level Error Limits
Level Setting	Setting (dB)	(see Step 17 Note 1)	(see Step 17 Note 2)
+10dBm0 0dBm0 -10dBm0 -20dBm0	0.0100000 (-40) 0.0316228 (-30) 0.1000000 (-20) 0.3162277 (-10)	0.05 0.05 0.05 0.05 0.05	+/-0.09dB +/-0.09dB +/-0.09dB +/-0.09dB

Table 1

18. Set the 3776A/B to -30dBmO.

19. Set the Dekatran to 0.3162277 (-10dB).

20. Press RUN/REPEAT and record the 3776A/B reading; call this reference reading CdBmO.

21. Set the Dekatran to 1.0000000 (0dB).

22. Set the 3776 Tx to -40dBmO and press RUN/REPEAT.

- 23. Record the 3776A/B reading.
- 24. Calculate the Linearity and Level errors as follows:

Linearity Error = CdBmO - value recorded in Step 23

Level Error = Error recorded in Step 13 +/- Linearity Error

- 25. Check that the Level error is within +/-0.09dB and the Linearity error is within 0.05dB.
- 26. Repeat the sequence given in Steps 18 to 25 with the Dekatran (Step 19) and 3776 Tx output (Step 22) set as given in Table 2. Check at each setting that the Level and Linearity is within the limits given in Table 2.

Notes:

1. See Table given in the Description summarising the technique used

2. Take several readings at each setting and compute the average Receiver Level.

Table	2
-------	---

Dekatran Setting (Step 19)	3776 Tx Output Level Setting (Step 22)	Linearity Limits (See Step 24)	Level Limits (See Step 24)
0.1000000 (-20)	-50	0.0648	
0.0316228 (-30)	-50	0.06dB	+/-0.11dB
• •		0.07dB	+/-0.11dB
0.0100000 (-40)	-70	0.09dB	+/-0.13dB
0.0050119 (-46)	-76	0.12dB	+/-0.13dB

27. Set the 3776 to 9000hm BAL and using the 9000hm load impedance repeat steps 2 to 21.

Notes:

- 1. SA1 and SA2 must be set to 900ohm.
- 2. Step 6, AC Calibrator must be set to 30.00mV (ie 30dBm/900ohm).
- 3. Step 12, AdBmO = $20 \log (Vout/0.94868)$.

The following HP 85 BASIC program can be used to convert % Error to AdBmO (-30dBm/900ohm) in Step 12.

10 DISP "ENTER %ERROR & PRESS ENDLINE" 20 INPUT B 30 V=.03*(1+B/100) 40 A=20*LGT(V/.9487) 50 PRINT "COMPUTED LEVEL=";A 70 END

Model 3776A/B

4-42 ANALOG TRANSMITTER FLATNESS

SPECIFICATION

Analog Transmitter Flatness: +/-0.04dB at frequencies of 70Hz, 210Hz, 1.01kHz (3776B), 0.81kHz (3776A) 3.59kHz and 4.59kHz.

DESCRIPTION

The 3776A/B Transmitter output is terminated by a precision load and the output level is compared with the AC Calibrator output at selected frequencies.

EQUIPMENT

*Frequency Counter	
AC Calibrator	Fluke 5200A
AC Voltmeter	
0.01% 600ohm Resistor	

*Required only if AC Calibrator does not have a frequency display.

PROCEDURE

1. Connect the equipment as shown in Figure 4-19.

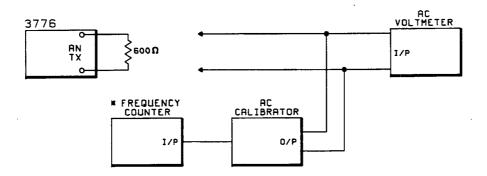


Figure 4-19 Analog Transmitter Flatness Test Set-up

- 2. Set the 3776 to Analog Transmitter LEVEL SELECTIVE, 600ohm BAL.
- 3. Set the 3776A/B level to +10dBmO and frequency to 1.01kHz (3776B), 0.81kHz (3776A).
- 4. Set the AC Calibrator to 1.01kHz if the instrument is a 3776B or 0.81kHz if the instrument is a 3776A.
- 5. Set the AC Calibrator level to 2.44948V.
- 6. Connect the AC Calibrator to the AC Voltmeter and store the reference voltage as Y.
- 7. Disconnect the AC Calibrator from the AC Voltmeter and connect the AC Voltmeter across the 6000hm resistor. Press RUN/REPEAT on the 3776.
- 8. Press % ERROR on the AC Voltmeter and record the % ERROR displayed.
- Repeat steps 3 to 8 for 70Hz, 210Hz, 3.59kHz and 4.59kHz set on both the 3776 and the AC Calibrator and check that the % Errors obtained are within +/-0.461% (0.04dB) of the initial % Error at 1.01kHz (3776B) or 0.81kHz (3776A).

4-43 ANALOG RECEIVER FLATNESS

SPECIFICATION

Analog Receiver Flatness: +/-0.03dB

DESCRIPTION

The AC Calibrator output is fed directly to the 3776 Analog Receiver Input. The AC Calibrator voltage is set at 2.44948V (i.e. +10dBm/600ohm) and its frequency set at 210Hz, 1.01kHz (3776B) or 0.81kHz (3776A) and 3.89kHz. At each frequency step, the 3776 displayed level is recorded and the analog receiver flatness computed.

EQUIPMENT

AC Calibrator	Fluke 5200A
*Frequency Counter	HP 5328A
Unbalanced to Balanced Converter	SA2 (See Appendix D)
Dual Power Supply	HP 6205B

*Required only if AC Calibrator does not have a Frequency display.

PROCEDURE

1. Connect the equipment as shown in Figure 4-20.

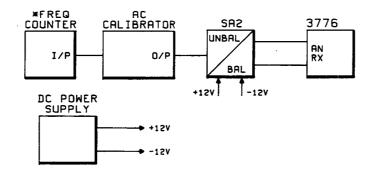


Figure 4-20 Analog Receiver Flatness Test Set-up

- 2. Set the AC Calibrator level to 2.44948V (+10dBm/600ohm) and frequency to 0.81kHz if 3776A or 1.01kHz 3776B.
- 3. Set the 3776 to Analog Rx, LEVEL SEL FILTER, 600ohm. Select 1.01kHz MEAS Frequency (3776B). 810Hz MEAS Frequency (3776A). Press RUN/REPEAT on the 3776.

- 4. Record the 3776 displayed value.
- 5. Set the AC Calibrator frequency, displayed on the Frequency Counter, to 210Hz and the 3776 MEAS Frequency to 210Hz.
- 6. Press RUN and record the 3776 displayed value.
- 7. Set the AC Calibrator frequency and 3776 MEAS frequency to 3.89kHz, press RUN and record the displayed value.
- 8. Check that the values recorded in steps 6 and 7 are within +/-0.030dB of value recorded in step 4.

4-44 ANALOG RECEIVER DIGITAL FILTER

DESCRIPTION

If the 3776 passes Self-Test (including a self-test of the AnRx filter), it can be assumed that all Digital and Analog Filters function to specification. If further verification is required, the following procedure can be performed. The procedure checks only the mask for the 3776A Psophometric Filter or the 3776B C-Message Filter. Note: the Max and Min mask limits quoted in the spec below have a tolerance of +/-0.073dB.

SPECIFICATION

Psophometric Filter Mask:

	Mask (dB)	
FREQ (Hz)	Max	Min
250 800 3000 4500	-13.0 +0.1 -4.6 -22.0	-17.0 -0.1 -6.6 -28.0

Psophometric Filter Noise Floor: <-100dBm

C-Message Filter Mask:

	Mask (dB)	
FREQ (Hz)	Max	Min
300 900 3000 4500	-15.5 +0.4 -1.5 -18.5	-17.5 -1.6 -3.5 -24.5

C-Message Filter Noise Floor: <-100dBm

EQUIPMENT

AC Voltmeter	3455A
AC CalibratorFLUKE	5200A

PROCEDURE

- 1. Connect the 3776 Analog Transmitter to the Analog Receiver.
- 2. Ensure that the Tx and Rx channel interface is set to 0dBr, (and set the output level to +10dBmO).
- 3. Set the 3776 to 600ohm UNBAL and A-A LEVEL/SEL FILTER Measurement. Set the REF and MEAS Frequencies to 1.01kHz (3776B) or 810Hz (3776A).
- 4. Set the AC Calibrator to 1.01kHz (3776B) or 810Hz (3776A) and 2.4495V and connect it to the 3455A AC Voltmeter.
- 5. Select AC volts range in the AC Voltmeter and store the AC Calibrator voltage as Y.
- 6. Disconnect the AC Calibrator from the AC Voltmeter and connect the AC Voltmeter across the 3776 Receiver Input.
- 7. Press % ERROR $(x-y/y \times 100)$ on the AC Voltmeter.
- 8. Convert the % ERROR displayed on the AC Voltmeter to a power level as follows:

$$xdBm0 = 20log (V_{in} / 0.7746)$$

where $V_{in} = 2.4495(1 + %ERROR/100)$

NOTE: If the instrument is a 3776B and the C-message filter has been selected, the dBm0 value calculated can be converted to dBrnC0 by adding 90. For Example +10dBm0 = 100dBrnC0.

The following HP 85 BASIC program can be used to convert % Error to XdBmO (+10dBm/600ohms).

10 DISP "ENTER %ERROR & PRESS ENDLINE 20 INPUT B 30 V=2.4495*(1+B/100) 40 A=20*LGT(V/.7746) 50 PRINT "COMPUTED LEVEL=";A 70 END

9. If a 3776A is used, select the Psophometric Filter, set the 3776 output frequency as shown in Table 1 and at each step check that the 3776A display is within the limits given in Table 1. Ensure that the 3776 is set to +10 dBm0.

If a 3776B is used, select the C-Message Filter, set the 3776 output frequency as shown in Table 2 and at each step, check that the 3776B display is within the limits given in Table 2.

	Psophometric	Mask Limits
3776 0/P FREQ (Hz)	Max	Min
250 800 3000 4500	(xdBm0 - 12.927) (xdBm0 - 0.173) (xdBm0 - 4.527) (xdBm0 - 21.927)	(xdBm0 - 17.073) (xdBm0 - 0.173) (xdBm0 - 6.673) (xdBm0 - 28.073)

Table 1 Psophometric Filter

Table 2 C-Message Filter

	C-Message Mask Limits				
3776 0/P FREQ (Hz)	Max	Min			
300 900 3000 4500	(xdBrnC0 - 15.427) (xdBrnC0 + 0.473) (xdBrnC0 - 1.427) (xdBrnC0 - 18.427)	(xdBrnC0 - 17.573) (xdBrnC0 - 1.673) (xdBrnC0 - 3.573) (xdBrnC0 - 24.573)			

4-45 ANALOG RECEIVER NOISE LINEARITY (3776A ONLY)

SPECIFICATION

Analog Receiver Noise Linearity: +-0.08dB for input noise level range between +2dBm to -46dBm. +-0.12dB for input noise level range between -46dBm and -66dBm. +-0.30dB for input noise level range between -66dBm and -82dBm.

DESCRIPTION

Similar to Test Procedure para 4-40 (Analog Receiver Linearity), but uses a 350 to 550Hz noise test signal and the Quantizing Distortion Reference Filter.

EQUIPMENT

Decade Transformer	Dekatran
BAL/UNBAL Converter	SA1 (See Appendix D)
UNBAL/BAL Converter	SA2 (See Appendix D)
Dual Power Supply	HP 6205B

PROCEDURE

1. Connect the equipment as shown:

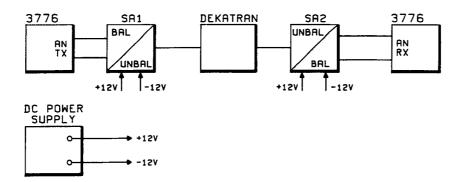


Figure 4-21 3776A Analog Receiver Noise Linearity Test Set-up

- 2. Set the 3776 to GAIN V LEVEL/NOISE and 600 ohm BAL.
- 3. Set SA1 and SA2 to 600 ohm.
- 4. Set the Dekatran to 1.0000000 (OdB).
- 5. Ensure that the Tx and Rx Channel Interface is set to 0dBr, and set the output level of the REF and all 20 MEAS Points to +2dBmO.

- 6. Set the Dekatran as shown in Table 1. Use the result displayed in the 3776A with the Dekatran set to 1.0000000 as the initial reference value x. Check at each setting that the 3776A display is within the limits given in Table 1.
 - NOTE: Because GAIN V LEVEL/NOISE multipoint measurement is made with respect to an initial reference level, the following procedure should be used for checking the Receiver Linearity.
 - a. With the Dekatran set to 1.0000000 press the 3776 S/STEP button and wait until the initial reference value is displayed (should be approx 0dB).
 - b. Change the Dekatran to the next setting given in the Table and press S/STEP.
 - c. Check that the displayed results are within the limits given.
 - d. Continue to change the Dekatran setting, pressing S/STEP and then checking that the displayed results are within the limits given in the Table.

ran Set	tings		3776A/B	Disp	lay Limits
000	(0dB)	x =	(initial	ref	erence value)
277 (-	10dB)		(x-10)	+-	0.08dB
000 (-	20dB)		(x-20)	+-	0.08dB
228 (-	30dB)		(x-30)	+-	0.08dB
000 (-	40dB)		(x-40)	+-	0.08dB
810 (-	46dB)		(x-48)	+-	0.06dB

Table :	1
---------	---

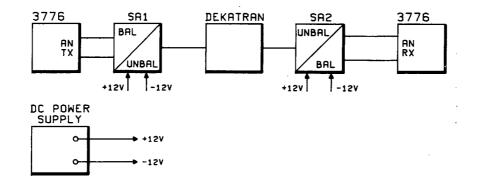
- 7. Press STOP and set the 3776A Tx level of the REF and all 20 MEAS Points to -40dBmO.
- 8. Set the Dekatran as shown in Table 2. Use the result displayed on the 3776A with the Dekatran set to 1.0000000 (0dB) as initial reference value Y. Check at each setting that the 3776A display is within the limits given. Use the procedure listed in step 6 to set the 3776.

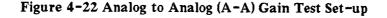
Dekatran	Settings	3776A/B Display Limits
1.0000000	(0dB)	y = (initial reference value)
0.3162277	(-10dB)	(y-10) +- 0.12dB
0.1000000	(-20dB)	(y-20) +- 0.12dB
0.0316228	(-30dB)	(y-30) +- 0.30dB
0.0079432	(-42dB)	(y-42) +- 0.30dB

Table 2

4-46 ANALOG TO ANALOG (A-A) GAIN

SPECIFICATION


Accuracy for Tx, Rx Levels >-30dBm and any frequency in the Range 200Hz to 3.9kHz: +/-0.05dB


EQUIPMENT

AttenuatorESI	DEKATRAN DT72A
BAL/UNBAL Converter	SA1 (See Appendix D)
UNBAL/BAL Converter	
Dual Power Supply	HP 6205B

PROCEDURE

1. Connect the equipment as shown in Figure 4-22.

- 2. Set the Dekatran to 1.0000000 (0dB) and SA1 and SA2 to 6000hm.
- 3. Set the 3776 to GAIN/TONE and 6000hm Balanced.
- 4. Set the output level to +10dBmO and frequency to 210Hz.
- 5. Ensure that Tx and Rx channel interface is set to 0dBr.
- 6. Press RUN and check for a displayed result of 0dB + -0.05dB.
- 7. Repeat measurement at 0.81kHz (3776A) or 1.01kHz (3776B) and 3.89kHz. Results should be 0dB +/-0.05dB.
- 8. Set the Dekatran to 0.0100000 (-40dB). Repeat steps 4 to 7. Results should be -40dB + / -0.05dB.

9. Change the 3776 Transmitter level to -30dBmO and set Frequency to 210Hz.

10. Set the Dekatran to 1.0000000 (0dB). Repeat steps 5 to 7; displayed result should be 0dB +/-0.05dB.

4-47 ANALOG RECEIVER NOISE FLOOR

SPECIFICATION

	Psophometric Filt	er (3776A):	<-100 dBm
	C-Message Filter	(3776B):	<-10dBrnCO
	Selective Filter	(3776A/B):	<-110dBm0
Filter A	3kHz Flat Filter	(3776A/B):	<-95dBm0
Filter B	Flat Filter	(3776A/B):	<-90dBm0
Filter C	High Pass	(3776A/B):	<-90dBm0

EQUIPMENT

PROCEDURE

- 1. Connect the 600ohm Resistor across the 3776 Analog Receiver input.
- 2. Select A-A IDLE STATE/PSOPH or C-MESS.
- 3. Press RUN and check that the displayed result is less that -100dBm or -10dBrnCO.

NOTE: When making a measurement, press RUN/REPEAT and take the average of several results.

- 4. Select IDLE STATE/OTHER FILTERS FIL A(3kHz).
- 5. Press RUN and check that the displayed result is less than -95dBmO.
- 6. Select IDLE STATE/OTHER FILTERS FIL B (Flat Filter) by pressing SET FREQ followed by INCR.
- 7. Press RUN and check that the displayed result is less than -90dBm.
- 8. Select IDLE STATE/OTHER FILTERS FILC (High Pass) by pressing INCR key.
- 9. Press RUN and check that the displayed result is less than -90dBmO.
- 10. Select IDLE STATE/SEL, (810Hz, 3776A or 1010Hz, 3776B).
- 11. Press RUN and check that the displayed result is less than -110dBmO.

4-48 ANALOG TRANSMITTER SPURIOUS

SPECIFICATION

Transmitter Spurious: >-65dB

DESCRIPTION

The Analog Transmitter generates a 1 kHz tone and the Spectrum Analyzer is used to check that other components (spurious or harmonics) are at a level >-65dB below the 1 kHz tone level.

EQUIPMENT

PROCEDURE

- 1. Terminate the 3776 Analog Transmitter Output in 6000hm.
- 2. Set the 3776 to 600ohm BAL, LEVEL/SEL FILTER, 0dBmO. Set the 3776 MEAS and REF frequencies to 1kHz.
- 3. Connect the Spectrum Analyzer across one of the balanced outputs and ground.
- 4. Set the Spectrum Analyzer as follows:

FREQUENCY START	
FREQ. SPAN/DIV	
RESOLUTION BANDWIDTH	
DISPLAY SMOOTHING	MIN
AMPLITUDE MODE	10dB LOG
SWEEP TIME/DIV	5s/DIV
SWEEP MODE	REP
AMPLITUDE REF LEVEL	0dBm/600ohm
INPUT SENSITIVITY	0dB

- 5. Set the 3776 to RUN/REPEAT.
- 6. Start the Spectrum Analyzer sweep.
- 7. Check that all spurious or harmonics are >-65dB below the 1kHz tone level.

4-49 ANALOG RECEIVER INTER-MODULATION FLOOR

SPECIFICATION

Third order product intermodulation Distortion (i.e. 2F1-F2, 2F2-F1 etc) with F1 = 320Hz and F2 = 470Hz: >-65dB

EQUIPMENT

Test Oscillator	HP 654A
Power Splitter	SA3 (See Appendix D)
Frequency Counter	

1. Connect the equipment as shown in Figure 4-23.

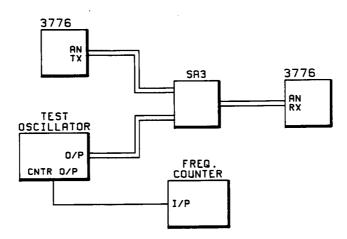


Figure 4-23 Analog Receiver Inter-modulation Floor Test Set-up

- 2. Set the 3776 to A-A LEVEL/SEL FILTER Measurement.
- 3. With the Test Oscillator set to <-80dBm and 600ohm BAL, set the 3776 to +10dBm, 320Hz REF/MEAS and 600ohm Balanced. Press RUN and check that +10dBm - XdB (XdB is the loss of the power splitter) is displayed in the results display. Record the value displayed.
- 4. Set the 3776 to Rx-only LEVEL/SEL FILTER, MEAS frequency set to 470Hz.
- 5. Set the Test Oscillator output to 470Hz displayed on the Frequency Counter. Press RUN/REPEAT and adjust the Test Oscillator output to give the value recorded in Step 3, displayed on the 3776 RESULTS display. Press STOP.
- 6. Set the 3776 to A-A with the REF Frequency set to 320Hz and level set to 10dBmO, set the MEAS Frequency to 620Hz (i.e. 2F2-F1).
- 7. Press RUN/REPEAT and check that the reading on the 3776 RESULTS display is less than -55dBmO.

4-50 4-51 } Not applicable to this instrument

4-52 ANALOG RECEIVER OUT OF BAND REJECTION

SPECIFICATION

Analog Receiver Out-of-Band Rejection, Out-of-band frequency = 14kHz (i.e. 16kHz - f) where f = 2kHz: >60dB rejection

DESCRIPTION

An out-of-band signal 16kHz-f is applied to the Analog Receiver and the level measured. The Analog Receiver is then tuned to f and the level is measured. The out-of-band signal rejection must be greater than 60dB.

EQUIPMENT

Test Oscillator	HP654A
Frequency Counter	

PROCEDURE

- 1. Connect the equipment as shown in Figure 4-26.
- 2. Set the 3776 to ANRx only LEVEL/SEL FILTER, 600ohm BAL, MEAS Frequency 2kHz.
- 3. Set the Test Oscillator to give 2kHz displayed on the Frequency Counter.
- 4. Press RUN/REPEAT on the 3776.
- 5. Adjust the Test Oscillator output amplitude to give OdBmO displayed on the 3776 display.
- 6. Set the Test Oscillator to give 14kHz displayed on the Frequency Counter.
- 7. Check that the level displayed on the 3776 is less than -60dBmO.

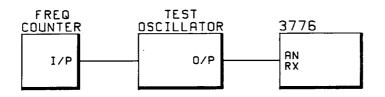


Figure 4-26 Analog Receiver Out of Band Rejection Set-up

4-53 ANALOG RECEIVER ANTI-ALIASING FILTER FLATNESS

SPECIFICATION

Anti-Aliasing Filter Flatness: <0.1dB peak to peak

EQUIPMENT

AC Calibrator	FLUKE 5200A
UNBAL TO BAL CONVERTER	
*Frequency Counter	HP 5328A
DC Power Supply	

*Required only if AC Calibrator does not have a Frequency display.

PROCEDURE

1. Connect the equipment as shown in Figure 4-27.

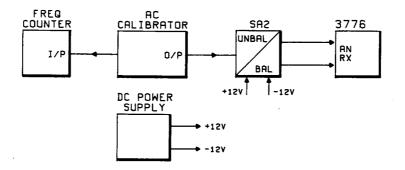


Figure 4-27 Analog Receiver Anti-Aliasing Filter Flatness Test Set-up

- 2. Set SA2 and the 3776 to 6000hm Balanced.
- 3. Set the 3776 to ARx LEVEL/OTHER FILTERS (FIL B).
- 4. Set the AC Calibrator output frequency to 1kHz.
- 5. Set the Level of the AC Calibrator to 0.7746V.
- 6. Press RUN/REPEAT on the 3776.
- 7. Record the value displayed on the 3776 RESULTS display.
- 8. Set the AC Calibrator frequency to the Frequency steps given and check that the difference between the minimum and maximum readings at selected frequency points is less than 0.1dB.

Frequency Steps: 210Hz, 3.59kHz, 3.89kHz.

4-54 ANALOG TRANSMITTER FREQUENCY ACCURACY

SPECIFICATION

SINEWAVE

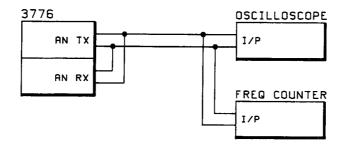
Frequency Range	:	50Hz to 4.6kHz for Level measurements, 200Hz to 3.9kHz
		for other measurements
Frequency Resolution	:	10Hz
Frequency Accuracy	:	50ppm

2-TONE

Frequency	Range	:	200Hz	to	3.6kHz
Frequency	Resolution	:	10Hz		
Frequency	Accuracy	:	50ppm		

4-TONE - 3776B only : Meets BSTR Pub. 41009

DESCRIPTION


If the 3776 passes self-test it can be assumed that frequencies in the 2-Tone or 4-Tone modes of operation will be constructed to specification. The following procedure checks range, resolution and accuracy for a single sinewave.

EQUIPMENT

Oscilloscope	
Frequency Counter	

PROCEDURE

1. Connect the equipment as shown in Figure 4-28.

Figure 4-28 Analog Transmitter Frequency Accuracy Set-up

- 2. Select LEVEL/SEL FILTER measurement. Set the ANALOG TRANSMIT to 600ohm UNBAL.
- 3. Set the level to 0dBm and REF frequency to 4.6kHz.
- 4. Press RUN then REPEAT and check that the period displayed on the Frequency Counter is 217.391us +/-0.01us, (i.e. 4.6kHz +/-50ppm).
- 5. Set the REF frequency to 50Hz.
- 6. Press RUN then REPEAT and check that the period displayed on the Frequency Counter is 20ms +/-1us.
- 7. Check that a clean sinewave is displayed on the Oscilloscope.

4-55 DIGITAL TRANSMITTER EXTERNAL CLOCK INPUT

SPECIFICATION

Frequency: 3776A, 2048kHz +/-1% 3776B, 1554kHz +/-1%

Level: TTL levels into 750hm nominal

EQUIPMENT

Frequency Counter	
Function Generator	
Oscilloscope	
	Type DAF BN18084
750hm Resistor	

PROCEDURE

- 1. Connect the Frequency Counter to the output of the Function Generator. Set the Function Generator FUNCTION to SQUARE and FREQUENCY to 2048kHz +/-20kHz (3776A), or 1544kHz +/-15kHz (3776B). Check the frequency on the Frequency Counter.
- 2. Disconnect the Frequency Counter from the Function Generator and connect the equipment as shown in Figure 4-29.

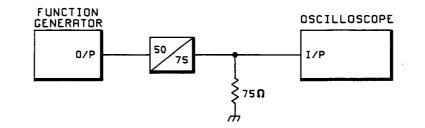


Figure 4-29 Digital Transmitter Ext Clock Input Set-up

- 3. Adjust the 3310A AMPLITUDE/OFFSET controls to give a squarewave with low level 0.5V and high level 2.5V displayed on the Oscilloscope.
- 4. Set the 3776 rear panel DIG TX CLOCK to EXT.
- 5. Connect the 3776 Digital Transmitter output to the Receiver Input.
- 6. RUN a D-D GAIN measurement and check that Error Code 30 is displayed.
- 7. Disconnect the 750hm resistor and the Oscilloscope and connect the output from the Matching Pad to the 3776 rear panel DIG TX CLOCK input.

8. RUN a D-D GAIN measurement and check that a measurement result is obtained (result is irrelevant).

4-56 DIGITAL TRANSMITTER PCM WAVEFORMS

SPECIFICATION

Mark: +/-2.37V +/-10% (UNBAL 3776A Only); +/-3.0V +/-10% (BAL) Space: +/-0.24V max (UNBAL 3776A Only); +/-0.3V max (BAL) Overshoot: <10% of amplitude Width at 50% Amplitude: 50% +/-6%Transition Times: <30ns

EQUIPMENT

750hm Resistor	
100ohm Resistor	
120ohm Resistor	1100hm (HP 0757-0713)
	+10ohm (HP 0757-0489)
Oscilloscope	

PROCEDURE

- 1. Connect the equipment as shown in Figure 4-30.
- 2. Set the Oscilloscope to channel A-B. Set the Volts/Div to 0.1 using a 10:1 Probe.
- 3. Check that the levels (with respect to ground) of the positive and negative marks are within +3.3V and +2.7V, and -3.3V and -2.7V respectively.
- 4. Check that the level of the space is +/-0.30V with respect to ground.

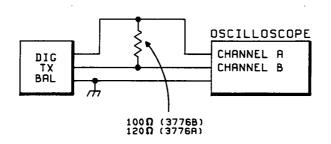
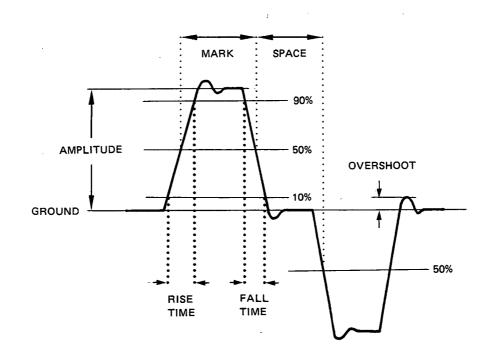



Figure 4-30 Digital Transmitter PCM Waveforms Set-up

- 5. Check also that the Rise Time and Fall Time are less than 30ns and the Overshoot is less than 10% of the amplitude.
- 6. Measure the waveform mark period (M) and space period (S) at the 50% positive-going amplitude level. Calculate M/(M+S) x 100% This should be between 44% and 56%.
- 7. Repeat step 6 for the negative-going waveform.

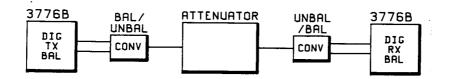
3776A Only

- 8. Connect the Digital Transmitter 750hm UNBAL Output to an Oscilloscope terminated in 750hms.
- 9. Check that the levels (with respect to ground) of the positive and negative marks are within +2.60V and +2.14V, and -2.60V and -2.14V respectively.
- 10. Check that the level of the space is +/-0.24V with respect to ground.
- 11. Repeat steps 5, 6 and 7.

4-57 DIGITAL RECEIVER SENSITIVITY

SPECIFICATION

In the Digital Receive TERM mode with the instrument connected back to back and -6dB of attenuation inserted, the receiver must be capable of gaining frame alignment.


In the Digital Receive MON mode with the instrument connected back to back and -30dB (3776A) or -20dB (3776B) of attenution inserted, the receiver must be capable of gaining frame alignment.

EQUIPMENT

PROCEDURE

3776B Only

1. Connect the equipment as shown in Figure 4-31.

Figure 4-31 Digital Receiver Sensitivity Test Set-up

- 2. Set the 3776 to D-D, LEVEL/SEL FILTER, DIGITAL RECEIVE TERM and set the REF and MEAS frequencies to 1kHz. Set the LEVEL to 0dBmO.
- 3. Set the attenuator to -6dB.
- 4. Press the 3776 RUN button and check that frame alignment is achieved.
- 5. Set the 3776 to DIGITAL RECEIVE MON.
- 6. Set the Attenuator to -20dB.
- 7. Press the 3776 RUN button and check that frame alignment is achieved.

3776A Only

8. Remove the BAL/UNBAL Converters and connect the 3750A Attenuator direct to the 750hm unbal Input/Outputs.

9. Repeat Steps 2 to 7 except in step 6 of this procedure, set the attenuator to -30dB.

4-58 PHASE JITTER (OPTION 001)

SPECIFICATION

Measurement Accuracy: +/-5% +/-0.2 degrees

Measurement Range: 0 degree to 30 degrees peak to peak

Input Holding Tone Requirements:

The receiver should accept holding tone frequencies between 990Hz and 1030Hz, with levels within the range of +10dBm to -40dBm.

Noise Rejection:

A 3.5kHz band-limited noise signal 30dB down from a 1010Hz sinewave carrier should indicate less than 4 degrees peak-to-peak jitter.

Frequency Weighting:

Frequency Weighted Phase Jitter is tested as follows:

A 0.0dBm 1010Hz tone used as the carrier is combined with a second tone and applied to the Analog input of the 3776. The second tone is 20dB lower in level than the carrier and is used as a source of Phase Jitter. The Phase Jitter produced is a function of the difference frequency between the two tones. The Phase Jitter should be less than that given in Table 1.

FILTER B 4-300Hz Difference Frequency (Hz)	FILTER A 20-300Hz Difference Frequency (Hz)	Phase Jitter (Degrees)
0.4	2	<1
1	5	<3
2	10	<8
4	-	9.2-12.2
6	-	10.2-12.2
-	12	<10
8-240	20-240	10.8-12.2
300	300	10-12.2
500	500	<3
700	700	<1

Table 1 Frequency Weighted Phase Jitter

Level to Phase Conversion:

Using a test set-up as suggested for testing the frequency weighting specification and with the second tone at 1110Hz, attenuation is applied to the combined signal in 10dB steps to 50dB. The spread of Phase Jitter readings should not exceed 0.7 degrees. The Phase Jitter limits given in Table 1 should be met at any of the attenuation settings up to 50dB.

Amplitude Modulation to Phase Conversion:

A 10% amplitude modulated 1010Hz carrier at a level consistent with the Input Holding Tone requirements is applied to the input of the 3776. As the modulating frequency is changed, the resulting Phase Jitter should not exceed the values given in Table 2.

Modul	ating (H	Phase Jitter (Degrees)	
) (3776A)) (3776B)	<0.2 <1

Table 2 Modulating Frequency Phase Jitter

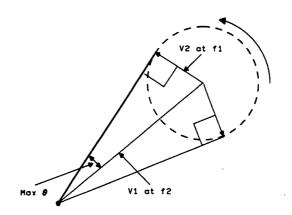
Measurement Averaging Time:

The 3776 Detector and Display circuits response averaging time characteristics are tested as follows:

A gated phase modulated sinewave on a steady 1010Hz carrier is applied to the 3776 input. The modulation signal is gated at a duty cycle of 50%. With the appropriate gating frequency, the Phase Jitter display variation should be within the percentage figure limit given in Table 3.

Gating Frequency (Hz)	Phase Jitter Display
FILTER A 20 to 300Hz Range	Variations (Degrees)
5.0	2(Max - Min)
1.0	2(Max - Min) <40% Max + Min

Table 3 Phase Jitter Measurement Averaging Time


Time to Display Correct Reading:

The 3776 display should be within +-0.7 degrees of its final value in <4 seconds with Filter A selected or in <25 seconds with Filter B selected.

DESCRIPTION

Phase Jitter Measurement Technique:

A waveform with a known amount of phase jitter can be constructed by adding together two sinewaves of known frequency and amplitude. The voltage amplitude ratio of the two added sinewaves is proportional to the phase jitter. This action is illustrated vectorially in Figure 4-32.

Figure 4-32 Phase Jitter Generation Vector Diagram

 $Max\theta = sin^{-1} V2/V1$

30

Total peak deviation = $2(Max\Theta)$

The voltage ratios (V2/V1) versus corresponding peak-to-peak jitter readings are given in Table 4.

Phase Jitter (Degrees pk-pk)	Voltage Ratio	dB Ratio
0.0114	10000	80
0.115	1000	60
0.363	316	50
1.15	100	40
3.63	31.6	30
11.48	10	20
20	5.76	15.20

3.86

11.74

Table 4 Voltage Ratios Versus Peak-to-Peak Jitter

EQUIPMENT

Signal Synthesiser	HP 3336A
Function Generator A (gated or	
burst operation	HP3312A/3310A
Function Generator B (External F M Input)	HP 3312A
Frequency Counter	HP 5245L
A C Voltmeter	HP 3455A
True RMS Voltmeter	HP 3403C
600 Ohm Attenuator	HP 4437A
Four 200 Ohm Resistors	HP 0757-0407

Note: Where Test Circuits show more than one Frequency Counter, use the one Frequency Counter and connect it at the appropriate point in the test circuit when required.

PROCEDURE

Measurement Accuracy and Measurement Range

1. Connect the equipment as shown in Figure 4-33.

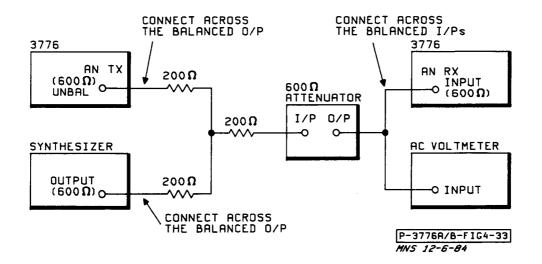


Figure 4-33 Phase Jitter Test Set-up

2. Set the 3776 as follows:

OPERATING MODE	ANTX ANRX
MEASUREMENTS	
ANALOG TRANSMIT	
ANALOG RECEIVE	
I/FACES	Tx dBr (TLP) and Rx dBr (TLP) set to 0.0

- 3. Set the 3776 Frequency to 1010Hz and Level to +6dBm0. Select FIL A.
- 4. Set the 600ohms Attenuator to 0.00dB and set the Synthesiser output voltage to a low level (less than -65dBm).

NOTE: To set the output voltage or frequency from either the 3776 or Synthesiser accurately and also maintain the circuit impedances, the output voltage from the other source must be set to its minimum level.

- 5. Press RUN/REPEAT on the 3776 and record the voltage displayed on the AC Voltmeter (should be approximately 0.7745V).
- 6. Press the 3776 STOP key and set the 3776 to ANRx only (this reduces the 3776 ANTx to minimum output level).

- 7. Set the Synthesizer to give a frequency of 910Hz and adjust the output level for X volts displayed on the AC Voltmeter. X volts can be calculated as follows:
 - X volts = Volts recorded in Step 5 X 0.2588
 - NOTE: 0.2588 is the voltage ratio required to give 30degrees pk to pk jitter.
 - (X volts should be approx 0.200V).
- 8. Set the 3776 to ANTx ANRx and press RUN/REPEAT.
- 9. Check that the Phase Jitter reading on the 3776 is between 28.3 to 31.7 degrees.
- 10. Repeat Steps 6 to 9 setting the Synthesiser output levels in Step 7 as shown in Table 5a and check at each level setting that the Phase Jitter readings are within the Limits specified in Table 5a.

Table 5a Phase Jitter Measurement Range and Accuracy

Synthesiser Output Voltage	Phase Jitter Readings (Degrees)
Voltage recorded in Step 5 X 0.1736	18.2 to 21.2
Voltage recorded in Step 5 X 0.1002	10.8 to 12.2

- With the Synthesizer set to voltage recorded in Step 5 X 0.1002, change the Synthesizer output level in -10dB Steps as given in Table 5b. Check at each Synthesizer -10dB Step that the Phase Jitter readings are within the limits specified in Table 5b.
 - NOTE: After each reading has been taken, always press STOP on the 3776, change to new input level condition, then press RUN/REPEAT.

Table 5b Phase Jitter Measurement and Accuracy

Synthesizer Additional	Phase Jitter Readings
Attenuation (dB)	(Degrees)
10	3.2 to 4.0
20	0.9 to 1.3
30	0.16 to 0.56
40	0 to 0.2
50	0 to 0.2

Frequency Weighting, Level to Phase Conversion, Input Holding Tone Requirements and Time to Display Correct Reading.

- 12. Press the 3776 STOP key then set Operating Mode to ANRx only.
- 13. Set the Synthesizer to give a frequency of 1012Hz and adjust the output level until the reading on the AC voltmeter is 20dB below the voltage reading recorded in Step 5. Multiply the voltage recorded in Step 5 by 0.1 to calculate the voltage reading for a 20dB drop in level.
- 14. Set the 3776 to ANTx ANRx and press RUN/REPEAT. Both signal sources should now be combined and applied to the 3776 Analog Rx input.

Frequency Weighting and Level to Phase Conversion.

- 15. Set the Synthesizer frequency to the frequency steps given for Fil A and Fil B in Table 6, select the appropriate filter on the 3776 and check that the corresponding Phase Jitter readings are within the limits specified in Table 6. At each frequency step, insert up to 40dB of attenuation in 10dB steps using the 6000hm Attenuator and check that the Phase Jitter readings remian within the limits specified in Table 6.
 - NOTE: 1. Allow 4 seconds settling time when Filter A is selected and approximately 25 seconds when Filter B is selected before each reading.
 - 2. After each reading has been taken, always press STOP on the 3776, change new input level condition, then press RUN/REPEAT.

Synthesiser B Frequency Steps (Hz)		Phase Jitter
Filter B Range Filter A Range 4-300Hz 20-300Hz		Limits (Degrees)
1010.4 & 1009.6 1011.0 & 1009.0 1012.0 & 1008.0 1014.0 & 1006.0 1016.0 & 1004.0 - - 1002.0 & 770.0 1310.0 & 710.0 1510.0 & 510.0 1710.0 & 310.0	1012 & 1008 1015 & 1005 1020 & 1000 - - 1022 & 998 990 & 770 1310 & 710 1510 & 510 1710 & 310	<1 <3 <8 9.2 to 12.2 10.2 to 12.2 <10 10.8 to 12.2 10.0 to 12.2 <3 <1

Table 6 Phase Jitter Frequency Weighting and Level toPhase Conversion Limits

- 16. Press the 3776 STOP key and set the 3776 Frequency to 1000Hz.
- 17. Set the 600ohm Attenuator to 0.0dB.
- 18. Set the Synthesizer frequency to 890Hz.
- 19. Set the 3776 to RUN/REPEAT.
- 20. Check that the Phase Jitter Reading with Filter A and Filter B selected is between 10.8 and 12.2 degrees.
- 21. Press the 3776 STOP key and set the 3776 Frequency to 1020Hz.
- 22. Set the Synthesizer Frequency to 1120Hz.
- 23. Press RUN/REPEAT on the 3776 and check that the 3776 Phase Jitter reading with Fil A and Fil B selected is between 10.8 and 12.8 degrees. Record the Phase Jitter readings for both Fil A and Fil B.

Time to Display Correct Reading

- 24. Disconnect the signal to the 3776 ANALOG RECEIVE input.
- 25. Reconnect the signal to the 3776 ANALOG RECEIVE input and check that the display appears within 4 seconds if Fil A is selected and 25 seconds if Fil B is selected. The display readings should be within +/-0.7 degrees of those recorded in Step 23.

Noise Rejection

- 26. Press the 3776 STOP key and set the 3776 to 1010Hz. Set the 3776 to ANRx only.
- 27. Set the Synthesizer to give 2000Hz and 24.5mV +/- 0.1mV displayed on the AC Voltmeter (ie. 2kHz -30dBm). Set the 3776 to ANTx ANRx and press RUN/ REPEAT.
- 28. Select Fil A and Fil B in turn and check that the 3776 Phase Jitter reading in each case is <4 degrees.

Amplitude to Phase Conversion

- 29. Connect the equipment as shown in Figure 4-36.
- 30. Adjust the Function Generator Main Generator Output frequency to give a frequency of 1010Hz displayed on Frequency Counter A.

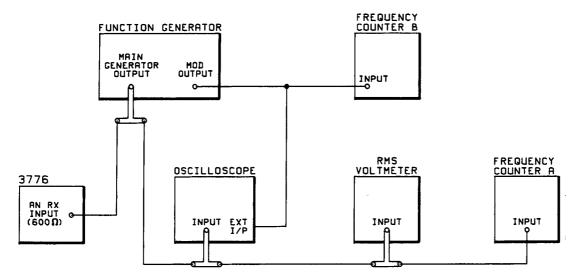


Figure 4-36 Phase Jitter Amplitude to Phase Conversion Test Set-up

- 31. Adjust the Function Generator Main Generator Output voltage to give a voltage of 0.7745V displayed on the RMS Voltmeter.
- 32. Set the Function Generator to give an amplitude modulated signal at the MOD Output with a modulating frequency of 30Hz displayed on Frequency Counter B.
- 33. Adjust the Function Generator A.M. controls to produce a 10% amplitude modulated signal displayed on the Oscilloscope as shown in Figure 4-37.

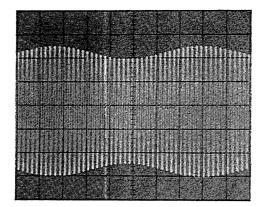
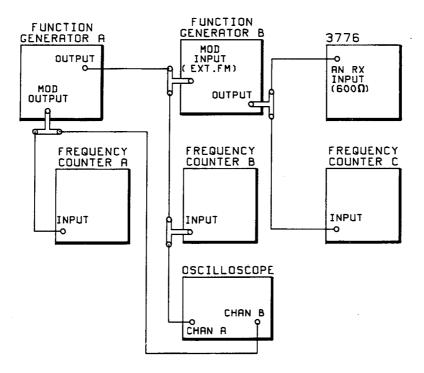


Figure 4-37 Phase Jitter Amplitude to Phase Conversion Waveform Diagram

- 34. Adjust the Function Generator Main Generator Output voltage with the Amplitude Modulation present to give a voltage of 0.7745V displayed on the RMS Voltmeter.
- 35. Select Phase Jitter Filter A and B in turn, press RUN/REPEAT and sweep the modulating frequency of the Function Generator between the limits given in Table 7 as displayed on Frequency Counter B and check that the Phase Jitter readings are within the limits specified.

Modulating Frequency	Phase Jitter Readings
(Hz)	(Degrees)
20 to 300 (3776A Only)	<0.2
2 to 900 (3776B Only)	<1.0

Table	7	Phase Jitter	· Amplitude	to	Phase	Conversion	Limits
-------	---	--------------	-------------	----	-------	------------	--------

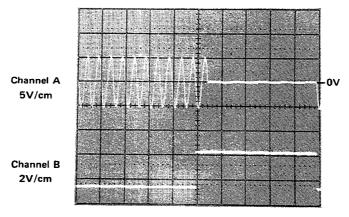


Measurement Averaging Time

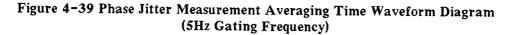
36. Set the 3776 MEASUREMENT to LEVEL/SEL FILTER and set the MEAS Frequency to 1010Hz.

- 37. Connect up the equipment as shown in Figure 4-38.
- 38. Disconnect Function Generator A output from the input of Function Generator B.
- 39. Adjust Function Generator B output frequency to give a sinewave frequency of 1010Hz, displayed on Frequency Counter C. Function Generator B should be set as follows:-

RANGE	
FREQUENCY	
FUNCTION	
OFFSET	
SYM	CAL
MODULATION	FM depressed


Figure 4-38 Phase Jitter Measurement Averaging Time Test Set-up

- 40. Repeat RUN/REPEAT on the 3776 then adjust Function Generator B output voltage to give a level of 0dBm0 displayed on the 3776. After adjusting for 0dBm0, press the 3776 STOP key.
- 41. Set the 3776 MEASUREMENT to PHASE JITTER, FIL A, then press RUN/REPEAT.
- 42. Connect Function Generator A output to the MOD input (EXT FM) of Function Generator B. Function Generator A should be set as follows:-


RANGE	
FREQUENCY	adjusted for 100Hz (Step 43)
FUNCTION	
AMPLITUDE	adjusted to give 11.5 degrees
on the 3776 (Step 44)	
TRIGGER PHASE	
MODULATION	
SYM	CAL
OFFSET	

- 43. Adjust the output frequency from Function Generator A to give a sinewave frequency of 100Hz displayed on Frequency Counter B.
- 44. Adjust Function Generator A amplitude control and/or Function Generator B delta f modulation control to obtain a Phase Jitter reading of 11.5 degrees on the 3776.

- 45. Adjust the period of the frequency at the MOD output of the Function Generator A displayed on Frequency Counter A, to 200ms (5Hz).
- 46. Adjust the controls of Function Generator A to give a burst of 100Hz frequency displayed on the Oscilloscope (see Figure 4-39).
 - NOTE:- Adjust the TRIGGER PHASE to give OV as shown in Figure 4-39. This is best performed by expanding channel A of the oscillscope and adjusting for OV. Use the MODULATION RANGE Hz to adjust for 5Hz gating frequency.
- 47. Record the maximum (MAX) and minimum (MIN) Phase Jitter readings displayed on the 3776.
- 48. Check that 2(MAX MIN)/MAX + MIN is <0.1.
- 49. Adjust the frequency period at the MOD output of Function Generator A displayed on Frequency Counter A to 1000ms (1Hz).
- 50. Record the MAX and MIN Phase Jitter readings displayed on the 3776.
- 51. Check that 2(MAX MIN)/MAX + MIN is >0.4.

TIME/DIV = 20ms/cm

4-59 PHASE HITS (OPTION 001)

SPECIFICATION

Threshold Accuracy (Slow Count):

+/-10% of the PHASE threshold setting +/-0.5 degrees for phase changes occurring in less than 0.2ms Model 3776A/B

Threshold Range:

5 degrees to 40 degrees in 5 degree steps.

Input Holding Tone Requirements:

The receiver should accept test tone frequencies between 995Hz and 1025Hz with levels within the range +10dBm to -40dBm.

Qualification Period or Guard Interval:

A phase-hit exceeding a threshold by 5 degrees is not counted if the holding tone returns to its original phase at any time within 3.5ms, and is counted if the tone returns to its original phase any time after 4.5ms.

Counting Rate:

3776A - The maximum counting rate is 8 counts per second. 3776B - Selectable = 100 counts/sec maximum or 8 counts/sec maximum.

Loop Recovery Time:

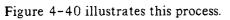
With the phase of the test tone varied linearly over 100 degrees during a period defined as the rise time, the following results should be obtained:

- 1) With a rise time of 20ms and THRESHOLD-PHASE HITS set to 20 degrees, the 3776 should record a phase hit.
- 2) With a rise time of 50ms and the THRESHOLD-PHASE HITS set to 20 degrees, a phase hit should not be recorded.

Amplitude to Phase Conversion:

With the 3776 THRESHOLD-PHASE HITS switch set to 10 degrees, a 10dB gain hit should not cause a phase hit to be counted.

DESCRIPTION


Phase Hit:

A Phase Hit is classified as an abrupt change in phase of a received sinewave.

A sudden phase change (i.e. phase hit) of a sinewave can be generated by changing the sinewave frequency for a brief period. As the frequency is changed, the phase of the sinewave with respect to the original sinewave will increase proportionally with time. The amount of phase change will also be proportional to the amount of frequency change.

This technique is used in the performance tests to generate phase hits.

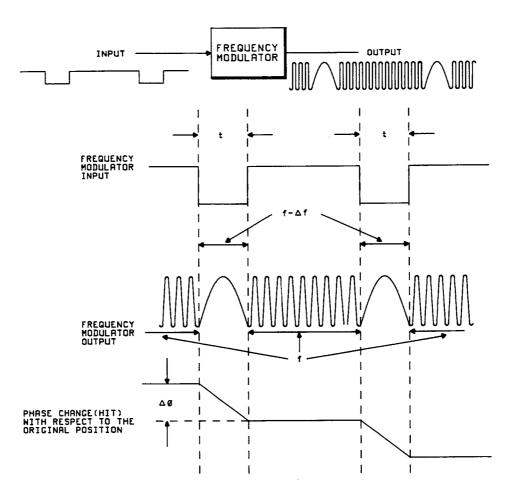


Figure 4-40 Phase Hits Test Signal Generation

The amount of phase change ϕ in degrees is given by:

$$\Delta \phi = 360 \text{ x} \Delta f \text{ x} t$$

where

 Δf = frequency difference between sinewaves (Hz)

t = time at new frequency $f_1 - \Delta f$

Guard Interval:

By applying a negative-going pulse followed by a positive-going pulse into the Frequency Modulator (see Figure 4-41), the sinewave frequency at the output of the Frequency Modulator can be increased and

decreased by an amount. This frequency change causes a phase change as previously described for Phase Hits.

The direction of the phase change however is reversed by the dual polarity input signal to the Frequency Modulator. Figure 4-41 illustrates this phase change.

This technique is used in the performance tests to test the guard interval specification.

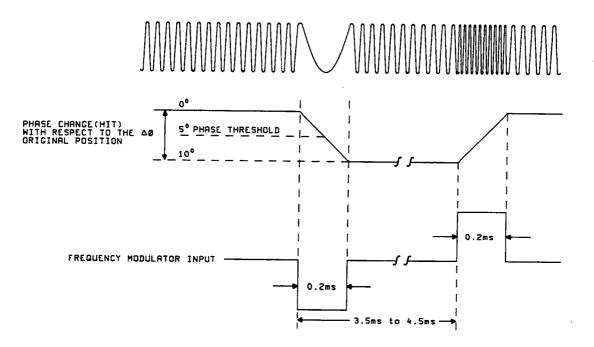
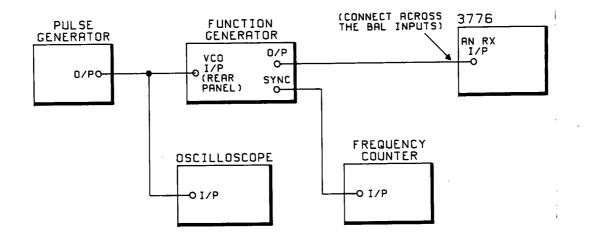


Figure 4-41 Phase Hit Guard Interval Test Signal Generation


EQUIPMENT

Pulse Generator	HP 8160A Option 020
Function Generator	
Oscilloscope Mainframe	
Dual Channel Vertical Amplifier	
Plug-in	
Time Base Plug-in	
Frequency Counter	
AC Voltmeter	HP 3455A

PROCEDURE

Threshold Range and Threshold Accuracy

1. Connect up the equipment as shown in Figure 4-42.

Figure 4-42 Threshold Range and Threshold Accuracy Test Set-up

- 2. Set the Pulse Generator to give -1V negative-going pulses with a repetition rate of approx 1kHz and a pulse width of exactly 0.2ms. The oscilloscope timebase should be set to 20us/DIV for best resolution.
- 3. Set the Pulse Generator repetition rate to approx 4Hz.
- 4. Set the Pulse Generator to the EXT-MAN mode (ie, the level displayed on the oscilloscope should be 0V ac).
- 5. Adjust the frequency control of the Function Generator to give 995Hz displayed on the Frequency Counter. When a 3312A Function Generator is used, the front panel controls should be set as follows:

MODULATION	
FUNCTION	switch depressed
TRIGGER PHASE	FREE RUN
RANGE Hz	
OFFSET	CAL
SYM	CAL
AMPLITUDE	

6. Set the 3776 as follows:

OPERATING MODE	ANRx
ANALOG RECEIVE	
MEASUREMENT	

- 7. Press the 3776 NEXT PARAM key, set the MEAS frequency to 0.99kHz and press RUN/REPEAT.
- 8. Adjust the output amplitude of the Function Generator to give 0dBm +/-0.1dBm displayed on the 3776 RESULTS display.
- 9. Press the 3776 STOP key.

10. Set the 3776 follows:

OPERATING MODE	ANRx
ANALOG RECEIVE	
MEASUREMENT	TRANSIENTS

11. Scroll the transient parameters using the NEXT PARAM and PREVIOUS PARAM keys and set as follows:

SLO Count 1-00hr 5 deg P.hit

- 12. Press the 3776 RUN key and press the NEXT PARAM key to display 5 deg P. hit.
- 13. Set the Pulse Generator to normal mode (ie, 0.2ms, -1V negative-going pulse at approx 4Hz repetition rate).
- 14. Adjust the Pulse Generator output amplitude to obtain the condition where the phase hit counts just register on the 3776 P. hit display. This point is the 5 deg phase hit threshold.
- 15. Set the Pulse Generator repetition rate to 1Hz and pulse width to 0.5 seconds displayed on the oscilloscope.
- 16. Set the Frequency Counter Function to PERIOD and TIMEBASE to 0.1us. The period displayed on the Counter will alternate between the carrier frequency f1 (995Hz = 1005us +/-5us) and the frequency f2 which was inserted during the 0.2ms pulse period.
 - Note: If an HP 5345A counter is available, the Pulse Generator output can be used to gate the 5345A input. This enables only the period of interest (ie, f2) to be displayed.
- 17. Check that the f2 period (see Step 16) displayed on the Frequency Counter is between 1096us and 1064us.
- 18. Select the 3776 phase hit thresholds shown in Table 1 and using the procedure given in Steps 9 to 17 check that the f2 periods obtained are within the limits given.

3776 Phase Hit Threshold Setting (degrees)	f2 Period Limits (us)		
	Max	Min	
10	1197	1140	
15	1317	1227	
20	1465	1329	
25	1649	1450	
30	1887	1595	
35	2206	1771	
40	2653	1992	

Table 1

Guard Interval

19. Press the 3776 STOP key.

20. Scroll the transient parameters using the NEXT PARAM key and set the 3776 as follows:

SLO Count 1-00 hr 5 deg P. hit

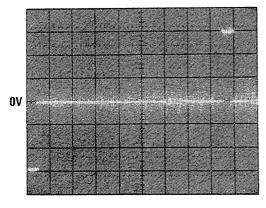

21. Set the Pulse Generator to Channel A + Channel B mode.

Figure 4-43

22. Adjust the controls of the Pulse Generator to give a combined Channel A and Channel B signal with 0.2ms negative-going and 0.2ms positive-going pulses as shown in Figure 4-43 and a repetition rate of approx 4Hz. The oscilloscope timebase should be set to 20us/DIV for best resolution when setting the 0.2ms pulse widths.

	.					
	2					
ov			1	-		
			Ť			
			,			
		ł		1	l l	

- 23. Press the 3776 RUN key and press the NEXT PARAM key to display 5 deg P. hit. Phase Hits should register on the 3776 RESULTS display.
- 24. Using the Pulse Generator Pulse Delay Control, set the delay between the negative and positive-going pulses to 4.5ms as shown in Figure 4-44 and check that counts register on the 3776 Phase display.
- 25. Set the delay between the negative and positive-going pulses to 3.5ms as shown in Figure 4-45 and check that counts do not register on the 3776 Phase display.

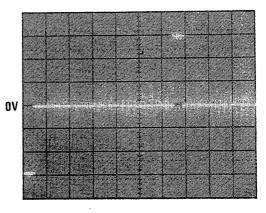


Figure 4-45

Holding Tone

26. Press the 3776 STOP key.

27. Set the 3776 as follows:

OPERATING MODE	ANRx
ANALOG RECEIVE	6000hm (Terminated)
MEASUREMENT	LEVEL SEL FILTER

- 28. Press the NEXT PARAM key, set the MEAS frequency to 1.02kHz and press RUN/REPEAT.
- 29. Set the Pulse Generator to EXT-MAN mode.
- 30. Adjust the frequency control of the Function Generator to give 1025Hz displayed on the Frequency Counter.
- 31. Adjust the output amplitude of the Function Generator to give +10dBm +/-0.1dBm displayed on the 3776 RESULTS display.
- 32. Press the 3776 STOP key.
- 33. Set the 3776 as follows:

OPERATING MODE	ANRx
ANALOG RECEIVE	
MEASUREMENT	TRANSIENTS

34. Scroll the transient parameters using the NEXT PARAM key and set as follows:

SLO Count 1-00 hr 5 deg P. hit

- 35. Press the 3776 RUN key and press the NEXT PARAM key to display 5 deg P. hit.
- 36. Set the Pulse Generator to single channel operation and to give approx -1V negative-going pulses with repetition rates of approx 100Hz and a pulse width of exactly 0.2ms. The oscilloscope timebase should be set to 20us/DIV for best resolution.
- 37. Set the Pulse Generator repetition rate to approx 4Hz.
- 38. Adjust the Pulse Generator output amplitude to obtain the condition where the phase hit counts just register on the 3776 P. hit display. This point is the 5 deg phase hit threshold.
- 39. Set the Pulse Generator repetition rate to 1Hz and pulse width to 0.5 seconds displayed on the oscilloscope.
- 40. Set the Frequency Counter FUNCTION to PERIOD and TIMEBASE to 0.1us.
- 41. Check that the f2 period (see step 16) displayed on the Frequency Counter is between 1062us and 1031us.

42. Repeat Steps 26 to 41 setting the output level of the Function Generator in Step 24 to give -40dBm +/-0.1dBm displayed on the 3776 RESULTS display.

Loop Recovery Time

- 43. Press the 3776 STOP key.
- 44. Set the Pulse Generator to EXT-MAN mode (ie, the level displayed on the oscilloscope should be OV ac).
- 45. Set the 3776 as follows:

OPERATING MODE	ANRx
ANALOG RECEIVE	
MEASUREMENT	

- 46. Press the 3776 NEXT PARAM key and set the MEAS frequency to 0.99kHz.
- 47. Press RUN/REPEAT and adjust the Function Generator output to give 0dBm +/-0.1dB displayed on the 3776 RESULTS display.
- 48. Adjust the Function Generator frequency to give 995Hz +/-1Hz displayed on the Frequency Counter (995Hz = 1005us period).
- 49. Set the Pulse Generator to normal mode with a repetition rate of 1Hz and negative-going pulse width of 0.5 seconds.
- 50. Set the Frequency Counter to PERIOD and TIMEBASE to 0.1us.
- 51. Adjust the Pulse Generator output level to give an f2 period (see Step 16) of 1019us +/-1us, displayed on the Frequency Counter (ie difference frequency of 14Hz for 20ms causes a 100 deg phase change).
- 52. Adjust the Pulse Generator to give a 20ms negative-going pulse with a repetition rate of approximately 4Hz.
- 53. Press the 3776 STOP key and set the 3776 as follows:

OPERATING MODE	ANRx
ANALOG RECEIVE	
MEASUREMENT	

54. Scroll the 3776 Transient parameters using the NEXT PARAM key and set as follows:

SLO Count 1-00 hr 20 deg P. hit

- 55. Press the 3776 RUN key and press the NEXT PARAM key to display 20 deg P. hit.
- 56. Check that counts register on the 3776 P. hit display.
- 57. Repeat Steps 43 to 55 setting the Pulse Generator output level to give an f2 period of 1011us +/-lus displayed on the Frequency Counter in Step 51, and adjust the Pulse Generator to give a 50ms

negative-going pulse in Step 52.

Notes:

1. It may be necessary to insert a 50ohm load (ie set the Oscilloscope to 50ohm) at the Pulse Generator output in order to set the f2 period to 1011us in Step 51.

2. Setting the f2 period to 1011us in Step 51 gives a difference frequency of 6Hz. With the pulse width set to 50ms in Step 52, this causes a 100 deg phase change.

58. Check that counts do not register on the 3776 P.hit display.

Amplitude to Phase Conversion

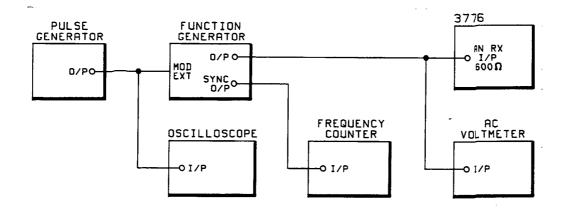


Figure 4-46 Amplitude to Phase Conversion Test Set-up

59. Connect the equipment as shown in Figure 4-46. 60. Set the Pulse Generator to EXT-MAN mode (ie, the level displayed on the oscilloscope should be 0V ac). Ensure that the DC offset control is switched off.

61. Set the Function Generator to give an output sinewave frequency of 1010Hz +/-1Hz (990us +/-1us) displayed on the Frequency Counter and 0.774V +/-0.001V displayed on the AC Voltmeter. When an HP 3312A Function Generator is used, the front panel controls should be set as follows:

MODULATION	EXT, AM, % control to midrange
FUNCTION	
TRIGGER PHASE	FREE RUN
OFFSET	CAL
SYM	

- 62. Set the Pulse Generator to its lowest repetition rate and to give a negative-going pulse set to maximum pulse width.
- 63. Adjust the Pulse Generator output level to give 0.2449V (ie, -10dB below 0.7745V) displayed on the AC Voltmeter.
- 64. Set the Pulse Generator to give a negative-going pulse with a pulse width of 10ms and repetition rate of approx 4Hz displayed on the oscilloscope.

65. Set the 3776 as follows:

OPERATING MODE	ANRx
ANALOG RECEIVE	
MEASUREMENT	TRANSIENTS

66. Scroll the 3776 Transient parameters using the NEXT PARAM key and set as follows:

SLO Count 1-00 hr 10 deg P. hit

67. Press the 3776 RUN key and press the NEXT PARAM key to display 10 deg P. hit.

68. Check that phase hits are not registered.

4-60 GAIN HITS (3776B) or AMPLITUDE HITS (3776A) - OPTION 001

SPECIFICATION

Thresholds: 2, 3, 4 and 6dB

Threshold Accuracy: +/- 0.5dB

Guard Interval or

Qualification Period: If the test tone exceeds a threshold by 1dB and returns to its original value within 3.6ms, a Gain/Amplitude Hit should not be counted. If the test tone returns to its original level after 4.4ms, a Gain/Amplitude Hit should be counted.

- Loop Recovery: With the amplitude of the test tone varied linearly over 4dB during a period defined as the risetime, the following results should be obtained:
 - With a risetime of 200ms and the Gain/Amplitude Hit threshold set to 2dB, the 3776 should record a gain/amplitude hit.
 - (2) With a risetime of 600ms and the Gain/Amplitude Hit threshold set to 2dB, the 3776 should not record a gain hit.

Counting Rate: 3776A - Maximum count rate is 8 counts/sec 3776B - Selectable: Maximum 8 counts/sec or Maximum 100 counts/sec

Input Holding Tone Requirements: The 3776 receiver should accept test tone frequencies between 995Hz and 1025Hz, with levels in the range from +10dBm to -40dBm.

DESCRIPTION

A Gain/Amplitude hit is classified as an abrupt change in gain of a received test tone.

EQUIPMENT

Pulse Generator	HP 8005B
Function Generator	HP 3312A
Oscilloscope Mainframe	HP 180A
Vertical Amplifier Plug-in	HP 1801A
Time Base Plug-in	HP 1821A
AC Voltmeter	HP 3455A
Frequency Counter	HP 5328A

PROCEDURE

Threshold Accuracy

1. Connect up the equipment as shown in Figure 4-47.

Figure 4-47 Threshold Accuracy Test Set-up

2. Set the 3776 as follows:

OPERATING MODE	ANRx
MEASUREMENTS	TRANSIENTS
ANALOG RECEIVE	

- 3. Using the PARAMETERS and SET keys, set the 3776 for SLO Count; 1-00 hr; 2dB G. hit/A. hit.
- 4. Set the Pulse Generator to give a positive-going pulse with a pulse width of approx 3 seconds displayed on the Oscilloscope.
 - Note: The Pulse Generator transition times should be set to minimum. The DC offset control should be switched off.
- 5. Set the Pulse Generator to EXT-MAN.
- 6. The level displayed on the Oscilloscope should be 0V ac.
- 7. Set the Function Generator to give a sinewave output at 995Hz +/-2Hz (if using a HP 3312A see

settings below) as displayed on the Frequency Counter. Adjust the Function Generator amplitude control for a reading of 1.1590V +/-0.001V (ie, 3.5dBm/600ohms) displayed on the AC Voltmeter.

3312A Settings:

MODULATION	EXT, AM, % control to mid-range
FUNCTION	
TRIGGER PHASE	FREE RUN
RANGE Hz	
OFFSET	
SYM	CAL

- 8. Set the 3776 CONTROL to RUN and press the NEXT PARAM key to display 2dB G. hit/A. hit.
- 9. Continually press the Pulse Generator EXT-MAN pushbutton, and adjust the Pulse Generator amplitude controls to obtain a count/no count condition (Gain-hit threshold) displayed on the 3776 RESULTS display.

Note:

Each time the EXT-MAN pushbutton is depressed, the Pulse Generator produces a 3-second positivegoing pulse. If the pulse amplitude is sufficient, two gain-hits will be registered. One gain-hit is registered at the positive-going edge of the pulse and the other at the negative-going edge of the pulse. The following procedure refers to the gain-hit which is registered at the positive-going edge of the 3 second pulse.

- 10. Check that the voltage displayed on the AC Voltmeter during the 3 seconds after the EXT MAN pushbutton is pressed, is between 1.3774V and 1.5455V. This corresponds to -2dB hit limits.
- 11. Adjust the controls of the Pulse Generator to give a negative-going pulse with a pulse width of 3 seconds. This can be achieved by connecting the Function Generator MOD EXT input to the Pulse Generator OUTPUT (-). Using the oscilloscope, check that no DC offset is introduced when the Pulse Generator OUTPUT (-) is selected.

12. Repeat Step 9.

- 13. Check that the voltage displayed on the AC Voltmeter during the 3 seconds after the EXT-MAN pushbutton is pressed, is between 0.8691V and 0.9752V. This corresponds to -2dB limits.
- 14. Press the 3776 STOP key and set the 3776 gain-hit threshold to 3dB. Press the 3776 RUN key.
- 15. Repeat Step 9.
- 16. Check that the voltage displayed on the AC Voltmeter during the 3 seconds after the EXT-MAN pushbutton is pressed, is between 0.7746V and 0.8691V. This corresponds to -3dB hit limits.
- 17. Connect the Function Generator MOD EXT input to the Pulse Generator OUTPUT (+), (ie, positivegoing 3 second pulse output).
- 18. Repeat Step 9 and check that the voltage displayed on the AC Voltmeter during the 3 seconds after the EXT-MAN pushbutton is pressed, is between 1.7341V and 1.5455V. This corresponds to +3dB hit limits.

. .

19. Press the 3776 STOP key and set the 3776 gain-hit threshold to 4dB. Press the 3776 RUN key.

- 20. Repeat Step 9 and check that the voltage displayed on the AC Voltmeter during the 3 seconds after the EXT-MAN pushbutton is pressed, is between 1.9457V and 1.7341V. This corresponds to +4dB hit limits.
- 21. Connect the Function Generator MOD EXT input to the Pulse Generator OUTPUT (-), (ie, negativegoing 3 second pulse output).
- 22. Repeat Step 9 and check that the voltage displayed on the AC Voltmeter during the 3 seconds after the EXT-MAN pushbutton is pressed is between 0.6904V and 0.7746V. This corresponds to -4dB hit limits.
- 23. Press the 3776 STOP key and set the 3776 gain hit threshold to 6dB. Press the 3776 RUN key.
- 24. Repeat Step 9 and check that the voltage displayed on the AC Voltmeter during the 3 seconds after the EXT-MAN pushbutton is pressed, is between 0.5484V and 0.6153V. This corresponds to -6dB limits.
- 25. Connect the Function Generator MOD EXT input to the Pulse Generator OUPUT (+), (ie, positive-going 3 second pulse output).
- 26. Repeat Step 9 and check that the voltage displayed on the AC Voltmeter during the 3 seconds after the EXT-MAN pushbutton is pressed is between 2.4495V and 2.1831V. This corresponds to +6dB hit limits.

Guard Interval or Qualification Period

- 27. Continually press the Pulse Generator EXT-MAN pushbutton and adjust the Pulse Generator amplitude controls to give 2.50V +/-0.05V displayed on the AC Voltmeter. Gain-hits should now be registered every time the EXT-MAN pushbutton is pressed.
- 28. Adjust the controls of the Pulse Generator to give a positive-going pulse with a pulse width of approx 10ms and a repetition rate of approx 4Hz, displayed on the oscilloscope.
- 29. Gently reduce the Pulse Generator pulse width control so that no further counts register on the 3776 Gain hits display.
- 30. Check that the Pulse Generator output pulse width, displayed on the oscilloscope, is between 3.5ms and 4.5ms.

Loop Recovery Time

- 31. Press the 3776 STOP key.
- 32. Repeat Step 4.
- 33. Set the Pulse Generator to EXT-MAN. Ensure that the level displayed on the oscilloscope is OV ac.
- 34. Ensure that the Function Generator is set to 995Hz +/-2Hz, displayed on the Frequency Counter and 1.159V +/-0.001V displayed on the AC Voltmeter.
- 35. Continually press the Pulse Generator EXT-MAN pushbutton, and adjust the Pulse Generator output level to give 1.837V +/-0.001V (ie, 4dB above 1.159V) displayed on the AC Voltmeter.
- 36. With the Pulse Generator level set as in Step 35, adjust the Pulse Generator controls to obtain the waveform shown in Figure 4-48, displayed on the Oscilloscope.

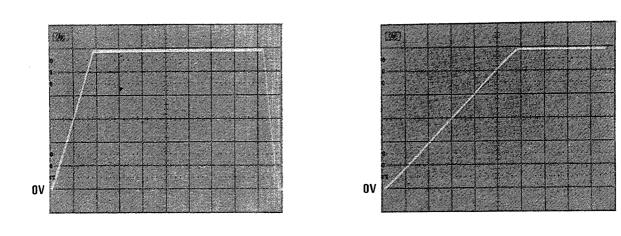


Figure 4-48

37. Set the Pulse Generator pulse width to maximum width (approx 3 seconds).

38. Set the Pulse Generator to EXT-MAN.

39. Set the 3776 as follows:

OPERATING MODE	ANRx
ANALOG RECEIVE	
MEASUREMENT	TRANSIENTS

40. Scroll the transients parameters using the NEXT PARAM key and set as follows:

SLO Count 1-00 hr 2dB G. hit/A. hit

- 41. Press the 3776 RUN key and press NEXT PARAM to display 2dB G. hit/A. hit.
- 42. Press the Pulse Generator EXT-MAN pushbutton and check that the instant the pushbutton is pressed, a hit is registered.
- 43. With the Pulse Generator level set as in Step 35, adjust the Pulse Generator controls to obtain the waveform shown in Figure 4-49, displayed on the oscilloscope.
- 44. Set the Pulse Generator to maximum pulse width and EXT-MAN.
- 45. Press the Pulse Generator EXT-MAN pushbutton and check that the instant the pushbutton is pressed, a hit is not registered.

4-61 DROPOUTS (3776B OPTION 001)/INTERRUPTIONS (3776A OPTION 001)

SPECIFICATION

3776B Threshold Setting: -12dB +/-1dB Qualification period or Guard Interval: 3.5ms to 4.5ms

3776A Threshold Setting: -10dB +/-1dB

Qualification period or Guard Interval: 2ms to 3.5ms

3776A and 3776B Input Holding Tone Requirements: 995Hz to 1025Hz, +10dBm to -40dBm

DESCRIPTION

Dropouts are tested by amplitude modulating a sinewave carrier using a pulse. By adjusting the amplitude of the pulse, the depth of level of the dropout can be varied (see Figure 4-50).

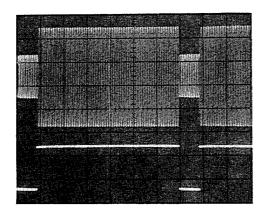
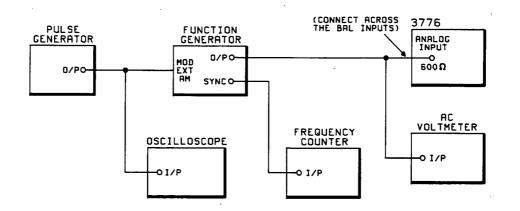
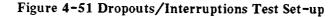


Figure 4-50 Dropout Test Waveform

EQUIPMENT

Pulse Generator	HP 8005A
Function Generator	HP 3312A
Oscilloscope Mainframe	
Dual Channel Vertical Amplifier Plug-in	
Time Base Plug-in	
AC Voltmeter	
Frequency Counter	


PROCEDURE


Threshold, Guard Interval and Input Holding Tone

1. Set the 3776 as follows:

OPERATING MODE	ANRx
MEASUREMENTS	TRANSIENTS
ANALOG RECEIVE	600ohms (Terminated)

- 2. Using the PARAMETERS and SET keys set the 3776 for SLO Count; 1-00 hr; -12dB d. out (3776B) or -10dB I.rpt 83776A).
- 3. Connect the equipment as shown in Figure 4-51.

4. Set the Pulse Generator to provide a 4Hz repetition rate negative pulse of width 10ms as displayed on the Oscilloscope.

Note: Pulse Generator transition times should be set to minimum.

- 5. Set the Pulse Generator operating mode to EXT-MAN. The level displayed on the Oscilloscope should be OV ac.
- 6. Set the Function Generator to give a sinewave output at 995Hz +/-2Hz (if using HP 3312A see settings below) as displayed on the Frequency Counter. Adjust the Function Generator amplitude control for a reading of 2.450 +/-0.001V (+10dBm into 6000hms) as displayed on the AC voltmeter.

3312A settings:

MODULATION	EXT, AM, % control to mid-range
	~
RANGE Hz	
OFFSET	CAL

7. Set the 3776 CONTROL to RUN and press the NEXT PARAM key to display -12dB d. out (3776B) or -10dB I.rpt (3776A).

Note: The 3776 will use the level measured at the begining of the run as a reference.

- 8. Set the Pulse Generator operation to normal and adjust the pulse amplitude to obtain the point where the 3776 just begins to accumulate counts in the results window.
- 9. Set the Pulse Generator PULSE WIDTH control to its maximum (preferably about 3 secs) and check that the AC Voltmeter reading is between 0.690 and 0.548V (ie, between -1dBm and -3dBm) if the instrument is a 3776B or between 0.869 and 0.690 (ie, between +1dBm and -1dBm) for the 3776A, during the 3 second pulse periods.
- 10. Adjust the Pulse Generator Amplitude to give an AC Voltmeter indication of 0.435V +/-0.002 during the 3 second pulse periods (ie, -15dB below the +10dBm reference level) for the 3776B or 0.581V +/-0.002V (ie, -12.5dB below the +10dBm reference level) if the instrument is a 3776A.

Note: these levels will ensure dropouts (interrupts) are counted for the next step.

- 11. Reduce the Pulse Generator pulse width to obtain the point where the counts just stop accumulating in the 3776 RESULTS window.
- 12. Check that the output pulse width displayed on the Oscilloscope is between 3.5 and 4.5ms (3776B) or between 2 and 3.5ms (3776A).
- 13. Press the 3776 STOP key.

14. Repeat Steps 4 and 5.

15. Set the Function Generator to give 1025Hz displayed on the Frequency Counter. Adjust the Function Generator amplitude control to give 30.83mV +/-0.01mV (-28dBm/600ohms) displayed on the AC Voltmeter if the instrument is a 3776B or 24.49mV +/-0.01mV (-30dBm/600ohms) displayed on the AC Voltmeter if the instrument is a 3776A.

16. Repeat Steps 7 and 8.

17. Set the Pulse Generator pulse width control to its maximum (approx 3 seconds) and check that the AC Voltmeter reading is between 8.69mV and 6.90mV (ie between -39dBm and -41dBm).

4-62 IMPULSE NOISE (3776B only OPTION 001)

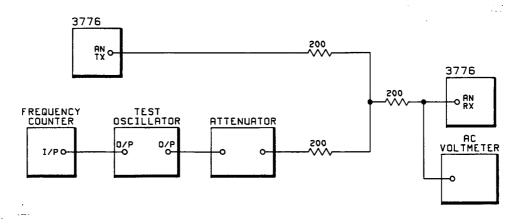
SPECIFICATION

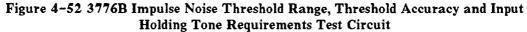
Threshold Range:	Low; Selectable in 1dB steps between -8dBmO to -40dBmO.
	Mid; 4dB above Low (i.e. range between -4dBmO to -36dBmO).
	High; -4dB above Mid (i.e. range between OdBmO to -32dBmO).
Threshold Accuracy for thresholds >-25dBm:	+/- 1dB
Input Holding Tone:	The 3776B should accept holding tone frequencies between 995Hz and 1025Hz with levels within the range from 0dBm to -40dBm.

DESCRIPTION

The Impulse Noise threshold range and accuracy tests use a 1810Hz sinewave of known amplitudes to test the three thresholds (Low, Mid and High). A 995Hz sinewave is combined with the 1810Hz sinewave to ensure that impulse counts are not inhibited by other Transient measurements. The 995Hz holding tone is notched out by the 3776B and therefore does not affect the impulse noise thresholds.

Note: Thresholds set correspond to peak values, (e.g. a count/no count condition occurs when the threshold is set to 0dBmO and a sinewave used as a source of impulse noise is at a level of -3dBmO).


EQUIPMENT


Test Oscillator	HP 651B
AC Voltmeter	HP 3455A
Frequency Counter	HP 5328A
Attenuator (600ohm)	
Three 200ohm Resistors	HP 0757-0407

PROCEDURE

Threshold Range, Threshold Accuracy and Input Holding Tone Requirements

1. Connect up the test circuit as shown in Figure 4-52, with the ATTENUATOR set to 0dB.

- 2. Set the Test Oscillator output voltage to its minimum level.
- 3. Set the 3776 to 6000hm UNBAL A-A TRANSIENTS with the REF Frequency to 0.99kHz. Press RUN/REPEAT and adjust the 3776 output LEVEL to give 0.7745V displayed on the AC Voltmeter. The 3776 LEVEL display should indicate approx +6dBmO. Press STORE.
- 4. Ensure that the Attenuator is set to 00.0dB. Press STOP on the 3776.

Note: If Option 002 is fitted, set the Test Oscillator output level and frequency to give $0.7745V \pm 0.0005V$ displayed on the AC Voltmeter and 1810Hz ± 10 Hz displayed on the Frequency Counter, then go to Step 7.

5. Set the 3776 to A-A IDLE STATE C-MESS FILTER.

6. Press RUN/REPEAT on the 3776 and set the Test Oscillator output level and frequency to give 90dBrnCo displayed on the 3776B RESULTS display and 1810Hz displayed on the Frequency Counter.

Note: Setting the 3776 to IDLE STATE, C-MESS FILTER, then adjusting the test oscillator output level to give 90dBrnCo on the 3776 display, compensates for the loss in the C-MESS filter at 1810Hz.

- 7. Press STOP and set the 3776 to A-A TRANSIENTS and press RECALL. The combined AnTx and Test Oscillator outputs should now be applied to the 3776 AnRx input.
- 8. Set the 3776 to TRANSIENTS/SLO Count/1.00hr/40oP.hit/-8.0dBmO I.cnt/ LOW THRESHOLD and press RUN/REPEAT.

Note:- If option 002 is fitted, select Fil A on the I. cnt display. Setting the Phase Hit Threshold to 40 degrees ensures that Phase Hits, which inhibit inpulse counts, are not detected.

9. Set the LOW Threshold as shown in Table 1. At each setting, scroll the appropriate threshold count in turn (i.e. LOW, MID and HIGH) and adjust the Attenuator to give a count/no count condition on the 3776 display. Check when the count/no count condition is reached that the Attenuator setting is within the limits given in Table 1.

LOW Threshold Setting (dBm0)	1	DW nuator ts (dB)	MII Atten Limit		HIG Attenu Limits	ator
	Max	Min	Max	Min	Max	Min
-8 -10 -20 -25	12 14 24 29	10 12 22 27	8 10 20 25	6 8 18 23	4 6 16 21	2 4 14 19

Table 1

- 10. Set the Test Oscillator output voltage to a negligible level.
- 11. Set the 3776 to A-A TRANSIENTS with the REF frequency set to 1.02kHz. Press RUN/REPEAT and adjust the 3776 output LEVEL to give 7.75mV (i.e. -40dBm/600ohm) displayed on the AC Voltmeter. The output level should be set to approx -34dBmO. Press STORE.

12. Repeat steps 4 to 9.

4-63 IMPULSE NOISE (3776A ONLY OPTION 001)

SPECIFICATION

Threshold Range: Low; Selectable in 1dB steps between -6dBmO to -40dBmO.

Mid; Always 3dB above Low (ie range between -3dBmO to -37dBmO)

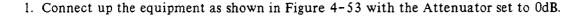
High; Always 3dB above Mid (ie range between 0dBmO to -34dBmO)

Threshold Accuracy for thresholds >-25dBm: +/-1dB

Weighting Filters:

Filter A:	200Hz	High Pass, with 1kHz Notch.
Filter B:	600Hz	to 3000Hz, with 1kHz Notch.
Filter C:	300Hz	to 500Hz with lkHz Notch.

Input Holding Tone: The 3776A should accept holding tone frequencies between 995Hz and 1025Hz with levels within the range from 0dBm to -40dBm.


DESCRIPTION

the Impulse Noise threshold range and accuracy tests use a 1810Hz sinewave so test the threshold when Filter A and B are selected. A 400Hz sinewave is used when Filter C is selected. A 1010Hz sinewave is combined with the 1810Hz Or 400Hz sinewave to ensure that impulse counts are not inhibited by other Transient measurements. The 1010Hz tone is notched out by the 3776A Rx and therefore does not affect the impulse noise thresholds.

EQUIPMENT

Test Oscillator	HP 651B
Attenuator (600ohm)	HP 4437A
Three 2000hm resistors	
AC Voltmeter	

PROCEDURE

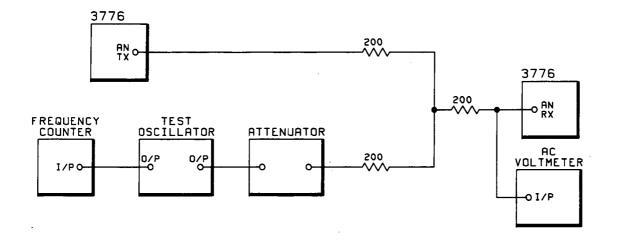


Figure 4-53 3776A Impulse Noise Threshold Range, Threshold Accuracy and Input Holding Tone Requirement Test Circuit.

- 2. Set the Test Oscillator output voltage to its minimum level.
- 3. Set the 3776A to A-A TRANSIENT, set frequency to 0.99kHz and adjust the output level to give approx 0.7745V (ie, 0dBm/600ohm) displayed on the AC Voltmeter. The 3776 LEVEL display should read approx +6dBmO. Press STORE.
- 4. Set the 3776 to AnRx only.
- 5. Set the Attenuator to 02.0dB and set the Test Oscillator output level to give 0.7745V +/-0.0005V displayed on the AC Voltmeter and 1810Hz +/-5Hz on the Frequency counter.
- 6. Set the 3776 to A-A TRANSIENTS/SLO Count/1.00 hr/40 degrees P.hit/Fil.A and press RUN/REPEAT. The combined AnTx and Test Oscillator output should now be applied to the 3776 AnRx input.

Note:- Setting the P.hit threshold to 40 degrees ensures that impulse counts are not inhibited by phase hits.

7. Set the LOW Icnt threshold as shown in Table 1. At each setting, scroll the appropriate threshold count in turn (ie, LOW, MID and HIGH) and adjust the Attenuator to give a count/no count condition on the 3776 display. Check when the count/no count condition is reached that the Attenuator setting is within the limits given in Table 1.

Table 1

LOW Threshold Setting (dBm0)	Atter)W nuator ts (dB)		ID nuator ts (dB)	Atte	IGH nuator ts (dB)
	Max	Min	Max	Min	Max	Min
-6 -10 -20 -25	9 13 23 28	7 11 21 26	6 10 20 25	4 8 18 23	3 7 17 22	1 5 15 20

8. Set the 3776 to A-A TRANSIENTS/SLO Count/1.00hr/Fil. B, -6dBmO, I.cnt and press RUN/REPEAT.

- 9. Repeat Step 7.
- 10. Set the 3776 to AnRx only.
- 11. With the Attenuator set to 02.0dB, set the Test Oscillator output frequency to 400Hz, displayed on the Frequency Counter and output level of 0.7745V +/-0.0005V displayed on the AC Voltmeter.
- 12. Set the 3776 to A-A TRANSIENTS/SLO Count/1.00hr/Fil. C, -6dBmO, I.cnt and press RUN/REPEAT.
- 13. Repeat Step 7.
- 14. Set the Test Oscillator to its minimum level.
- 15. Set the 3776A to A-A TRANSIENTS with the REF frequency set to 1.02kHz. Press RUN/REPEAT and adjust the 3776 output level to give 7.75mV (ie -40dBm/600ohm) displayed on the AC Voltmeter. The output level should be set to approx -34dBmO. Press STORE.

16. Repeat Steps 4 to 7.

Note: It is only necessary to check the -6dBmO Low Threshold setting in Step 7.

4-64 ENVELOPE DELAY (3776B OPTION 001)/GROUP DELAY (3776A OPTION 001) AND ATTENUATION DISTORTION

SPECIFICATION

Frequency Range:	(3776A) 200Hz to 3600Hz (3776B) 300Hz to 3500Hz
Level Range:	+5dBm to -40dBm
Attenuation Distortion Accuracy:	+/-0.2dB
Attenuation Distortion Range:	0 to +/-10dB
3776A Group Delay Measurement Range:	0 to +/-10ms
3776A Group Delay Accuracy:	200Hz to 400Hz +/-40us 400Hz to 600Hz +/-25us 600Hz to 3600Hz +/-20us
3776B Envelope Delay Measurement Range:	-3ms to +9ms
3776B Envelope Delay Accuracy with a Signal to Noise Ratio >35dB:	>300Hz, < +/-30us >500Hz, < +/-15us

DESCRIPTION

Relative Delay and Attenuation Distortion are checked by connecting the 3776 back-to-back in the ANTx to ANRx operating mode, inserting an accurate known amount of delay (-6ms) and attenuation (+3dB) at the transmitter and measuring the delay and attenuation at the receiver. Tables 1 and 2 give the frequency steps and limits used for testing the 3776A and 3776B respectively. Note: The Reference frequency is set to 1810Hz and Transmitter level set to +5dBmO.

EQUIPMENT

HP-IB Controller	
HP-IB Interface	
Input/Output ROM	HP 00085-15003
Advanced Programming Rom	HP 00085-15005
ROM Drawer	
3776 Test Program Data Cartridge	HP 03776-10001

PROCEDURE

- 1. Connect the ANALOG TRANSMIT output to the ANALOG RECEIVE input.
- 2. Connect the HP-IB Controller via the HP-IB Interface to the 3776.
- 3. Insert the 3776 Test Program Data Cartridge into the HP-IB Controller.
- 4. Load the "DELAY" program.
- 5. RUN the "DELAY" program and check that no errors are displayed in the HP-IB Controller or the 3776.

۰.

MEAS FREQ Atten Dist Limits (dB) Group Delay Limits (secs) (Hz) Max Min Max Min 200 +3.20 +2.80 -0.006040 -0.005960 410 +3.20 +2.80 -0.006025 -0.005975 810 +3.20 +2.80 -0.006020 -0.005980 1010 +3.20 +2.80 -0.006020 -0.005980 1210 +3.20 +2.80 -0.006020 -0.005980 1410 +3.20 +2.80 -0.006020 -0.005980 +2.80 1610 +3.20 -0.006020 -0.005980 1810 +3.20 +2.80 -0.006020 -0.005980 2010 +3.20 +2.80 -0.006020 -0.005980 2210 +3.20 +2.80 -0.006020 -0.005980 2410 +3.20 +2.80 -0.006020 -0.005980 2590 +3.20 +2.80 -0.006020 -0.005980 3600 +3.20 +2.80 -0.006020 -0.005980

Table 1 3776A Program Limits

Table 2 3776B Program Limits

MEAS FREQ	Atten Dis	t Limits (dB)	Envelope Delay Limits (secs)		
(Hz)	Max	Min	Max	Min	
300	+3.20	+2.80	-0.006030	-0.005970	
410	+3.20	+2.80	-0.006015	-0.005985	
810	+3.20	+2.80	-0.006015	-0.005985	
1010	+3.20	+2.80	-0.006015	-0.005985	
1210	+3.20	+2.80	-0.006015	-0.005985	
1410	+3.20	+2.80	-0.006015	-0.005985	
1610	+3.20	+2.80	-0.006015	-0.005985	
1810	+3.20	+2.80	-0.006015	-0.005985	
2010	+3.20	+2.80	-0.006015	-0.005985	
2210	+3.20	+2.80	-0.006015	-0.005985	
2410	+3.20	+2.80	-0.006015	-0.005985	
2590	+3.20	+2.80	-0.006015	-0.005985	
3600	+3.20	+2.80	-0.006015	-0.005985	

.

Hev	wiett-Packard		Tested by	•••••		
				· · · · · · · · · · · · · · · · · · ·		
Para	Test Des	cription		Result		
No.			Min.	Actual	Max.	
4-24	POWER ON SEQUENCE					
(2)	No error codes displayed (h				
(3)	Front Panel conditions:					
	(\checkmark) Operating Mode – (\checkmark) (\checkmark) Frequency kHz – 1. –0 (\checkmark) Level – 0. (\checkmark) Measurements – GA	.01MEAS (3776B) .81 (3776A) .0dBm0		· · · · · · · · · · · · · · · · · · ·		
4-26	SELF TEST					
(1)	CAL Displayed (√)					
(2)	CAL PASS 1 Displayed (V)					
(4) (5)	No FAIL or ERROR CODE: (Points 12 to 22)	S Displayed (√)				
4-27	ABSOLUTE LEVEL CHECK	¢				
(10)	600Ω BAL	AdBm0	9.91dBm		10.09dBm	
(12)		Displayed Level	(A-0.09) dBm0		(A +0.09)dBm0	
(13)	900Ω	AdBm0	9.91dBm		10.09dBm	
		Displayed Level	(A-0.09)dBm0		(A +0.09) dBm0	
4-28	TEST PROGRAM					
	Test runs with no out-of-limit	t results (√)				
4-30	INTERRUPTIONS (3776A)/	DROPOUTS (3776B)				
(9)	Threshold —12dB (3776B) } Threshold —10dB (3776A) }	AC Voltmeter Reading	0.548∨ 0.690∨		.0.690∨ .0.869∨	
(12)	Qualification period	3776B 3776A	3.5ms 2.5ms		,4.5ms 4.0ms	
4-31	IMPULSE NOISE (3776B)					
(9)	Low Threshold Setting (dBm0) 8	LOW	10dB		12dB	

Table 4-4 Operational Verification Test Record

Para	-	est Description		Result	
No.			Min.	Actual	Max.
		MID HIGH	6dB 2dB		8dB 4dB
	-10	LOW MID HIGH	12dB 8dB 4dB	· · · · · · · · · · · · · · · · · · ·	14dB 10dB 6dB
	20	LOW MID HIGH	22dB 18dB 14dB		24dB 20dB 16dB
	-25	LOW MID HIGH	27dB 23dB 19dB		29dB 25dB 21dB
4-32	IMPULSE NOISE	(3776A)			
(7)	Low Threshold Setting (dBm0)				
	-6	LOW MID HIGH	7dB 4dB 1dB		9dB 6dB 3dB
	-10	LOW MID HIGH	11dB 8dB 5dB		13dB 10dB 7dB
	-20	LOW MID HIGH	21dB 18dB 15dB		23dB 20dB 17dB
	-25	LOW MID HIGH	26dB 23dB 1 20dB	· · · · · · · · · · · · · · · · · · ·	28dB 25dB 22dB
4-33	GAIN HITS				
	Threshold Accurac	ε γ			
(10)	+2dB Hit Limit]	1.3774V		1.5455∨
(13)	–2dB Hit Limit		0.8691V		0.9752V
(16)	–3dB Hit Limit	AC Voltmeter Reading	0.7446∨		0.8691∨
(18)	+3dB Hit Limit		1.5455V		1.7341V
(20)	+4dB Hit Limit	J	1.7341∨		1.9457V

Table 4-4 Operational Verification Test Record (continued)

Para		Result			
No.	Test Description	Min.	Actual	Max.	
		0.6904∨		0.7446∨	
(22)	-4dB Hit Limit AC Voltmeter			0.6153V	
(24)	-6dB Hit Limit Reading	0.5484∨			
(26)	+6dB Hit Limit)	2.1831∨		2.4495∨	
	Guard Internal or Qualification Period.				
	Pulse Width	3.5ms		4.5ms	
4-34	PHASE HITS (OPT 001)				
	Threshold Range and Accuracy				
(18)	Threshold Setting (⁰)				
	5 10 15 20 25 30 35 40	1064µs 1140µs 1227µs 1329µs 1450µs 1595µs 1771µs 1992µs		1096µs 1197µs 1317µs 1465µs 1649µs 1887µs 2206µs 2653µs	
(23)	Phase hits register on RESULTS display ($$)				
(24)	Phase hits register with 4.5ms delay ($\sqrt{ m)}$				
(25)	No Phase hits with 3.5ms delay ($\sqrt{2}$				
4-35	PHASE JITTER (OPT 001)				
(6)	Phase Jitter Readings for Oscillator 'B' Output voltage				
	0.201∨ 0.134∨ 0.075∨	28.3 ⁰ 18.8 ⁰ 10.8 ⁰	· · · · · · · · · · · · · · · · · · ·	31.7 ⁰ 21.2 ⁰ 12.2 ⁰	
(7)	Phase Jitter Readings with additional attenuation				
	1 OdB 2 Od B 3 Od B 4 Od B 5 Od B	3.2 [°] 0.9 [°] 0.16 [°] 0 [°] 0 [°]	· · · · · · · · · · · · · · · · · · ·	4.0° 1.3° 0.56° 0.2° 0.2°	
4-36	SEQUENCE TEST				
(8)	Error 18 or 20 Displayed ($$)				
(17)	SEQ Key illuminated ($$)	1			

Table 4-4 Operational Verification Test Record (continued)

Para		Result			
No.	Test Description	Min. Actual			
(18)	Appended measurements performed ($$)				
(21)	RS2 displayed on controller ($$)				
4-37	DUAL-TONE MULTI FREQUENCY (DTMF) SIGNALLING TEST				
(5) (2)	2 MEAS appears in the FREQUENCY display and 1 incrementing to 9 then 0, star, hash, A, b, C and d. After d, 5 is displayed ($$)				
(6)	Waveform obtained ($$)				
4-38	3776B PCM TESTS				
(3)	No error codes displayed on HP85 ($$)				
4-39	3776A PCM TESTS				
(3)	No error codes displayed HP85 ($$)				

Table 4-4 Operational Verification Test Record (continued)

Hewlett-Packard Tested by Model 3776A/B PCM Terminal Test Set Result Para **Test Description** No. Min. Actual Max. 4-24 POWER ON SEQUENCE No error codes displayed ($\sqrt{}$) (2). (3) Front Panel conditions: (√) Operating Mode – ANTx, ANRx (V) Frequency kHz - 1.01MEAS (3776B) -0.81 (3776A) (√) Level -0.0dBm0 $(\sqrt{)}$ Measurements – GAIN TONE 4-26 SELF TEST (1) CAL Displayed ($\sqrt{}$) CAL PASS 1 Displayed ($\sqrt{}$) (2) (4)(5) NO FAIL or ERROR CODES Displayed ($\sqrt{}$) (Points 12 to 22) 4-36 SEQUENCE TEST ERROR 18 or 20 Displayed (V) (8) SEQ key illuminated ($\sqrt{}$) (17) (18) Appended measurements performed $\langle \sqrt{} \rangle$ RS2 displayed on controller ($\sqrt{}$) (21). 4-37 DUAL-TONE MULTI-FREQUENCY (DTMF) SIGNALLING-TEST (5)(a) 2 MEAS appears in the FREQUENCY display and 1 incrementing to 9 then 0, star, hash, A, b, C and d. After d, 5 is displayed ($\sqrt{}$) (b) Waveform obtained ($\sqrt{}$)

Table 4-5 Performance Tests Test Record

Para	Test Description	Result		
No.	- os osciption	Min.	Actual	Max.
4-38	3776B PCM TESTS			
(3)	TEST PROGRAM No error codes displayed on HP85 (√)			
4-39	3776A PCM TESTS			
(3)	TEST PROGRAM No error codes displayed on HP85 (\checkmark)			
4-40	ANALOG RECEIVER LEVELS AND LINEARITY			
	600Ω BAL			
(14)	AdBm0 — BdBm0	-0.09dB		0.09dB
(15)	Linearity Error Limits Dekatron Setting (dB value) -30 -20 -10 0		· · · · · · · · · · · · · · · · · · ·	0.06dB 0.06dB 0.06dB 0.06dB
	Level Error Limits Dekatron Setting (dB value) -30 -20 -10 0	-0.09dB -0.09dB -0.09dB -0.09dB	· · · · · · · · · · · · · · · · · · ·	0.09dB 0.09dB 0.09dB 0.09dB
(25)	CdBm0 — XdBm0	-0.09dB		0.09dB
(26)	Linearity Error Limits Dekatron Setting (dB value) 10 20 30 40 46		· · · · · · · · · · · · · · · · · · ·	0.06dB 0.08dB 0.10dB 0.12dB 0.18dB
4-40	Level Error Limits			
(26)	Dekatron Setting (dB value) -10 -20 -30 -40 -46	-0.11dB -0.11dB -0.11dB -0.13dB -0.13dB	· · · · · · · · · · · · · · · · · · ·	0.11dB 0.11dB 0.11dB 0.13dB 0.13dB
(27)	600Ω BRIDGED			
(14)	AdBm0 – BdBm0	-0.09dB		0.09dB

Para	Test Description	····	Result		
No.		Min.	Actual	Max.	
(15)	Linearity Error Limits Dekatron Setting (dB value) 30 20 10 0		· · · · · · · · · · · · · · · · · · ·	0.06dB 0.06dB 0.06dB 0.06dB	
	Level Error Limits Dekatron Setting (dB value) 30 20 10 0	0.09dB 0.09dB 0.09dB 0.09dB	· · · · · · · · · · · · · · · · · · ·	0.00dB 0.09dB 0.09dB 0.09dB	
(28)	900Ω BAL				
(14)	AdBm0 – BdBm0	-0.09dB		0.09dB	
(15)	Linearity Error Limits Dekatron Setting (dB value) -30 -20 -10 0		· · · · · · · · · · · · · · · · · · ·	0.06dB 0.06dB 0.06dB 0.06dB	
	Level Error Limits Dekatron Setting (dB value) —30 —20 —10 0	0.09dB 0.09dB 0.09dB 0.09dB	· · · · · · · · · · · · · · · · · · ·	0.09dB 0.09dB 0.09dB 0.09dB	
4-41	ANALOG TRANSMITTER LEVELS A LINEARITY	ND			
	600Ω BAL				
(17)	Linearity Error Limits Dekatron Setting (dB value) -40 -30 -20 -10		· · · · · · · · · · · · · · · · · · ·	0.05dB 0.05dB 0.05dB 0.05dB	
	Level Error Limits Dekatron setting (dB value) -40 -30 -20 -10	0.09dB 0.09dB 0.09dB 0.09dB	· · · · · · · · · · · · · · · · · · ·	0.09dB 0.09dB 0.09dB 0.09dB	

Para	Test Description		Result		
No.	Test Descriptio	n	Min.	Actual	Max.
26)	Linearity Error Limits Dekatron Setting (dB value) -2 -3 -4 -4 -4	80 40			0.06dB 0.07dB 0.09dB 0.12dB
	Level Error Limits Dekatron Setting (dB value) 	30 40	-0.11dB -0.11dB -0.13dB -0.13dB	· · · · · · · · · · · · · · · · · · ·	0.11dB 0.11dB 0.13dB 0.13dB
	900Ω BAL				
(27)	Repeat steps 2 to 26 i.e.				
(17)	-	40 30 20 10		· · · · · · · · · · · · · · · · · · ·	0.05dB 0.05dB 0.05dB 0.05dB
	-	40 30 20 10	0.09dB 0.09dB 0.09dB 0.09dB	· · · · · · · · · · · · · · · · · · ·	0.09d B 0.09d B 0.09d B 0.09d B
(26)	-	-20 -30 -40 -46		· · · · · · · · · · · · · · · · · · ·	0.06dB 0.07dB 0.09dB 0.12dB
	-	-20 -30 -40 -46	–0.11dB –0.11dB –0.13dB –0.13dB		0.11dB 0.11dB 0.13dB 0.13dB
4-42	ANALOG TRANSMITTER FL Referenced to 1.01kHz (3776B	ATNESS) or 0.81kHz (377	6A)		
(9)	0.461% = 0.04dB	70Hz 210Hz 3.59kHz 4.59kHz	0.461% 0.461% 0.461% 0.461%	· · · · · · · · · · · · · · · · · · ·	0.461% 0.461% 0.461% 0.461%

.

Para	Test Description	Result			
No.	Test Description	Min.	Actual	Max.	
4-43	ANALOG RECEIVER FLATNESS Referenced to 1.01kHz (3776B) or 0.81kHz (3776A)				
(8)	210Hz 3.89kHz	0.03dB 0.03dB		0.03dB 0.03dB	
4-44	ANALOG RECEIVER DIGITAL FILTER Referenced to 1.01kHz (3776B) or 0.81kHz (3776A)				
(9)	3776A Psophometric 250Hz 800Hz 3000Hz 4500Hz	XdBm017.073 XdBm00.173 XdBm06.673 XdBm028.073	· · · · · · · · · · · · · · · · · · ·	XdBm0 —12.927 XdBm0 +0.173 XdBm0 —4.527 XdBm0 —21.927	
	3776B C-Message 300Hz 900Hz 3000Hz 4500Hz	XdBm017.573 XdBm0 1.673 XdBm03.573 XdBm024.573	· · · · · · · · · · · · · · · · · · ·	XdBm0 —15.427 XdBm0 +0.473 XdBm0 —1.427 XdBm0 —18.427	
4-45	ANALOG RECEIVER NOISE LINEARITY				
(6)	Dekatron Settings (dB) Initial Reference Value = X OdB 10dB 20dB 30dB 40dB 48dB	(X—10) —0.8dB (X—20) —0.8dB (X—30) —0.8dB (X—40) —0.8dB (X—46) —0.8dB	X =	(X-10) +0.8dB (X-20) +0.8dB (X-30) +0.8dB (X-40) +0.8dB (X-46) +0.8dB	
(8)	Dekatron Settings (dB) Initial Reference Value = y OdB 10dB 20dB 30dB 42dB	(Y-10)-0.12dB (Y-20)-0.12dB (Y-30)-0.30dB (Y-42)-0.30dB	Y= 	(Y–10)+0.12dB (Y–20)+0.12dB (Y–30)+0.30dB (Y–42)+0.30dB	
4-46	ANALOG TO ANALOG (A-A) GAIN				
(6)(7)	(+10dBm0) 210Hz 3776A 810Hz 3776B 1010Hz 3.89kHz	0.05dB 0.05dB 0.05dB 0.05dB	·····	0.05d B 0.05d B 0.05d B 0.05d B 0.05d B	
(8)	(–40dB) 210Hz 3776A 810Hz 3776B 1010Hz	-40.05dB -40.05dB -40.05dB		40.05dB 40.05dB 40.05dB	
	3.89kHz	-40.05dB		40.05dB	
(10)	(-30dBm0) 210Hz 3776A 810Hz 3776B 1010Hz	-0.05dB -0.05dB -0.05dB	· · · · · · · · · · · · · · · · · · ·	0.05dB 0.05dB 0.05dB	

Para	Tost Downintion	Result		
No.	Test Description	Min.	Actual	Max.
4-46	ANALOG RECEIVER NOISE FLOOR			
(3)	PSOPH 3776A C-MESS 3776B			–100dBm –10dBrnC0
(5)	FIL A (3kHz)			95dBm0
(7)	FIL B (FLAT)			-90dBm
(9)	FIL C (HIGH PASS)			-90dBm0
(11)	SELECTIVE			-110dBm0
1-48	ANALOG TRANSMITTER SPURIOUS			
(7)	Harmonics & spurious			-65dB
1-49	ANALOG RECEIVER INTER-MODULATION			
(7)	Third Order Product			-55dBm0
1-50	NOT APPLICABLE TO THIS INSTRUMENT			
1-51	NOT APPLICABLE TO THIS INSTRUMENT			
	1			

•

Para	Test Description			Result	esult	
No.	Test Description	1	Min.	Actual	Max.	
4-52	ANALOG RECEIVER OUT OF BA	AND REJECTION				
					-60dB	
(7)					-6006	
4-53	ANALOG RECEIVER ANTI-ALIA FLATNESS	SING FILTER				
(8)		difference at ted frequencies			0.1dB	
1-54	ANALOG TRANSMITTER FREQU	UENCY				
(4)		Hz — period z — period	217.381µs 19.999ms		217.401µs 20.001ms	
4-55	DIGITAL TRANSMITTER EXTER	NAL CLOCK				
(8)	D-D GAIN measurement works	(√)				
1-56	DIGITAL TRANSMITTER PCM W	AVEFORMS				
(3)		mark mark	2.7∨ –2.7∨		3.3∨ –3.3∨	
(4)	space	e – with respect			0.3V	
		round	–0.3V			
(5)		-time time			30ns 30ns	
	Over	rshoot			10% Amplitude	
(6)	Width at 50% (+ve going)		44%		56%	
(7)	Width at 50% (—ve going)		44%		56%	
	3776A Only (UNBAL)					
(9)	+ve i	mark mark	2.14∨ 2.14∨	·	2.60∨ 2.60∨	
(10)		e – with respect				
(10)		ound	–0.24∨		0.24∨	
11) (5)		time			30ns	
	Fall Over	time shoot			30ns 10% Amplitude	
(6)	Width at 50% (+ve going)		44%		56%	
(7)	Width at 50% (—ve going)		44%		56%	

Para		· · · · · · · · · · · · · · · · · · ·		Result	
No.	Test Description		Min.	Actual	Max.
4-57	DIGITAL RECEIVER S	ENSITIVITY			
(4)	3776B only	Frame Alignment ($$)			
(7)		Frame Alignment (√)			
(9)(4)	3776A only	Frame Alignment ($$)		<i>.</i>	
(9)(7)		Frame Alignment ($$)			
4-58	PHASE JITTER (OPT 0	01)			
(9) (10)	Phase Jitter Readings f	or Synthesizer voltage			
		≏0.201∨ ≏0.134∨ ≏0.075∨	28.3 ⁰ 18.8 ⁰ 10.8 ⁰		31.7 ⁰ 21.2 ⁰ 12.2 ⁰
(11)	Phase Jitter Readings w	th additional attenuation			
		10d B 20d B 30d B 40d B 50d B	3.2° 0.9° 0.16° 0° 0°	· · · · · · · · · · · · · · · · · · ·	4.0 ⁰ 1.3 ⁰ 0.56 ⁰ 0.2 ⁰ 0.2 ⁰
(15)	Phase Jitter readings for	FILTER B			
	Synthesizer Freq.	1010.4Hz 1009.6Hz 1011.0Hz 1009.0Hz 1012.0Hz 1014.0Hz 1006.0Hz 1016Hz 1004.0Hz 1002.0Hz 1310.0Hz 1510.0Hz 1510.0Hz 1710.0Hz 310.0Hz TTU.0Hz	9.2° 9.2° 10.2° 10.2° 10.8° 10.8° 10.0° 10.0°		1° 1° 3° 8° 12.2° 12.2° 12.2° 12.2° 12.2° 12.2° 12.2° 12.2° 12.2° 12.2° 12.2° 12.2°
	Synthesizer Freq.	1012Hz 1008Hz			1 ⁰ 1 ⁰

Para	Test Description	Result			
No.	Test Description	Min.	Actual	Max.	
	1015Hz 1005Hz 1020Hz 1000Hz 1022Hz 998Hz 990Hz 770Hz 1310Hz 1510Hz 510Hz 1710Hz 310Hz	10.8 ⁰ 10.8 ⁰ 10 ⁰ 10 ⁰		3° 3° 8° 10° 10° 12.2° 12.2° 12.2° 12.2° 12.2° 3° 3° 12.2° 12.2° 12.2° 12.2°	
(20)	Phase Jitter Filter A Phase Jitter Filter B	10.80 10.8 ⁰		12.2 ⁰ 12.2 ⁰	
(23)	Phase Jitter Filter A Phase Jitter Filter B	10.8 ⁰ 10.8 ⁰	X = X =	12.8 ⁰ 12.8 ⁰	
(25)	FILTER A – Time for correct reading ——Phase Jitter reading	(X –0.7) ⁰		4 sec (X+ 0.7) ⁰	
	FILTER B – Time for correct reading – Phase Jitter reading	(X –0.7) ⁰		25 sec (X+ 0.7) ⁰	
(28)	Noise Rejection				
	Filter A Filter B			4 ⁰ 4 ⁰	
(35)	3776A Phase Jitter for modulating Frequencies 20 to 300Hz			2	
	Filter A Filter B			0.2 ⁰ 0.2 ⁰	
	3776B Phase Jitter for modulating Frequencies 2 to 900Hz				
	Filter A Filter B			1.0 ⁰ 1.0 ⁰	
(48)	2 (MAX – MIN)/MAX + MIN			0.1	
(51)	2 (MAX – MIN)/MAX + MIN	0.4			
				<u></u>	

Para	Text Description	Result		
No.	Test Description	Min.	Actual	Max.
4-59	PHASE HITS (OPTION 001)			
	Threshold Range and Accuracy			
(12)	Threshold Setting (⁰)			4000
	5 10	1064 <i>µ</i> s 1140µs		1096µs 1197µs
	15	1227 <i>µ</i> s		1317µs
	20 f period limits	1329µs		1465µs
	25 2	1450µs 1595µs		1649μs 1887μs
	30 35	1595μs 1771μs		2206µs
	40	1992µs		2653µs
	Guard Interval			
(23)	Phase hits register on RESULTS display (\checkmark)			
(24)	Phase hits register with 4.5ms delay (\checkmark)			
(25)	No Phase hits with 3.5ms delay (\checkmark)			
	Holding Time			
(41)	+10dBm f ₂ period	1031 <i>µ</i> s		1062µs
(42)	-40dBm f ₂ period	1031 <i>µ</i> s		1062µs
	Loop Recovery Time			
(56)	Counts register on P. hit display ($$)			
(58)	Counts do not register ($$)			
	Amplitude to Phase Conversion			
(68)	Counts do not register ($$)			
4-60	GAIN HITS (3776B)/AMPLITUDE HITS (3776A)			
	Threshold Accuracy			
(10)	+2dB Hit Limit	1.3774V		1.5455V
(13)	-2dB Hit Limit AC Voltmeter Reading	0.8691∨		0.9752V
(16)	–3dB Hit Limit	0.7446∨		0.8691∨

+3dB Hit Limit +4dB Hit Limit	t Description	Min.	Actual	Max.
		1		
+4dB Hit Limit		1.5455∨		1.7341∨
		1.7341∨		1.9457∨
–4dB Hit Limit	AC Voltmeter Reading	0.6904∨		0.7446∨
–6dB Hit Limit	-	0.5484∨		0.6153V
+6dB Hit Limit		2.1831∨		2.4495∨
Guard Interval or Qual	lification Period			
	Pulse Width	3.5ms		4.5ms
Loop Recovery Time				
	Hit Registered (🗸)			
	No Hit Registered ($$)			
	•			
DROPOUTS (3776B)/INTERRUPTIONS (3776A)				
		0.548∨ 0.690∨		0.690∨ 0.869∨
	•			
	3776B	3 5ms		4.5ns
	3776A	2.0ms		3.5ms
Input Holding Tone —	40dBm	6.90mV		8.69mV
IMPULSE NOISE (377	76B)			
Low Threshold	,			
		10dB		12dB
MID		6dB		8dB
HIGH		2dB		4dB
-10 LOW		12dB		14dB
		8dB 4dB		10dB 6dB
пип		400		GUD
-20 LOW		22dB		24dB
HIGH		18dB		20dB 16dB
	+6dB Hit Limit Guard Interval or Qua Loop Recovery Time DROPOUTS (3776B)/ Threshold –12dB (377 Threshold –12dB (377 Qualification period Input Holding Tone – IMPULSE NOISE (377 Low Threshold Setting (dBm0) –8 LOW MID HIGH –10 LOW MID HIGH –20 LOW MID	+6dB Hit Limit Guard Interval or Qualification Period Pulse Width Loop Recovery Time Hit Registered (√) No Hit Registered (√) No Hit Registered (√) DROPOUTS (3776B)/INTERRUPTIONS (3776A) Threshold –12dB (3776B) AC Voltmeter Threshold –10dB (3776A) Reading Qualification period 3776B 3776A Input Holding Tone –40dBm IMPULSE NOISE (3776B) Low Threshold Setting (dBm0) -8 LOW MID HIGH -10 LOW MID HIGH -20 LOW MID	+6dB Hit Limit 2.1831∨ Guard Interval or Qualification Period Pulse Width 3.5ms Loop Recovery Time Hit Registered (√) No Hit Registered (√) No Hit Registered (√) DROPOUTS (3776B)/INTERRUPTIONS (3776A) Threshold –12dB (3776B) AC Voltmeter Threshold –12dB (3776B) AC Voltmeter Threshold –10dB (3776A) Reading Qualification period 3776B 3776A Input Holding Tone –40dBm MID HIGH -10 LOW MID HIGH -20 LOW MID HIGH -20 LOW MID HIGH 22dB 18dB	+6dB Hit Limit 2.1831∨

Para	Test Description	Result			
No.		Min.	Actual	Max.	
	–25. LOW MID HIGH	27dB 23dB 19dB	· · · · · · · · · · · · · · · · · · ·	29dB 25dB 21dB	
(12)	Holding tone at —40dBm Low Threshold Setting (dBm0)				
	8 LOW MID HIGH	10dB 6dB 2dB	· · · · · · · · · · · · · · · · · · ·	12dB 8dB 4dB	
	–10 LOW MID HIGH	12dB 8dB 4dB	· · · · · · · · · · · · · · · · · · ·	14dB 10dB 6dB	
	–20 LOW MID HIGH	22d B 18d B 14d B		24dB 20dB 16dB	
	–25 LOW MID HIGH	27dB 23dB 19dB		29dB 25dB 21dB	
4-63	IMPULSE NOISE 3776A				
(7)	Low Threshold Setting (dBm0)				
	–6 LOW MID HIGH	7dB 4dB 1dB		9dB 6dB 3dB	
	–10 LOW MID HIGH	11dB 8dB 5dB	· · · · · · · · · · · · · · · · · · ·	13dB 10dB 7dB	
	–20 LOW MID HIGH	21dB 18dB 15dB	· · · · · · · · · · · · · · · · · · ·	23dB 20dB 17dB	
	–25 LOW MID HIGH	26dB 23dB 20dB		28dB 25dB 22dB	

Para	Test Description	Result		
No.		Min.	Actuai	Max.
(9)	FILTER B Low Threshold Setting (dBm0) 6 LOW MID	7dB 4dB		9dB 6dB
	HIGH -10 LOW MID HIGH	1dB 11dB 8dB 5dB	· · · · · · · · · · · · · · · · · · ·	3dB 13dB 10dB 7dB
	-20 LOW MID HIGH -25 LOW	21dB 18dB 15dB 26dB	· · · · · · · · · · · · · · · · · · ·	23dB 20dB 17dB 28dB
	MID HIGH	23dB 20dB		25dB 22dB
	FILTER C Low Threshold Setting (dBm0)			
	–6 LOW MID HIGH	7dB 4dB 1dB	· · · · · · · · · · · · · · · · · · ·	9dB 6dB 3dB
	–10 LOW MID HIGH	11dB 8dB 5dB	· · · · · · · · · · · · · · · · · · ·	13dB 10dB 7dB
	–20 LOW MID HIGH	21dB 18dB 15dB	· · · · · · · · · · · · · · · · · · ·	23dB 20dB 17dB
	–25 LOW MID HIGH	26dB 23dB 20dB	· · · · · · · · · · · · · · · · · · ·	28dB 25dB 22dB

Para No.	Text Demrintion	Result		
	Test Description	Min.	Actual	Max.
(16)	Holding Tone at —40dBm Low Threshold Setting (dBm0)			
	–6 LOW MID HIGH	7dB 4dB 1dB		9dB 6dB 3dB
4-64	ENVELOPE DELAY (3776B)/GROUP DELAY (3776A) AND ATTENUATION DISTORTION			
	'Delay' programme runs with no errors ($$)			

•

SECTION V ADJUSTMENTS

5-1 INTRODUCTION

5-2 This section describes the adjustment procedure required to enable the Hewlett-Packard Models 3776A and 3776B PCM Terminal Test Sets to meet the specifications listed in Table 1-2 of this manual.

5-3 Table 5-1 is a list of the adjustable components with related information.

Adjustment Name	Reference Designator	Adjustments Paragraph	Description		
+5V Power Supply	A15R1	5-16	Sets +5V rail		
+15V Power Supply	A16R11	5-17	Sets +15V rail		
-15V Power Supply	A16R12	5-18	Sets -15V rail		
Processor Clock	A13C1	5-19	Clock frequency set to 2.048MHz (3776A) or 2.316MHz (3776B)		
Clock Extraction	A12C1	5-20	Centre clock extractor frequency on 1.544MHz (3776B) or 2.048MHz (3776A).		
Codec Gain	A2R6	5-21	Set AUX I/P Interface Level		

Table 5-1	Adjustable	Components
-----------	------------	------------

5-4 SAFETY CONSIDERATIONS

5-5 In the interest of safety, it is recommended that page 2 of this manual be consulted before operating this instrument with its covers removed.

5-6 This section contains warnings that must be followed for your protection.

5-7 Safety Symbols

5-8 The 3776 PCM Terminal Test Set is a Safety Class 1 instrument (ie it is provided with a protective earth terminal). Before you operate it, or even connect its ac power cord, you should familiarize yourself with the safety labels on the chassis and the safety instructions in this manual.

High Voltage. This symbol indicates that potentially hazardous voltages are present beneath the protective shield. Extreme caution must be used if it is necessary to remove the protective shield.

WARNING

THE "WARNING" SIGN DENOTES A HAZARD TO PERSONNEL. IT CALLS ATTENTION TO A PROCEDURE, PRACTICE, OR THE LIKE, WHICH, IF NOT CORRECTLY PERFORMED OR ADHERED TO, COULD RESULT IN INJURY OR LOSS OF LIFE. DO NOT PROCEED BEYOND A "WARNING" SIGN UNTIL THE INDICATED CONDITIONS ARE FULLY UNDERSTOOD AND MET.

5-9 EQUIPMENT REQUIRED

5-10 A complete list of all the equipment required for adjustment of this instrument is given in Table 1-4 of this manual. The equipment required to make an individual adjustment is listed with each adjustment procedure. Any equipment which satisfies the critical specifications given in Table 1-4 may be substitued for the recommended equipment.

5-11 One extender board is located within the 3776, access to this board is obtained by removing the top cover and the printed circuit (pc) assemblies retaining metal cover (MP17).

5-12 ADJUSTMENT LOCATION

5-13 The locations of the adjustable components are shown in the component location diagrams given at the end of this Section. The appropriate diagram is referred to at the beginning of each adjustment procedure.

5-14 Related Adjustments

5-15 The +5V Power Supply adjustment set by A15R1 must be performed before adjusting the +15V or -15V Power Supplies. The +5V adjustment affects all low voltage d.c. supplies.

5-16 +5V POWER SUPPLY ADJUSTMENT

WARNING

THIS ADJUSTMENT REQUIRES THE REMOVAL OF THE TOP COVER. ALTHOUGH ADJUSTMENT IS PERFORMED WITH A PROTECTIVE SHIELD COVERING ASSEMBLIES A15 AND A16, ON WHICH APPROXIMATELY 340V DC IS PRESENT, THE ADJUSTMENT PROCEDURE SHOULD BE PERFORMED ONLY BY SERVICE-TRAINED PERSONNEL WHO ARE AWARE OF THE HAZARDS INVOLVED (FOR EXAMPLE FIRE AND ELECTRIC SHOCK).

REFERENCE

Figure 5-2 A15 Component Location

DESCRIPTION

Output of +5V supply set by adjustment of A15R1. This adjustment effects all other voltage d.c. supplies.

EQUIPMENT

PROCEDURE

- 1. Switch off the instrument.
- 2. Remove the Top Cover.
- 3. Connect the DC Voltmeter to the +5V test point. The +5V test point is indicated on the protective shield covering A15. Do not remove this shield.
- 4. Switch on the HP 3776.
- 5. Adjust A15R1 to give +5.10V +/-0.05V displayed on the DC Voltmeter. A15R1 +5V adjustment is indicated on the protective shield covering A15. Do not remove this shield.
- 6. Switch the HP 3776 off.
- 7. Replace the Top Cover.

5-17 +15V POWER SUPPLY ADJUSTMENT

WARNING

THIS ADJUSTMENT REQUIRES THE REMOVAL OF THE TOP COVER. ALTHOUGH ADJUSTMENT IS PERFORMED WITH A PROTECTIVE SHIELD COVERING ASSEMBLIES A15 AND A16, ON WHICH APPROXIMATELY 340V DC IS PRESENT, THE ADJUSTMENT PROCEDURE SHOULD BE PERFORMED ONLY BY SERVICE-TRAINED PERSONNEL WHO ARE AWARE OF THE HAZARDS INVOLVED (FOR EXAMPLE FIRE AND ELECTRIC SHOCK).

REFERENCE

Figure 5-3 A16 Component Location

DESCRIPTION

The +15V A 16R 11 adjustment is affected by the A15R1 +5V adjustment. The +5V adjustment must therefore be performed first.

EQUIPMENT

PROCEDURE

1. Switch off the instrument.

- 2. Remove the Top Cover.
- 3. Connect the DC Voltmeter to the +15V test point. The +15V test point is indicated on the protective shield covering A16. Do not remove this shield.
- 4. Switch on the 3776.
- 5. Adjust A16R11 to give +15.00V +/-0.1V displayed on the DC Voltmeter. A16R11 +15V adjustment is indicated on the protective shield covering A16. Do not remove this shield.
- 6. Switch the 3776 off.
- 7. Replace the Top Cover.

5-18 -15V POWER SUPPLY ADJUSTMENT

WARNING

THIS ADJUSTMENT REQUIRES THE REMOVAL OF THE TOP COVER. ALTHOUGH ADJUSTMENT IS PERFORMED WITH A PROTECTIVE SHIELD COVERING ASSEMBLIES A15 AND A16, ON WHICH APPROXIMATELY 340V DC IS PRESENT, THE ADJUSTMENT PROCEDURE SHOULD BE PERFORMED ONLY BY SERVICE-TRAINED PERSONNEL WHO ARE AWARE OF THE HAZARDS INVOLVED (FOR EXAMPLE FIRE AND ELECTRIC SHOCK).

REFERENCES

Figure 5-3 A16 Component Location

DESCRIPTION

The -15V A 16R 12 adjustment is affected by the A 15R 1 + 5V adjustment. The +5V adjustment must therefore be performed first.

EQUIPMENT

PROCEDURE

- 1. Switch off the instrument.
- 2. Remove the Top Cover.
- 3. Connect the DC Voltmeter to the -15V test point. The -15V test point is indicated on the protective shield covering A16. Do not remove this shield.
- 4. Switch on the HP 3776.

- 6. Switch the HP 3776 off.
- 7. Replace the Top Cover.

5-19 PROCESSOR CLOCK ADJUSTMENT

REFERENCE

Figures 5-4 A13 Component Location

DESCRIPTION

Adjustment A13C1 sets the 68B00 clock rate.

EQUIPMENT

5. Adjust A16R12 to give -15.00V +/-0.1V displayed on the DC Voltmeter. A16R12 -15V adjustment is

indicated on the protective shield covering A16. Do not remove this shield.

PROCEDURE

- 1. Switch the 3776 power off.
- 2. Remove the Top Cover.
- 3. Remove the pc assemblies metal retaining cover. Do not remove A15/A16 protective shield.
- 4. Connect the Frequency Counter to A13 test point 2f0.
- 5. Switch the 3776 power on.
- 6. Adjust A13C1 to give 2.048000MHz +/-1kHz (3776A) or 2.316000MHz +/-1kHz (3776B) displayed on the Frequency Counter.
- 7. Switch the 3776 power off.
- 8. Replace the pc assemblies metal retaining cover and the instrument Top Cover.

5-20 CLOCK EXTRACTION ADJUSTMENT

REFERENCE

Figure 5-5 A12 Component Location

DESCRIPTION

With no clock input, the natural frequency of the clock extractor circuit is centred on 1.544MHz (3776B)

or 2.048MHz (3776A) by the adjustment of A12C1.

EQUIPMENT

PROCEDURE

- 1. Switch the 3776 power off.
- 2. Remove the 3776 Top Cover.
- 3. Remove the pc assemblies metal retaining cover. Do not remove A15/A16 protective shield.
- 4. Connect the Frequency Counter to A12 test point CLK RX.
- 5. Check that the DIGITAL RECEIVE Input is not connected. Switch the power on and check that the DIGITAL TRANSMIT is in the SYNTH PCM mode (this ensures that the clock extract circuit will not lock onto the Digital Transmit Clock).
- 6. Adjust A12C1 to give 2.048MHz +/-1kHz (3776A) or 1.544MHz +/-1kHz (3776B) displayed on the Frequency Counter.
- 7. Switch off the instrument.
- 8. Replace the pc assemblies metal retaining cover and the instrument Top Cover.

5-21 CODEC GAIN ADJUSTMENT

REFERENCE

Figure 5-6 A2 Component Location Figure 5-7 A102 Component Location

DESCRIPTION

The codec interface gain is adjusted to give +14dB (3776A) or +16dB (3776B) (ie similar to -14dBr or -16TLP input). A Test Oscillator is connected to the AUX I/P, the 3776 connected back-to-back and the gain of codec adjusted for +14dB/+16dB gain displayed on the 3776 Receiver.

EQUIPMENT

Test Oscillator	.HP	654A
AC Voltmeter	.HP	3455A
Frequency Counter	.HP	5328A

PROCEDURE

- 1. Remove the instrument Top Cover and pc assemblies metal retaining cover.
- 2. Connect the DIGITAL TRANSMIT input to the DIGITAL RECEIVE input.

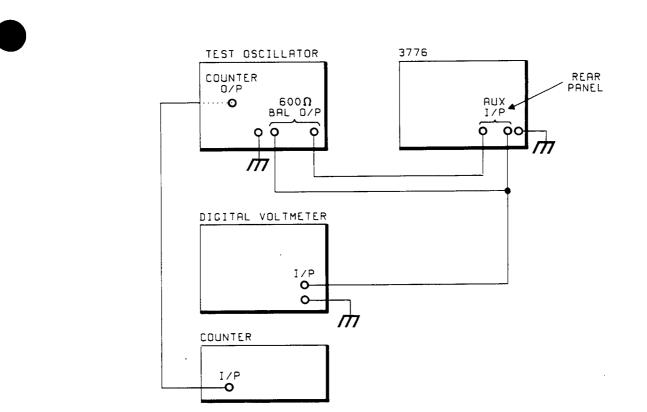


Figure 5-1 Codec Test Setup

- 3. Connect the test equipment as shown in Figure 5-1.
- 4. Set the 3776 operating mode to DIG Tx to DIG Rx.
- 5. Set the 3776 DIGITAL TRANSMIT CHAN to 1..30 (3776A) or TIMESLOT to 1..24 (3776B). Set the DIGITAL RECEIVE CHAN/TIMESLOT to 1.
- 6. Adjust the Test Oscillator Frequency to give 1.01kHz displayed on the Frequency Counter and 0.1228V (-16dBm/600ohm) if the instrument is a 3776B or 0.1545V (-14dBm/600ohm) if the instrument is a 3776A.
- 7. Ensure DIGITAL TRANSMIT CHAN/TIMESLOT is in SYNTH PCM mode (LED lit).
- 8. Set the measurement mode to LEVEL/SEL FILTER.
- 9. Set the MEAS Frequency on the 3776 to 1.01kHz.
- 10. Press the 3776 DELETE button (this selects AUX I/P).
- 11. Press RUN/REPEAT and adjust A2R6 to give 0.00dBmO displayed on the 3776 RESULTS display.
- 12. Replace the pc assemblies metal retaining cover and the instrument Top Cover.

Adjustments

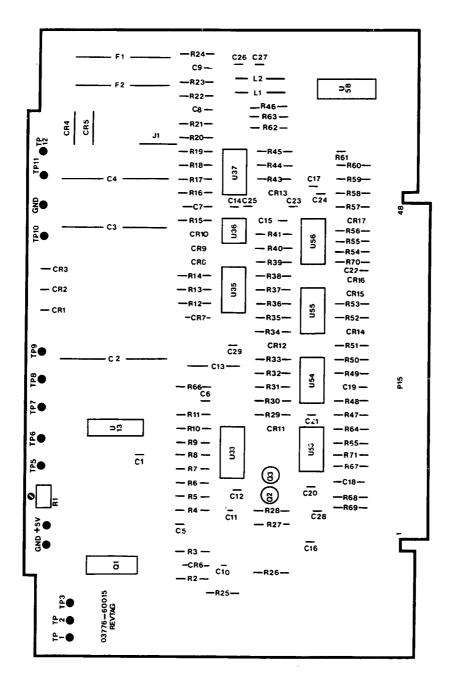


Figure 5-2 A15 Component Location

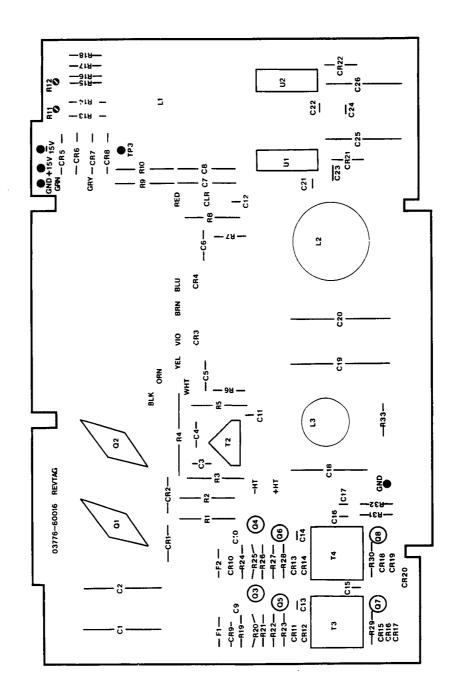


Figure 5-3 A16 Component Location

Adjustments

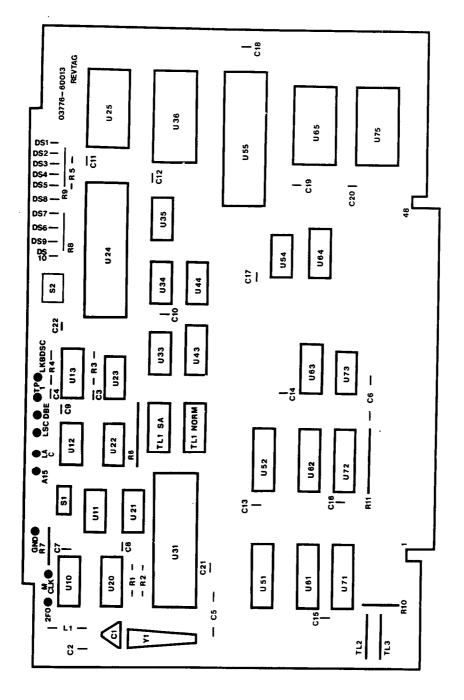
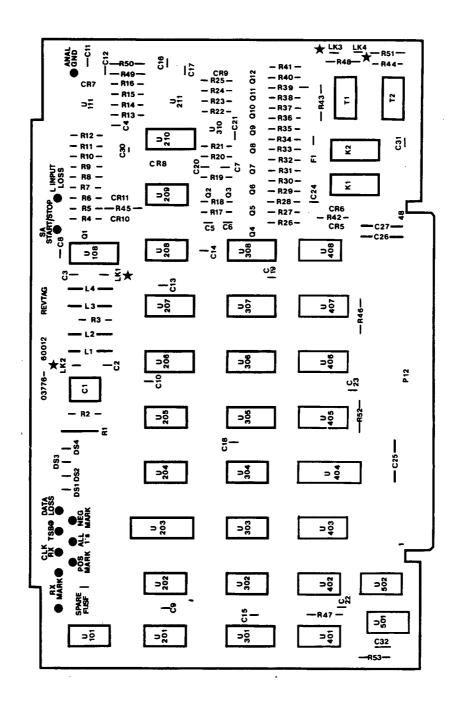



Figure 5-4 A13 Component Location

★ASSEMBLIES A12 & A112 ARE IDENTICAL EXCEPT FOR LINKING LK1, LK2, LK3 & LK4. REFER TO TABLE ON SHEMATIC FOR DETAILS (A12 : 3776A/A112 : 3776B).

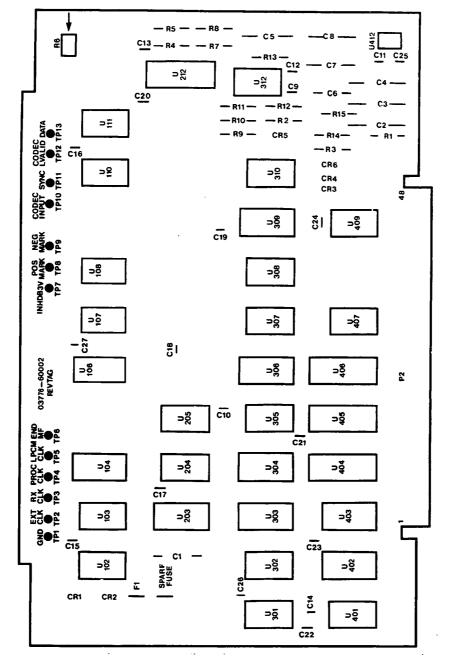
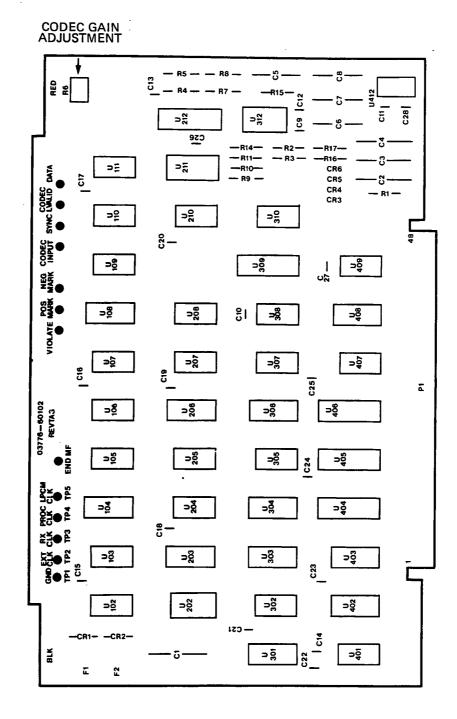
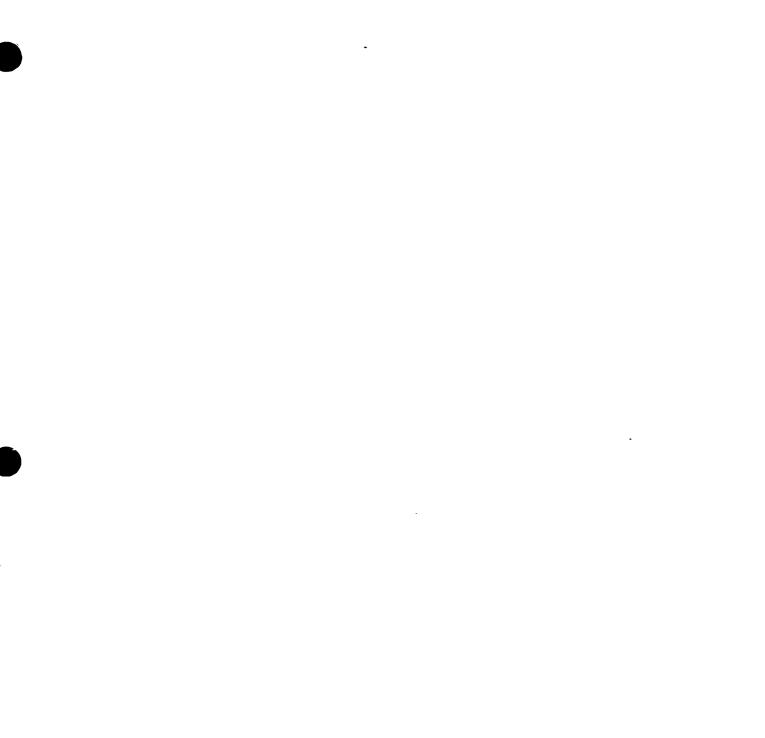




Figure 5-6 A2 Component Location

5-13

Replaceable Parts

_

SECTION VI REPLACEABLE PARTS

6-1 INTRODUCTION

6-2 This section contains information for ordering parts. Table 6-1 lists the board assemblies unique to the 3776A and 3776B respectively. Table 6-2 lists the abbreviations used in the parts list and throughout the manual. Table 6-3 lists all replaceable parts in reference designator order and Table 6-4 lists the names and addresses that correspond to the manufacturers' code number used in the parts list.

6-3 ABBREVIATIONS

6-4 Table 6-2 lists all the abbreviations used in the parts list, the schematics and throughout the manual. In some cases, two forms of an abbreviation are given, one all capital letters, the other partial or no capital letters. This occurs because the abbreviations used in the parts list are always all capitals; however, in other parts of the manual abbreviations are used with both upper and lower case letters.

6-5 REPLACEABLE PARTS LIST

6-6 Table 6-3 is a combined 3776A/B replaceable parts list. Board assemblies which are unique to the 3776A and to the 3776B (see Table 6-1) are highlighted in the A/B/OPTION column of Table 6-3.

37	3776A 3776 Assy No Page No Assy No		76B				
Assy No			Page No	_ DESCRIPTION			
A1 A2 A7 A11 A12 A13 A14 A21	6-5 6-9 6-29 6-38 6-42 6-45 6-45 6-49 6-57	A101 A102 A107 A111 A112* A113 A114 A121	6-7 6-11 6-32 6-40 6-42 6-47 6-50 6-60	Digital Synthesizer/PCM Generator Digital PCM Transmitter SAR, A/D Converter & Digital O/P A & U-Law Alignment Digital Receiver* Processor Memory Keyboard			

Table 6-1	Unique	Board	Assemblies
-----------	--------	-------	------------

*A112 identical to A12 except for arrangement of on-board links.

6-7 The optional assemblies which are covered by the replaceable parts list are as follows:

OPTION 001: A204 Analog Monitor Assembly (03776-60204) A5 Transients Assembly (03776-60005) A8 GD Timing, Imp. Noise Freq. Detector Assembly (03776-60008) OPTION 002: A214 Memory Assembly (03776-60214) (3776B Japanese Option) 6-8 Table 6-3 is organised as follows:

(a) Electrical assemblies and their components in alpha-numeric order by reference designation.

- (b) Chassis-mounted parts in alpha-numeric order by reference designation.
- (c) Miscellaneous parts.

(d) Illustrated parts breakdown.

The information given for each part consists of the following:

(a) The Hewlett-Packard part number.

- (b) Part number check digit (CD).
- (c) The total quantity (QTY) in the instrument.
- (d) The description of the part.
- (e) A typical manufacturer of the part in a five-digit code.
- (f) The manufacturers number for that part.
- (g) Highlights the instrument (A/B/Option) in which unique board assemblies are used.

The total quantity for each part is given only once - at the first appearance of the part in the list.

6-9 ORDERING INFORMATION

6-10 To order a part listed in the replaceable parts table, quote the Hewlett-Packard part number (with the check digit), indicate the quantity required, and address the order to the nearest Hewlett-Packard office. The check digit will ensure accurate and timely processing of your order.

6-11 To order a part that is not listed in the replaceable parts table, include the instrument model number, instrument serial number, the description and function of the part, and the number of parts required. Address the order to the nearest Hewlett-Packard Office.

6-12 DIRECT MAIL ORDER SYSTEM

6-13 Within the USA, Hewlett-Packard can supply parts through a direct mail order system. Advantages of using the system are as follows:

(a) Direct ordering and shipment from the HP Parts Centre in Mountain View, California.

(b) No maximum or minimum on any mail order (there is a minimum order amount for parts ordered through a local HP office when the orders require billing and invoicing).

(c) Prepaid transportation (there is a small handling charge for each order).

(d) No invoices - to provide these advantages, a cheque or money order must accompany each order.

6-14 Mail Order forms and specific ordering information are available through your local HP office. Addresses and phone numbers are located at the back of this manual.

Table 6-2 Reference Designations and Abbreviations

	REFERENCE D	ESIGNATIONS	
 Aassembly AT attenuator; isolator; termination Bfan; motor BTbattery Ccapacitor CPcoupler CRdiode; diode; diode thyristor; varactor DC directional coupler DLdelay line DSannunciator; signaling device (audible or visual); lamp; LED 	E miscellaneous electrical part F fuse FL filter H hardware HY circulator J electrical connector (stationary portion); jack K relay L coil; inductor M miscellaneous mechanical part	 P electrical connector (movable portion); plug Q transistor: SCR; triode thyristor R resistor RT thermistor S switch T transformer T transformer TB terminal board TC thermocouple TP test point 	 U integrated circuit; microcircuit V electron tube VR voltage regulator; breakdown diode W cable; transmission path; wire X socket Y crystal unit (piezo- electric or quartz) Z tuned cavity; tuned circuit
	ABBREVI	ATIONS	
 A ampere ac alternating current ACCESS accessory ADJ adjustment A/D analog-to-digital AF audio frequency AFC automatic frequency control AGC automatic gain control AL aluminum ALC automatic level control AM amplitude modula- tion AMPL aluminum ALC automatic phase control AM amplitude modula- tion AMPL	ABBREVI COMPL complete CONN connector CP cadmium plate CRT cathode-ray tube CTL complementary transistor logic transistor logic CW continuous wave cw degreelockwise dBm decibel admetare DA degree (temperature offerential angle) C degree Celsius	FET field-effect transistor flip-flop F/F flat head FIL H flat head FIL H fillister head FM frequency modulation FP front panel FREQ frequency FXD fixed g gram GE germanium GHz gigahertz GL glass GRD ground(ed) H hetrodyne HEX hexagonal HD hetrodyne HEX hexagonal HD hetadware HF high frequency HG mercury HF high frequency HG mercury HF high pass filter HR hour (used in parts list) HV HV high voltage Hz inside diameter IF inchremediate frequency IMPG IMPG include(s) INP input </td <td>LF low frequency LG long LH left hand LIM linear taper (used in parts list) lin linear LK WASH lock washer LO low; local oscillator LOG logarithmic taper (used in parts list) log logrithm(ic) LPF low pass filter LV low voltage m meter (distance) mA metl(distance) mA metl(distance) mA metl(distance) mA metl(distance) MAX megohm MEG meg (10⁶) (used in parts list) MET FLM metal film MET OX metallic oxide MF medium frequency; microfarad (used in parts list) MFR manufacturer mg milligram MHz milligram MHz minimum min minimum min minimute (time) ' miniature mm millimeter MOD metal-oxide semiconductor ms millisecond MTC millisecond</td>	LF low frequency LG long LH left hand LIM linear taper (used in parts list) lin linear LK WASH lock washer LO low; local oscillator LOG logarithmic taper (used in parts list) log logrithm(ic) LPF low pass filter LV low voltage m meter (distance) mA metl(distance) mA metl(distance) mA metl(distance) mA metl(distance) MAX megohm MEG meg (10 ⁶) (used in parts list) MET FLM metal film MET OX metallic oxide MF medium frequency; microfarad (used in parts list) MFR manufacturer mg milligram MHz milligram MHz minimum min minimum min minimute (time) ' miniature mm millimeter MOD metal-oxide semiconductor ms millisecond MTC millisecond
CHAN channel cm centimeter CMO . cabinet mount only COAX coaxial COEF coefficient COM common COMP composition	EDP electronic data processing ELECT electrolytic ENCAP encapsulated EXT external F farad	kHz kilohertz kΩ kilohm kV kilovolt lb pound LC inductance- capacitance LED light-emitting diode	MTG mounting MTR meter (indicating device) mV millivolt mVac millivolt, ac mVdc millivolt, dc mVpk millivolt, peak

NOTE

All abbreviations in the parts list will be in upper-case.

6-3

Table 6-2 Reference Designations and Abbreviations (continued)

······································			
mVp-p millivolt, peak-	P peak (used in parts	REF reference	TERM terminal
to-Deak	list)	REG regulated	TFT thin-film transistor
mVrms millivolt, rms		REPL replaceable	TGL togg!e
mW milliwatt	PAM pulse-amplitude	RF radio frequency	THD thread
MUX multiplex	modulation	RFI radio frequency	THRU through
	PC printed circuit	•	TI titanium
MY mylar	PCM pulse-code modula-	interference	
μ A microampere	tion; pulse-count	RH round head; right	TOL tolerance
μ F microfarad	modulation	hand	TRIM trimmer
μH microhenry	PDM pulse-duration	RLC resistance-	TSTR transistor
µmho micromho	modulation	inductance-	TTL transistor-transistor
μs microsecond	pF picofarad	capacitance	logic
μV microvolt	PH BRZ phosphor bronze	RMO rack mount only	TV television
µVac microvolt, ac	PHL Phillips	rms root-mean-square	TVI television interference
µVdc microvolt, dc	PIN positive-intrinsic-	RNDround	TWT traveling wave tube
µVpk microvolt, peak	negative	ROM read-only memory	U micro (10 ^{°6}) (used
µVp-p microvolt, peak-	PIV peak inverse	R&P rack and panel	in parts list)
to-peak	voltage	RWV reverse working	UF microfarad (used in
µVrms microvolt, rms	pk peak	voltage	parts list)
μW microwatt	PL phase lock	S scattering parameter	UHF ultrahigh frequency
nA nanoampere	PLO phase lock	s second (time)	UNREG unregulated
NC no connection	oscillator	" . second (plane angle)	V volt
N/C normally closed		S-B slow-blow (fuse)	VA voltampere
	PM phase modulation	· · · · ·	
NE neon	PNP positive-negative-	(used in parts list)	Vac volts, ac
NEG negative	positive	SCR silicon controlled	VAR variable
nF nanofarad	P/O part of	rectifier; screw	VCO voltage-controlled
NI PL nickel plate	POLY polystyrene	SE selenium	oscillator
N/O normally open	PORC porcelain	SECT sections	Vdc volts, dc
NOM nominal	POS positive; position(s)	SEMICON semicon-	VDCW. volts, dc, working
NORM normal	(used in parts list)	ductor	(used in parts list)
NPN negative-positive-	POSN position	SHF superhigh fre-	V(F) volts, filtered
negative	POT potentiometer	quency	VFO variable-frequency
NPO negative-positive	p-p peak-to-peak	SI silicon	oscillator
zero (zero tempera-	PP peak-to-peak (used	SIL silver	VHF very-high fre-
ture coefficient)	in parts list)	SL slide	quency
NRFR not recommended	PPM pulse-position	SNR signal-to-noise ratio	Vpk volts, peak
for field replace-	modulation	SPDT single-pole,	Vp-p volts, peak-to-peak
ment		double-throw	Vrms volts, rms
	PREAMPL preamplifier	SPG spring	VSWR voltage standing
NSR not separately	PRF pulse-repetition		wave ratio
replaceable	frequency	SR split ring	VTO voltage-tuned
ns nanosecond	PRR pulse repetition	SPST single-pole, single-throw	oscillator
nW nanowatt	rate	-	VTVM vacuum-tube
OBD order by descrip-	ps picosecond	SSB single sideband	voltmeter
tion	PT point	SST stainless steel	V(X) volts, switched
OD outside diameter	PTM pulse-time	STL steel	W
OH oval head	modulation	SQ square	W/ with
OP AMPL operational	PWM pulse-width	SWR standing-wave ratio	WIV working inverse
amplifier	modulation	SYNC synchronize	voltage
OPT option	PWV peak working	T timed (slow-blow fuse)	WW wirewound
OSC oscillator	voltage	TA tantalum	W/O without
OX oxide	RC resistance-	TC temperature	YIG yttrium-iron-garnet
oz ounce	capacitance	compensating	Z ₀ characteristic
Ω ohm	RECT rectifier	TD time delay	impedance
	ingor reculler	12 Mine delay	
	NO [*]		
		rts list will be in upper-case.	
	MULTIP	LIERS	
	Abbreviation P	Prefix Multiple	

bbreviation	Prefix	Multiple
т	tera	1012
Ğ	giga	109
M	mega	106
k	kilo	103
da	deka	10
d	deci	10-1
с	centi	102
m	milli	10-3
μ	micro	10-6
'n	nano	10 ⁹
р	pico	10-12
f	femto	10-15
а	atto	10-18

Table 6-3. Replaceable Parts

Table 6-3. Replaceable Parts							
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
A1	03776-60001	6	1	DIGITAL SYNTHESIZER/PCM GENERATOR AGOY	28480	03774-60001	
A1C1 A1C2 A1C3 A1C4 A1C5	0130-0155 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	ຜູນພູນພ	1 17	CAPACITOR FXD 2.2UF+-202 20UDC TA CAPACITOR-FXD .1UF +-202 50UDC CER CAPACITOR-FXD .1UF +-202 50UDC CER CAPACITOR-FXD .1UF +-202 50UDC CER CAPACITOR-FXD .1UF +-202 50UDC CER	56282 28480 28480 28480 28480 28480	150D225X0020A2 0140-0576 0140-0576 0140-0576 0140-0576 0140-0576	
A1C6 A1C7 A1C8 A1C9 A1C10	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	មាលមាល		CAPACITOR-FXD .1UF +-20% SOVDC CER CAPACITOR-FXD .1UF +-20% SOVDC CER CAPACITOR-FXD .1UF +-20% SOVDC CER CAPACITOR-FXD .1UF +-20% SOVDC CER CAPACITOR-FXD .1UF +-20% SOVDC CER	28480 23430 28480 28480 28480 28480	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	
A1C11 A1C12 A1C13 A1C14 A1C15	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	ទទទទទ		CAPACITOR FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER	28480 28480 28480 28480 28480 28480	0160-0576 0140-0576 0140-0576 0140-0576 0140-0576 0140-0576	
A1C16 A1C17 A1C18	0160~0576 0160-0576 0160-0576	5 5 5 5		-CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER	28480 28480 28480	0160-0576 0140-0576 0160-0576	
A1CR1	1901-0044	5	1	DIODC-SWITCHING SOV SOMA 6HS	28480	1901-0044	
A1R1 A1R2	0757-0280 0757-0280	3	2	RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100	24546 24546	C4-1/8-T0-100;-F C4-1/0-T0-1001 F	
A1TL1 A1TL2	1258-0124 1258-0124	7 [.] 7	2	PIN-PROGRAMING DUMPER .30 CONTACT PIN-PROGRAMING DUMPER .30 CONTACT	91506 21506	8136- 47561 8136-47561	
A1U101 A1U102 A1U103 A1U104	1820-1432 1820-1432 1820-1432 03776-80038 03779-20305	55512	3 1 8	IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG PROM HEAT SINK	01295 01295 01295 20480 28480	CN74LS163AN GN74LS163AN SN74LS163AN 03726-80030 03779-20305	
A1U105	03776-80039 03779-20305	2	1	PROM HEAT SINK	23430 28480	03776-80039 03779-20305	
A1U106 A1U107	03776-30040 03779-20305 03776-80041 03779-20305	5262	1 1	PROM HEAT SINK PROM HEAT SINK	28480 28480 28480 28480 28480	03779-20305 03779-20305 03779-20305 03779-20305	
A1U108 A1U109 A1U110	03776-80042 03779-20305 03776-80043 03779-20305 1820-1217	72824	1 1 2	PROM HEAT SINK PROM HEAT SINK IC MUXR/DATA-SEL TTL LS B-TO-1-LINE	28480 28480 28480 28480 28480 01295	03776-80042 03777-20305 03776-80043 03779-20305 SN74LS151N	A
A1U201 A1U202 A1U203 A1U301 A1U302	1820-1216 1820-1217 1820-1196 1820-1195 1818-1718	34 87 5	1 1 2	IC DCDR TIL LS 3-TO-8-LINE 3-INP IC MUXR/DATA-SCL TIL LS 3-TO-1-LINE IC FF TIL LS D-TYPE POS-EDGE-TRIG COM IC FF TIL LS D-TYPE POS-CDGE-TRIG COM IC NMOS 16384 (16K) STAT RAM 120-NC 3-S	01275 01275 01275 01275 5008	SN74LS13RN SN74LS151N SN74LS174N SN74LS175N MK4802N-1	
A1U303 A1U304 A1U305 A1U306	1320-2795 0 3776-8 0052 1320-2700 1 820-2667 1205-0428	59203	3 1 2 4 4	IC DRVR TTL F LINE DRVR OCTL Prom IC LC:I TTL F D TYPE OCTL BIT-SLIDE PROCESSOR HEAT SINK SGL DIP	20480 28480 07263 28480 20480	1820-2775 03776-80052 74F373PC 1820-2667 1295-0428	
A1U401 A1U405 A1U406 A1U501	1820-1112 1820-1997 1820-2667 1205-0428 1820-1112	8 7 0 3 8	2 5	IC FF TTL LS D-TYPE POS-EDGE-TRIG IC FF TTL LS D-TYPE POS EDGE-TRIG PRL-IN BIT-SLICE PROCESSOR HEAT SINK SGL DIP IC FF TTL LS D-TYPE POS-EDGE-TRIG	01295 01295 28480 28480 01295	SN74LS74AN SN74LS374N 1820-2667 1205-0428 SN74LS74AN	
A1U502 A1U503 A1U504 A1U505 A1U505 A1U505 A1U601 A1U605 A1U606 A1U701	1820-2700 1820-2667 1205-0428 03776-80050 03779-20305 1820-1997 1820-2667 1205-0428	550203727035	1	IC NMOS 16384 (16K) STAT RAM 120-NS 3-S IC DRVR TTL F LINE DRVR OCTL PROM IC LCH TTL F D-TYPE OCTL BIT-SLICE PROCESSOR HEAT SINK SGL DIP PROM HEAT SINK IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN BIT-SLICE PROCESSOR HEAT SINK SGL DIP IC INV TTL LS HEX	50089 20480 20480 07263 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480	MK4802N-1 1020-2795 03776-80053 7473780 1205-0428 03776-80050 03779-20305 5N74L5374N 1820-2667 1205-0420 5N74L505N	
A1U702 A1U703 A1U801 A1U802	03779-20305	7 7 8 2 7	1	IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN PROM HEAT SINK IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN	01295 01295 28480 28430 01295	SN74LS374N SN74LS374N 03776-80051 03779-20305 SN74LS374N	
A1U803 A1U804 A1U805 A1U806 A1U806 A1U807	1320-2670 1820-2795	75959	1 1 1	IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN IC SHF-RGTR TTL LS COM CLEAR STOR B-BIT IC GATE TTL F OR QUAD 2-TNP IC DRVR TTL F LINE DRVR OCTL IC GEN TTL F LOOK-AHD-CRY 4-BIT	01295 01295 07263 28480 28480	SN74LS374N SN74LS299N 74F32PC 1820-2795 1820-2955	

	· .
Table 6-3	l. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
MSC MSC MSC	1480-0116 4040-0748 4040-0749	8 3 4	2 1 1	PIN-GRV .062-IN-DIA .25-IN-LG STL EXTR-PC BD BLK POLYC .062-BD-THKNS EXTR-PC BD BRN POLYC .062-BD-THKNS	28480 28480 28480	1480-0116 4040-0748 4040-0749	Α
-							
ĺ							

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
A101	83776-60101	7	1	DIGITAL SYNTHESIZER/PCM GENERATOR ASSY	28480	03776-60101	
A101C1 A101C2 A101C3 A101C4 A101C5	0180-0155 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	លែលស្ល	1 17	CAPACITOR-FXD 2.2UF+-20X 20VDC TA CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER	56289 28480 28480 28480 28480 28480	150D225X0020A2 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	
A101C6 A101C7 A101C3 A101C9 A101C9 A101C10	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	ບອອອອອ		CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER	28480 28480 28480 28480 28480 28480	0140-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	
A101C11 A101C12 A101C13 A101C13 A101C14 A101C15	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	លលលល		CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER	28480 28480 28480 28480 28480 28480	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	
A101016 A101017 A101018	0160-0576 0160-0576 0160-0576	សសស		CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER	28480 28480 23480	0160-0576 0160-0576 0160-0576	
A101CR1	1901-0044	5	1	DIODE-SWITCHING 50V 50MA 6NS	28480	1901-0044	
A101R1 A101R2	9757-0280 9757-0280	3 3	2	RESISTOR 1K 1Z .125W F TC=0+-100 RESISTOR 1K 1Z .125W F TC=0+-100	24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-1001-F	
A101TL1 A101TL2	1258-0124 1258-0124	7 7	2	PIN-PROGRAMING DUMPER .30 CONTACT PIN-PROGRAMING DUMPER .30 CONTACT	91506 91506	8136-47561 8136-47561	
A101U101 A101U102 A101U103 A101U104	18201432 18201432 18201432 03776-80044 03779-20305	50000	3 1 8	IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG PROM HEAT SINK	01275 01275 01275 28480 28480	SN74LS163AN SN74LS163AN SN74LS163AN 03776-80044 03779-20305	
A101U105	03776-80045 03779-20305	0	1	PROM Heat Sink	28480 29430	03776-80045 03779-20305	
A1 01U106 A1 01U107	03776-80046 03779-20305 03776-80047	1 2 2	1	PROM HEAT SINK Prom	28480 28480 28480	03776-80046 03779-20305 03776-80047	
A101U108	03779-20305	2	1	HEAT SINK Prom	28480 28480	03779-20305 03776-80048	B
A101U109	03779-20305 03776-80049 03779-20305	242	1	HEAT SINK Prom Heat Sink	28430 28480 28480	03779-20305 03776-80049 03779-20305	
A101U110 A101U201 A101U202 A101U203 A101U203 A101U301 A101U302	1820-1217 1820-1216 1820-1217 1820-1196 1820-1195 1818-1718	4 34 8 7 5	2 1 1 2	IC MUXR/DATA-SEL TTL LS 8-T0-1-LINE IC DCDR TTL LS 3-T0-8-LINE 3-INP IC MUXR/DATA-SEL TTL LS 8-T0-1-LINE IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC NMOS 16384 (16K) STAT RAM 120-NS 3-S	01295 01295 01295 01295 01295 01295 50088	SN74LS151N SN74LS138N SN74LS151N SN74LS174N SN74LS175N MK4802N~1	
A101U303 A101U304 A101U305 A101U306	1820-2795 03776-80052 1820-2700 1820-2667 1205-0428	59203	3 1 2 4 4	IC DRVR TTL F LINE DRVR OCTL PROM IC LCH TTL F D. TYPE OCTL BITSLICE PROCESSOR HEAT SINK SGL DIP	28480 28480 07263 28480 28480	1820-2795 03776-80052 74f373PC 1820-2667 1205-0428	
A1010401 A1010405 A1010406 A1010501	1820-1112 1820-1997 1820-2667 1205-0428 1820-1112	87038	2 6	IC FF TTL LS D-TYPE POS-EDGE-TRIG IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN BIT-SLICE PROCESSOR HEAT SINK SGL DIP IC FF TTL LS D-TYPE POS-EDGE-TRIG	01295 01295 28480 28480 01295	SN74LS74AN SN74LS374N 1820-2667 1205-0428 SN74LS74AN	
A1010502 A1010503 A1010504 A1010505 A1010506	1818-1718 1820-2795 03776-80053 1820-2700 1820-2667 1205-0428	550203	1	IC NMOS 16384 (16K) STAT RAM 120-NS 3-S IC DRVR TTL F LINE DRVR OCTL PROM IC LCH TTL F D-TYPE OCTL BIT-SLIGE PROCESSOR HEAT SINK SGL DIP	50088 28480 28480 07263 28480 28480	MK 4802N~1 1820-2795 03776-80053 74F 373PC 18202667 1205-0428	
A101U601 A101U605 A101U606	03776-80050 03779-20305 1820-1997 1820-2667 1205-0428	72703	1	PROM HEAT SINK IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN BIT-SLICE PROCESSOR HEAT SINK SGL DIP	28480 28430 01295 28430 28480	03776-80050 03779-20305 SN74LS374N 1820-2667 1205-0428	
A101U701 A101U702 A101U703 A101U801	1820-1200 1820-1997 1820-1997 03776-80051 03779-20305	57782	1	IC INV TTL LS HEX IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN PROM HEAT SINK	01295 01295 01295 28480 28480	SN74LS05N SN74LS374N SN74LS374N 03776-80051 03779-20305	

See introduction to this section for ordering information *Indicates factory selected value

.

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
A101U302 A101U803 A101U804 A101U805 A101U805 A101U806	1320 -1797 1820-1997 1820-1987 1820-2690 1820-2690 1820-2795	77595	1	IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN IC SWF-RGTR TTL LS COM CLGAR STOR 3-BIT IC CATE TTL F OR QUAD 2-INP IC DRVR TTL F LINE DRVR OCTL	01295 01295 01295 07263 28480	SN74LS374N SN74LS374N SN74LS299N 74F32PC 1820-2795	I
A101U807	1820-2955	9	1	IC GEN TTL F LOOK-AHD-CRY 4-BIT	28480	1820-2955	B
MSC MSC MSC	1430-0116 4040-0748 4040-0749	8 3 4	2 1 1	PIN-GRV .062-IN-DIA .25-IN-LG STL EXTR-PC BD BLK POLYC .062-BD-THKNS EXTR-PC BD BRN POLYC .062-BD-THKNS	28480 28480 28480 28480	1480-0116 4040-0748 4040-0749	
	:			•			
		•					
						9	

See introduction to this section for ordering information *Indicates factory selected value

Table 6-3. Replaceable Parts

				Table 6-3. Replaceable Parts			
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
A2	03776-60002	7	1	DIGITAL PCM TRANSMITTER ASSY	28480	03776-60002	-
A2C1 A2C2 A2C3 A2C4 A2C5	0180-1846 0130-1846 0180-1846 0130-1846 0130-1846 0160-0685	6665 7	4	CAPACITOR-FXD 2.2UF+-10% 35VDC TA CAPACITOR-FXD 2.2UF+-10% 35VDC TA CAPACITOR-FXD 2.2UF+-10% 35VDC TA CAPACITOR-FXD 2.2UF+-10% 35VDC TA CAPACITOR-FXD 0.1UF 1% 63VDC	56289 56289 56289 56289 56289 28480	150D225X9035B2 150D225X9035B2 150D225X9035B2 150D225X9035B2 150D225X9035B2 0160-0685	
A2C6 A2C7 A2C8 A2C9 A2C9 A2C10	0160-0685 0160-0685 0160-0685 0160-0576 0160-0576 0160-0576	77755	15	CAPACITOR-FXD 0.1UF 1% 63VDC CAPACITOR-FXD 0.1UF 1% 63VDC CAPACITOR-FXD 0.1UF 1% 63VDC CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER	28480 28480 28480 28480 28480 28480	0160-0685 0160-0685 0160-0685 0160-0576 0160-0576	
A2C11 A2C12 A2C13 A2C13 A2C14 A2C15	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	ស្លេសស	1	CAPACITOR-FXD .1UF +-20% 50VDC CCR CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER	28480 28480 28480 28480 28480 28480	0160-0576 0150-0576 0160-0576 0160-0576 0160-0576 0160-0576	
A2C16 A2C17 A2C18 A2C19 A2C20	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	50000		CAPACITOR-FXD .1UF +-20% SOVDC CER CAPACITOR-FXD .1UF +-20% SOVDC CER CAPACITOR-FXD .1UF +-20% SOVDC CER CAPACITOR-FXD .1UF +-20% SOVDC CER CAPACITOR-FXD .1UF +-20% SOVDC CER	28480 28480 28480 28480 28480 28480	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	
A2C21 A2C22 A2C23 A2C23 A2C24 A2C25	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	<u></u> ນ ນ ນ ນ ນ ນ ນ		CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER	28480 28480 28480 28480 28480 28480	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	
A2C26 A2C27	0160-0576 0160-0576	5 5		CAPACITOR-FXD .1UF +-20% SOVDC CER CAPACITOR-FXD .1UF +-20% SOVDC CER	28480 28480	0160-0576 0160-0576	
A2CR1 A2CR2 A2CR3 A2CR4 A2CR5	1701-0537 1701-0537 1701-1058 1701-1078 1701-1078 1701-1078	3 3 1 1 1	2 4	DIODE-SM SIG SCHOTTKY DIODE-SM SIG SCHOTTKY DIODE-SMITCHING 1N4150 SOV 200MA 4NS DIODE-SWITCHING 1N4150 SOV 200MA 4NS DIODE-SWITCHING 1N4150 SOV 200MA 4NS	28480 28460 9N171 9N171 9N171	1901-0539 1901-0539 1N4150 1N4150 1N4150	
A2CR6	1901-1098	1		DIODE-SWITCHING 1N4150 50V 200MA 4NS	9N171	1N4150	
A2F1 A2F2	2110-0218 2110-0218	9 9	2	FUSE .1A 250V .25X.27 FUSE .1A 250V .25X.27	28480 28480	2110-0218 2110-0218	A
A2R1 A2R2 A2R3 A2R4 A2R5	0757-0458 0757-0442 0757-0442 0757-0442 0757-0458 0757-0279	7 9 7 7 0	2 2: 1	RESISTOR 51.1K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 51.1K 1% .125W F TC=0+-100 RESISTOR 3.16K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-5112-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-5112-F -C4-1/8-T0-5112-F	
A2R6 A2R7 A2R8 A2R9 A2R9	2100-3353 0678-8827 0698-0084 0678-6360 0698-6360	84966	1 4 1 4	RESISTOR-TRMR 20K 10% C SIDE-ADJ 1-TRN RESISTOR 1M 1% .125W F TC=0+100 RESISTOR 2.15K 1% .125W F TC=0+-100 RESISTOR 10K .1% .125W F TC=0+-25 RESISTOR 10K .1% .125W F TC=0+-25	28480 23480 24546 28480 28480	2100-3353 0678-8827 C4~1/8-70~2151~F 0678-6360 0678-6360	
A2R11 A2R12 A2R13 A2R14 A2R15	0698-6360 0698-6360 0698-8827 0698-8827 0698-8827 0698-8827	6 6 4 4 4	1	RESISTOR 10K .1% .125W F TC=0+-25 RESISTOR 10K .1% .125W F TC=0+-25 RESISTOR 1M 1% .125W F TC=0+-100 RESISTOR 1M 1% .125W F TC=0+-100 RESISTOR 1M 1% .125W F TC=0+-100	28480 28480 28480 28480 28480 28480	0698-6360 0698-6360 0698-8827 0698-8827 0698-8827 0698-8827	
A2U47 A2U102 A2U103 A2U104 A2U106	1826-0220 1320-1416 1820-1416 1320-1217 1820-1217 1820-1196	95548	1 3 1 4	IC V RGLIR TO-39 IC SCHMITT-TRIG TTL LS INV HEX 1-INP IC SCHMITT-TRIG TTL LS INV HEX 1-INP IC MUXR/DATA-SCL TTL LS 8-TO-1-LINE IC FF TTL LS D-TYPE POS-EDGE-TRIG COM	27014 01275 01295 01295 01295 01295	LH320H-05 SN74LS14N SN74LS14N SN74LS151N SN74LS151N SN74LS174N	
A2U107 A2U108 A2U110 A2U111 A2U111 A2U203	1020-2076 1820-1201 1320-1208 1820-1112 1820-1432	9 63 85	1 3 2 1	IC CNTR TTL LS BIN DUAL 4-BIT IC GATE TTL LS AND QUAD 2-INP IC GATE TTL LS OR QUAD 2-INP IC FF TTL LS D-TYPE POS-EDRE-TRIG IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG	01295 01295 01295 01295 01295 01295	SN74LS393N SN74LS08N SN74LS32N SN74LS74AN SN74LS74AN SN74LS163AN	
A2U204 A2U205 A2U212 A2U301 A2U302	1820-2506 1820-1211 1326-1030 1820-1416 1820-1208	6 8 1 5 3	1 1 1	IC INV TTL F HEX IC GATE TTL LS EXCL-OR QUAD 2INP ICD 2913 620 IC SchwittTrig TTL LS INV HEX 1INP IC GATE TTL LS OR QUAD 2INP	07263 01295 28480 01295 01295	74F04PC SN74LSB6N 1826-1030 SN74LS14N SN74LS32N	
A2U303 A2U304 A2U305 A2U306 A2U307	1020-1281 1820-1196 1820-1112 1820-1922 1820-1922	2 8 8 8 3	1	IC DCDR TTL LS 2-TO-4-LINE DUAL 2-INP IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC FF TTL LS D-TYPE POS-EDGE-TRIG IC SHF-RGTR TTL LS PRL-IN SERIAL-OUT IC GATE TTL LS OR QUAD 2-INP	01275 01275 01275 01275 01275 01275	SN74LS139N SN74LS174N SN74LS74AN SN74LS166N SN74LS166N SN74LS32N	
A2U307	1820-1208	3					

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	CD	Qty	Description	Mfr	Mfr Part	A/B/
	1820-1144	6	1	IC GATE TTL LS NOR QUAD 2 -INP	01275	SN74L502N	Option
A20309 A20310 A20312 A20401	1820-1196 1920-1905 1826-0410 1820-1422	8 7 9 3	1 1 1	IC FF TTL LS D…TYPE POS-EDGE-TRIG COM IC GATE TTL LS NOR DUAL S…TNP IC OP AMP LOW-BIAS-H-INPD QUAD 14-DIP-P IC HV TTL LS MONOSTBL RETRIG	01295 07263 01295 01295	SN74LS174N 74LS260PC TL084CN SN74LS122N	
A2U402 A2U403 A2U404 A2U405 A2U405 A2U406	1820-1491 1320-1196 1820-1997 1820-1997 1820-1997	6 8 7 7 7 7	1 3	IC BFR TTL LS NON-INV HEX 1-INP IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC FF TTL LS D-TYPE POS-EDGE-TRIG PRI -IN IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL IN IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN	01295 01295 01295 01295 01295 01295	SN74L S367AN SN74L S17AN SN74L S37AN SN74L S37AN SN74L S37AN SN74L S37AN	A
A2U407 A2U409	1820-1433 1820-1205	6 0	1 1	IC SHE-RGTR TTL LS RHS SERIAL-IN PRL-OUT IC GATE TTL LS AND DUAL 4-INP	01295 01295	SN74LS164N . SN74LS21N	
MSC MSC MSC	1480-0116 4040-0748 4040-0750	8 3 7	2 1 1	PIN-GRV .062-IN-DIA .25-IN-LG STL EXTR-PC BD BLK POLYC .062-BD-THKNS EXTR-PC BD RED POLYC .062-BD-THKNS	28480 28480 28480 23480	1430-0116 4040-0740 4040-0750	
·							
					:		
					1		

----; ;

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
A102	03776-60102	8	1	DIGITAL PCH TRANSMITTER ASSY	28480	03776-60102	
A102C1 A102C2 A102C3 A102C4 A102C4 A102C5	0180-1846 0180-1846 0180-1846 0180-1846 0180-1846 0160-0685	66657	4	CAPACITOR-FXD 2.2UF+-10% 35VDC TA CAPACITOR-FXD 2.2UF+-10% 35VDC TA CAPACITOR-FXD 2.2UF+-10% 35VDC TA CAPACITOR-FXD 2.2UF+-10% 35VDC TA CAPACITOR-FXD 0.1UF 1% 63VDC	56289 56289 56289 56289 56289 28480	150D225X9035B2 150D225X9035B2 150D225X9035B2 150D225X9035B2 0140-0685	
A102C6 A102C7 A102C8 A102C9 A102C9 A102C10	0160-0605 0160-0685 0160-0685 0160-0685 0160-0576 0160-0576	77755	20	CAPACITOR-FXD 0.1UF 12 630DC CAPACITOR-FXD 0.1UF 12 630DC CAPACITOR-FXD 0.1UF 12 630DC CAPACITOR-FXD 1.UF +-202 500DC CER CAPACITOR-FXD .1UF +-202 500DC CER	28480 28480 28480 28480 28480 28480	0160-0685 0140-0685 0140-0685 0140-0576 0140-0576 0140-0576	
A102C11 A102C12 A102C13 A102C14 A102C14 A102C15	0160~0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	ນຄຸມຄຸມ		CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER	28480 28480 28480 28480 28480 28480	0140-0576 0140-0576 0140-0576 0160-0576 0160-0576 0160-0576	
A102C16 A102C17 A102C18 A102C19 A102C20	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	ຍອອອອອ		CAPACITOR-FXD .1UF +-202 50VDC CER CAPACITOR-FXD .1UF +-202 50VDC CER CAPACITOR-FXD .1UF +-202 50VDC CER CAPACITOR-FXD .1UF +-202 50VDC CER CAPACITOR-FXD .1UF +-202 50VDC CER	28480 20480 28430 28480 28480	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	
A102C21 A102C22 A102C23 A102C23 A102C24 A102C25	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	លលលល		CAPACITOR-FXD .1UF +-202 50VDC CER CAPACITOR-FXD .1UF +-202 50VDC CER CAPACITOR-FXD .1UF +-202 50VDC CER CAPACITOR-FXD .1UF +-202 50VDC CER CAPACITOR-FXD .1UF +-202 50VDC CER	28480 28480 28480 28480 28480 28480	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	
A102C26 A102C27 A102C28	0160-0576 0160-0576 0160-0576	505		CAPACITOR-FXD .10F +-20Z 50VDC CER CAPACITOR-FXD .1UF +-20Z 50VDC CCR CAPACITOR-FXD .1UF +-20Z 50VDC CER	28480 28480 28480	0160-0576 0140-0576 0160-0576	
A1 02CR1 A1 02CR2 A1 02CR3 A1 02CR4 A1 02CR5	1901-0539 1901-0539 1901-1098 1901-1098 1901-1098	3 3 1 1 1	2 4	DIODE-SM SIG SCHOTTKY DIODE-SM SIG SCHOTTKY DIODE-SWITCHING 1N4150 50V 200MA 4NS DIODE-SWITCHING 1N4150 50V 200MA 4NS DIODE-SWITCHING 1N4150 50V 200MA 4NS	28480 23480 9N171 2N171 9N171	1901-0539 1901-0539 1N4150 1N4150 1N4150 1N4150	
A1 02CR6	1701-1098	1		DIDDE-SWITCHING 1N4150 SOV 200MA 4NS	9N171	1N4150	
A102F1 A102F2	2110-0218 2110-0218	9 9	2	FUSE .1A 250V .25X.27 FUSE .1A 250V .25X.27	28480 28480	2110-0218 2110-0218	B
A102R1 A102R2 A102R3 A102R4 A102R5	0757-0459 0757-0442 0757-0442 0757-0458 0757-0458 0757-0279	7 7 9 7 0	2 2 1	RESISTOR 51.1K 1Z .125W F TC=0+-100 RESISTOR 10K 1Z .125W F TC=0+-100 RESISTOR 10K 1Z .125W F TC=0+-100 RESISTOR 51.1K 1Z .125W F TC=0+-100 RESISTOR 51.1K 1Z .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-5112-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-5112-F C4-1/8-T0-5112-F	
A102R6 A102R7 A102R3 A102R9 A102R10	2100-3353 0 698-8827 0 698-0 0 84 0 698-6360 0 698-6360	84966	1 4 1 4	RESISTOR-TRMR 20K 10% C SIDE-ADJ 1-TRN RESISTOR 1H 1% ,125₩ F TC=0+-100 RESISTOR 2,15K 1% ,125₩ F TC=0+-100 RESISTOR 10K ,1% ,125₩ F TC=0+-25 RESISTOR 10K ,1% ,125₩ F TC=0+-25	28480 28480 24546 28480 28480	2100-3353 06788827 C4+178-T0-2151 -F 06786360 06786360	
A102R11 A102R14 A102R15 A102R16 A102R16 A102R17	0698-6360 0678-6360 0698-8827 0698-8827 0698-8827 0698-8827	6644 444		RESISTOR 10K .1% .125W F TC=0+-25 RESISTOR 10K .1% .125W F TC=0+-25 RESISTOR 1M 1% .125W F TC=0+-100 RESISTOR 1M 1% .125W F TC=0+-100 RESISTOR 1M 1% .125W F TC=0+-100	28480 28480 28480 28480 28480 28480	0478-4360 0478-4360 0478-8827 0478-8827 0478-8827 0478-8827	
A102U102 A102U103 A102U104 A102U104 A102U105 A102U106	1320-1416 1820-1416 1820-1217 1820-1217 1820-1197 1320-1208	មាសមុខភ	3 1 2 5	IC SCHMITT-TRIG TIL LS INV HEX 1-INP IC SCHMITT-TRIG TIL LS INV HEX 1-INP IC MUXR/DATA-SCL TIL LS S-TO-1-LINE IC GATE TIL LS NAND QUAD 2-INP IC GATE TIL LS OR QUAD 2-INP	01295 01295 01295 01295 01295 01295	SN74LS14N SN74LS14N SN74LS151N SN74LS00N SN74LS32N	
A102U107 A102U108 A102U109 A102U110 A102U110 A102U111	1820-1211 1020-1922 1820-1197 1820-1208 1820-1112	88938	N 61 N	IC GATE TTL LS EXCL-OR QUAD 2-INP IC SNF-RGTR TTL LS PRL-IN SERIAL-OUT IC GATE TTL LS NAND QUAD 2-INP IC GATE TTL LS OR QUAD 2-INP IC FF TTL LS D-TYPE POS-EDGE-TRIG	01225 01225 01295 01295 01295 01295	SN74LSB6N SN74LS166N SN74LS00N SN74LS32N SN74LS32N SN74LS74AN	
A102U202 A102U203 A102U204 A102U205 A102U205 A102U206	1320-1201 1820-1432 1820-2506 1820-2692 1820-1922	6 5 6 1 8	1 1 1 1	IC GATE TTL LS AND QUAD 2-INP IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG IC INV TTL F HEX IC GATE TTL F EXCL-OR QUAD 2-INP IC SHF-RGTR TTL LS PRL-IN SERIAL-OUT	01295 01295 07263 07263 07263 01295	SN74LSOBN SN74LS163AN 74F04PC 74F06PC SN74LS166N	
A102U207 A102U208 A102U210 A102U211 A102U211 A102U212	1820-1433 1820-1211 1820-2096 1820-1195 1826-1030	6 8 9 7 1	2 1 1 1 1 1	. IC SHF-RGTR TTL LS R-S SERIAL-IN PRL-OUT IC GATE TTL LS EXCL-OR QUAD 2-IN? IC CNTR TTL LS BIN DUAL 4-BIT IC FF TTL LS D-TYPE POS-EDGE-TRIG COM ICD 2913 C20	01275 01275 01295 01295 01275 28480	SN74LS164N SN74LS36N SN74LS393N SN74LS373N 1826-1030	

Table 6-3. Replaceable Parts

				Table 0-3. Neplaceable Falls			
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
A102U301 A102U302 A102U303 A102U303 A102U304 A102U305	1620-1416 1820-1208 1320-1281 1820-1196 1820-1112	5 13 2 8 8	1 3	IC SCHHITT-TRIG TTL LS INV HEX 1-INP IC GATE TTL LS OR QUAD 2-INP IC DODR TTL LS 2-TO-4-LINE DUAL 2-INP IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC FF TTL LS D-TYPE POS-EDGE-TRIG	01295 01295 01295 01295 01295 01295	SN74LS14N SN74LS32N SN74LS139N SN74LS139N SN74LS174N SN74LS74AN	
A1020306 A1020307 A1020308 A1020309 A1020309 A1020310	1820-1922 1320-1203 1820-1208 1820-1997 1820-1995	8 3 7 7	4 1	IC SHF-RGTR TTL LS PRL-IN SERIAL-OUT IC GATE TTL LS OR QUAD 2INP IC GATE TTL LS OR QUAD 2INP IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN IC GATE TTL LS NOR DUAL 5INP	01295 01295 01295 01295 01295 07263	SN74LS166N SN74LS32N SN74LS32N SN74LS374N 74LS260PC	
A102U312 A102U401 A102U402 A102U403 A102U403 A102U404	1826-0410 1820-1422 1820-1491 1820-1196 1820-1997	9 36 8 7	1 1 1	IC OP AMP LOW-BIAS-H-IMPD QUAD 14-DIP-P IC MV TTL LS HONOSTBL RETRIG IC BFR TTL LS NON-INV HEX 1-INP IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN	01295 01295 01295 01295 01295 01295	TL 084CN SN74LS122N SN74LS367AN SN74LS174N SN74LS174N SN74LS374N	B
A102U405 A102U406 A102U407 A102U408 A102U408 A102U409	1820-1997 1820-1997 1820-1433 1820-1196 1820-1205	7 7 6 8 0	1	IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN IC SHF-RGTR TTL LS R-S SERIAL-IN PRL-OUT IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC GATE TTL LS AND DUAL 4-INP	01295 01295 01295 01295 01295 01295	SN74LS374N SN74LS374N SN74LS164N SN74LS174N SN74LS174N SN74LS21N	
A102U412	1826-0220	9	1	IC V RGLTR TO-39	27014	LM320H-05	
MSC MSC MSC	1480-0116 4040-0743 4040-0750	8 3 7	2 1 1	PIN-GRV .062-IN-DIA .25-IN-LG STL EXTR-PC 3D BLK POLYC .062-BD-THKNS EXTR-PC 3D RED POLYC .062-BD-THKNS	28480 28480 28480	1480-0116 4040-0748 4040-0750	

ļ

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
A3	03776-60003	8	1	ANALOG TRANSMITTER ASSEMBLY	28480	03776-60003	
A3C1 A3C2 A3C3 A3C4 A3C5	0160-4389 0160-4426 0160-4426 0160-4426 0160-4387 0160-4387	4 4 N N A	1 10 7	CAPACITOR-FXD 100PF +-SPF 200VDC CER CAPACITOR-FXD .01UF +-1% 100VDC CER CAPACITOR-FXD .01UF +-1% 100VDC CER CAPACITOR-FXD 47PF +-5% 200VDC CER 0+-30 CAPACITOR-FXD 47PF +-5% 200VDC CER 0+-30	28480 28480 28480 28480 28480 28480	0160-4389 0150-4426 0160-4426 0160-4387 0160-4387	
A3C6 A3C7 A3C8 A3C9 A3C10	0160-4426 0160-2387 0160-4426 0160-2387 0160-2387	0 0 N 0 0	4	CAPACITOR-FXD .01UF +-12 100VDC CER CAPACITOR-FXD 1000PF +-12 500VDC MICA CAPACITOR-FXD .01UF +-12 100VDC CER CAPACITOR-FXD 1000PF +-12 500VDC MICA CAPACITOR-FXD 1000PF +-12 500VDC MICA	28480 28480 28480 28480 28480 28480	0160-4426 0160-2387 0160-4426 0160-2387 0160-2387 0160-2387	
A3C11 A3C12 A3C13 A3C13 A3C14 A3C15	0160-4426 0160-4426 0160-0576 0160-0576 0160-0576 0160-0576	ดดดงก	18	CAPACITOR-FXD .01UF +-12 100VDC CER CAPACITOR-FXD .01UF +-12 100VDC CER CAPACITOR-FXD .1UF +-202 50VDC CER CAPACITOR-FXD .1UF +-202 50VDC CER CAPACITOR-FXD .1UF +-202 50VDC CER	28480 28480 28480 28480 28480 28480	0160-4426 0160-4426 0160-0576 0160-0576 0160-0576	
A3C16 A3C17 A3C13 A3C19 A3C20	0140-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	សម្លាល		CAPACITOR-FXD .1UF +-202 SOVDC CER CAPACITOR-FXD .1UF +-202 SOVDC CER CAPACITOR-FXD .1UF +-202 SOVDC CER CAPACITOR-FXD .1UF +-202 SOVDC CER CAPACITOR-FXD .1UF +-202 SOVDC CER	28480 28480 28480 28480 28480 28430	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	
A3C21 A3C22 A3C23 A3C23 A3C24 A3C25	0160-4426 0160-4426 0180-2818 0160-3879 0160-3879	22477	4 2	CAPACITOR-FXD .01UF +-1% 100VDC CER CAPACITOR-FXD .01UF +-1% 100VDC CER CAPACITOR-FXD 2.2UF+-20% 35VDC TA CAPACITOR-FXD .01UF +-20% 100VDC CER CAPACITOR-FXD .01UF +-20% 100VDC CER	28480 29480 28480 28480 28480 28480	0160-4426 0160-4426 0180-2818 0160-3879 0160-3879	
A3C26 A3C27 A3C28 A3C29 A3C29 A3C30	0160-4387 0160-4387 0160-4426 0160-4426 0160-2387	44220		CAPACITOR-FXD 47PF +-5% 200VDC CER 0+-30 CAPACITOR-FXD 47PF +-5% 200VDC CER 0+-30 CAPACITOR-FXD .01UF +-1% 100VDC CER CAPACITOR-FXD .01UF +-1% 100VDC CER CAPACITOR-FXD 1000PF +-1% 500VDC MICA	28480 28480 23480 28480 28480 28430	0160-4387 0160-4387 0160-4426 0160-4426 0160-2387	
A3C31 A3C32 A3C33 A3C33 A3C34 A3C35	0160-4387 0160-4387 0160-0576 0130-2662 0180-2662	4456	2	CAPACITOR-FXD 47PF +-5% 200VDC CER 0+-30 CAPACITOR-FXD 47PF +-5% 200VDC CER 0+-30 CAPACITOR-FXD 1UF +-20% 50VDC CER CAPACITOR-FXD 10UF+-10% 10VDC TA CAPACITOR-FXD 10UF+-10% 10VDC TA	28480 28480 28480 25088 25088	0160-4387 0160-4387 0160-0576 D4R7GS1A10K D4R7GS1A10K	
A3C36 A3C37 A3C38 A3C39 A3C40	0160-0576 0160-0576 0160-0576 0160-4387 0160-4365	55548	. 1	CAPACITOR-FXD 1UF +-20X SOVDC CER CAPACITOR-FXD 1UF +-20X SOVDC CER CAPACITOR-FXD 1UF +-20X SOVDC CER CAPACITOR-FXD 470F +-5X 200VDC CER 0+-30 CAPACITOR-FXD 470FF +-5X 100VDC CER	28480 28480 28480 28480 28480 28480	0160-0576 0160-0576 0160-0576 0160-4387 0160-4385	
A3C41 A3C42 A3C43 A3C44 A3C44 A3C45	0160-0576 0160-0576 0180-2818 0180-2818 0180-2818 0160-0576	55445		CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD 2.2UF+-20X 35VDC TA CAPACITOR-FXD 2.2UF+-20X 35VDC TA CAPACITOR-FXD .1UF +-20X 50VDC CER	28480 28480 28480 28480 28480 28480	0160~0576 0160-0576 0180-2818 0130-2818 0130-2818	
A3C46 A3C47 A3C48 A3C49 A3C49 A3C50	0160-0576 0160-0576 0160-0576 0180-3115 0180-3115	55566	4	CAPACITOR-FXD .1UF +-20X SOVDC CER CAPACITOR-FXD .1UF +-20X SOVDC CER CAPACITOR-FXD .1UF +-20X SOVDC CER CAPACITOR-FXD 330UF+50-10X 63VDC AL CAPACITOR-FXD 330UF+50-10X 63VDC AL	23480 28480 23480 28480 28480 28480	0160-0576 0160-0576 0160-0576 0180-3115 0180-3115	
A3C51 A3C52 A3C53 A3C54	0180-3115 0190-3115 0180-2818 0180-2821	6 6 4 9	1	CAPACITOR-FXD 330UF+50-10% 63VDC AL CAPACITOR-FXD 330UF+50-10% 63VDC AL CAPACITOR-FXD 2.2UF+-20% 35VDC TA CAPACITOR-FXD 22UF+-20% 35VDC TA	28480 28480 28480 29480	0180-3115 0180-3115 0180-2818 0180-2821	
A3CR1 A3CR2 A3CR3 A3CR4 A3CR5	1990-0450 1990-0450 1990-0450 1990-0450 1990-0450 1990-0450	444444	19	LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX	28480 28480 28480 28480 28480 28480	5082-4484 5082-4484 5082-4484 5082-4484 5082-4484 5082-4484	
A3CR6 A3CR7 A3CR3 A3CR9 A3CR9 A3CR10	1770-0450 1970-0450 1770-0450 1770-0450 1770-0450 1770-0450	4 4 4 4 4 4		LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX	23480 28480 28480 28480 28480 25480	5082-4484 5082-4484 5032-4484 5082-4484 5082-4484 5032-4484	
A3CR11 A3CR12 A3CR13 A3CR13 A3CR14 A3CR15	1990-0450 1990-0450 1990-0450 1990-0450 1990-0450 1990-0450	4 4 4 4		LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=300UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX	28480 28480 28480 28480 28480 28480	5082-4484 5082-4484 5082-4484 5082-4484 5082-4484 5082-4484	
A3CR16 A3CR17 A3CR18 A3CR19 A3CR19 A3CR20	1990-0450 1990-0450 1990-0450 1990-0450 1990-0450 1901-1098	4 4 4 4 1 1	9	LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX DIODE-SWITCHING 1N4150 50V 200MA 4NG	28480 28480 28480 28480 28480 9N171	5032-4484 5062-4484 5072-4484 5072-4484 104150	

See introduction to this section for ordering information *Indicates factory selected value

-

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
A3CR21 A3CR22 A3CR23 A3CR23 A3CR24 A3CR25	1901-1098 1901-1098 1902-0945 1902-0958 1902-0958	11722	1	DIODE SWITCHING 1N4150 50V 200HA 4NS DIODE-SWITCHING 1N4150 50V 200HA 4NS DIODE-ZNR 3V 52 D0-35 PD=.4W TC=-,0432 DIODE-ZNR 10V 52 D0-35 PD=.4W TC=+,0752 DIODE-ZNR 10V 52 D0-35 PD=.4W TC=+,0752	9N171 9N171 28480 28400 29480	1N4150 1N4150 1902-0945 1902-0958 1902-0958	
A3CR26 A3CR27 A3CR28 A3CR28 A3CR29 A3CR30	1901-1098 1901-1098 1901-1098 1901-1093 1901-1093 1901-0033	1 1 1 1 2	4	DIDDE-SWITCHING 1N4150 50V 200MA 4NG DIDDE-SWITCHING 1N4150 50V 200MA 4NG DIDDE-SWITCHING 1N4150 50V 200MA 4NG DIDDE-SWITCHING 1N4150 50V 200MA 4NG DIDDE-GEN PRP 180V 200MA DO-7	9N171 9N171 9N171 9N171 28480	1N4150 1N4150 1N4150 1N4150 1N4150 1901-0033	N.
A3CR31 A3CR32 A3CR33 A3CR34 A3CR34 A3CR35	1901-0033 1901-0033 1901-0033 1901-1098 1901-1098	2 2 2 1 1		DIODE-GEN PRP 180V 200MA DD-7 DIODE-GEN PRP 180V 200MA DD-7 DIODE-GEN PRP 180V 200MA DD-7 DIODE-SWITCHING 1N4150 50V 200MA 4NS DIODE-SWITCHING 1N4150 50V 200MA 4NS	28480 28480 23480 9N171 7N171	1901-0033 1901-0033 1901-0033 1901-0033 1N4150 1N4150	
A3K1 A3K2 A3K3 A3K4	0490-1262 0470-1262 0490-1262 0490-1262 0490-1262	7 7 7 7	4	RELAY 2C 12VDC-COIL 2A 120VAC RELAY 2C 12VDC-COIL 2A 120VAC RELAY 2C 12VDC-COIL 2A 120VAC RELAY 2C 12VDC-COIL 2A 120VAC	28480 28480 28480 28480 23430	04901262 04901262 04901262 04901262	
A3Q1 A3Q2 A3Q3 A3Q4 A3Q5	1853-0066 1853-0066 1853-0066 1853-0066 1853-0066	8 8 8 8	6	TRANSISTOR PNP SI TO-92 PD=625MW TRANSISTOR PNP SI TO-92 PD=625MW TRANSISTOR PNP SI TO-92 PD=625MW TRANSISTOR PNP SI TO-92 PD=625MW TRANSISTOR PNP SI TO-92 PD=625MW	28480 28480 28480 23480 28480	1853-0066 1853-0066 1853-0066 1853-0066 1853-0066 1853-0066	
A3Q6 A3Q7 A3Q8 A3Q9 A3Q10	1853-0066 1854-0492 1854-0492 1854-0492 1854-0492 1854-0492	8 6 6 6 6	8	TRANSISTOR PNP SI TO-92 PD=625MW TRANSISTOR NPN SI PD=350MW FT=250MHZ TRANSISTOR NPN SI PD=350MW FT=250MHZ TRANSISTOR NPN SI PD=350MW FT=250MHZ TRANSISTOR NPN SI PD=350MW FT=250MHZ	28480 04713 04713 04713 04713 04713	1 053-0 066 MP 03643 MP 03643 MP 03643 MP 03643 MP 03643	
A3Q11 A3Q12 A3Q13 A3Q14 A3Q15	1854-0492 1354-0492 1854-0492 1854-0492 1855-0386	6 6 6 6 9	17	TRANSISTOR NPN SI PD=350MW FT=250MHZ TRANSISTOR NPN SI PD=350MW FT=250MHZ TRANSISTOR NPN SI PD=350MW FT=250MHZ TRANSISTOR NPN SI PD=350MW FT=250MHZ TRANSISTOR J-FET 2N4392 N-CHAN D-MODE	04713 04713 04713 04713 04713 04713	MP 83643 MP 83643 MP 83643 MP 83643 2N4392	
A3Q16 A3Q17 A3Q18 A3Q18 A3Q19 A3Q20	1855-0386 1855-0386 1855-0386 1855-0386 1855-0386	9 9 9 9 9		TRANSISTOR J-FET 2N4392 N-CHAN D-MODE TRANSISTOR J-FET 2N4392 N-CHAN D-MODE TRANSISTOR J-FET 2N4392 N-CHAN D-MODE TRANSISTOR J-FET 2N4392 N-CHAN D-MODE TRANSISTOR J-FET 2N4392 N-CHAN D-MODE	04713 04713 04713 04713 04713 04713	2N4392 2N4392 2N4392 2N4392 2N4392 2N4392	
A3Q21 A3Q22 A3Q23 A3Q24 A3Q25	1855-0386 1855-0386 1855-0386 1855-0386 1855-0386 1855-0386	9 9 9 9 9		TRANSISTOR J-FET 2N4392 N-CHAN D-MODE TRANSISTOR J-FET 2N4392 N CHAN D-MODE TRANSISTOR J-FET 2N4392 N-CHAN D-MODE TRANSISTOR J-FET 2N4392 N-CHAN D-MODE TRANSISTOR J-FET 2N4392 N-CHAN D-MODE	04713 04713 04713 04713 04713 04713	2N4392 2N4392 2N4392 2N4392 2N4392 2N4392	
A3Q26 A3Q27 A3Q28 A3Q29 A3Q30	1855-0386 1855-0386 1855-0386 1855-0386 1855-0386 1855-0386	9 9 9 9 9 9		TRANSIGTOR J-FET 2N4392 N-CHAN D-HODE TRANSIGTOR J-FET 2N4392 N-CHAN D-HODE TRANSIGTOR J-FET 2N4392 N-CHAN D-HODE TRANSIGTOR J-FET 2N4392 N-CHAN D-HODE TRANSIGTOR J-FET 2N4392 N-CHAN D-HODE	84713 04713 04713 04713 04713 04713	2N4392 2N4392 2N4392 2N4392 2N4392 2N4392	
A3Q31 A3Q32 A3Q33	1855-0386 1854-0215 1854-0215	9 1 1	5	TRANSISTOR J-FET 2N4392 N-CHAN D-MODE Transistor NPN SI PD=350MW FT=300MH7 Transistor NPN SI PD=350MW FT=300MH7	04713 04713 04713	2N4392 2N3704 2N3904	
A3R1 A3R2 A3R3 A3R4 A3R5	18100204 18100204 18100037 18100204 07570443	6 6 3 6 5	3 1 2	NETWORK-RES 8-SIP1.0K OHM X 7 NETWORK-RES 8-SIP1.0K OHM X 7 NETWORK-RES 6-DIP1.0K OHM X 8 NETWORK-RES 9-SIP1.0K OHM X 7 RESISTOR 18.2K 1X .125W F TC=0+-100	01121 01121 11236 01121 24546	208A102 200A102 761-3-R1K 208A102 C4-1/8-T0-1822-F	
A3R6 A3R7 A3R8 A3R9 A3R10	0698-3449 0757-0200 0698-3226 0757-0288 0757-0288 0757-0448	6 7 7 1 5	2223	RESISTOR 28.7K 1% .125W F TC=0+-100 RESISTOR 5.62K 1% .125W F TC=0+-100 RESISTOR 6.49K 1% .125W F TC=0+-100 RESISTOR 9.09K 1% .125W F TC=0+-100 RESISTOR 18.2K 1% .125W F TC=0+-100	24546 24546 24546 19701 24546	C4-1/8-T0-2872-F C4-1/8-T0-5621-F C4-1/8-T0-6491-F MF4C1/8-T0-9091-F C4-1/8-T0-1822-F	
A3R11 A3R12 A3R13 A3R14 A3R15	0698-3449	8 7 6 8 9	1 3 7	RESISTOR 178K 1% .125W F TC=0+-100 RESISTOR 5.62K 1% .125W F TC=0+-100 RESISTOR 28.7K 1% .125W F TC=0+-100 RESISTOR 1.96K 1% .125W F TC=0+-100 RESISTOR 1.9K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-1783-F C4-1/8-T0-5421-F C4-1/8-T0-2872-F C4-1/8-T0-1961-F C4-1/8-T0-1002-F	
A3R16 A3R17 A3R18 A3R19 A3R20	0698-3157 0757-0442	0 3 3 9 3	1 1 1 3	RESISTOR 11K 12 .125W F TC=0+-100 RESISTOR 162K 12 .125W F TC=0+-100 RESISTOR 19.6K 12 .125W F TC=0+-100 RESISTOR 10K 12 .125W F TC=0+-100 RESISTOR 10K 12 .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-1102-F C4-1/8-T0-1623-F C4-1/8-T0-1962-F C4-1/8-T0-1002-F C4-1/8-T0-5111-F	
A3R21 A3R22 A3R23 A3R24 A3R25	0757-0438	6 8 3 2 1	1 1 1	RESISTOR 316K 12 .125W F TC=0+-100 RESISTOR 1.96K 12 .125W F TC=0+-100 RESISTOR 5.11K 12 .125W F TC=0+-100 RESISTOR 2.49K 12 .125W F TC=0+-100 RESISTOR 4.64K 12 .125W F TC=0+-100	28480 24546 24546 24546 24546 24546	0698-3457 C4-1/8-T0-1961-F C4-1/8-T0-5111-F C4-1/8-T0-2491-F C4-1/8-T0-4641-F	

Table 6-3. Replaceable Parts

-1

				Table 5-3. Replaceable Parts		
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part A/B/ Number Option
A3R26 A3R27 A3R28 A3R28 A3R29 A3R30	06783153 06780083 06783453 06783453 06783453 06790144	9 8224	1 3 2	RESISTOR 3.83K 1% .125W F TC=0+100 RESISTOR 1.96K 1% .125W F TC=0+100 RESISTOR 196K 1% .125W F TC=0+100 RESISTOR 196K 1% .125W F TC=0+100 RESISTOR 10K .01% .1W F TC=0+5	24546 24546 24546 24546 28480	C4…1/8-T0-3831…F C4…1/8-T0-1961…F C4-1/8-T0-1963…F C4-1/8-T0-1963…F C4-1/8-T0-1963—F 0699-0144
A3R31 A3R32 A3R33 A3R33 A3R34 A3R35	0699-0144 0678-4485 0698-4488 0698-3162 0698-3550	42500	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	RESISTOR 10K .01% .1W F TC=0+-5 RESISTOR 23.2K 1% .125W F TC=0+-100 RESISTOR 26.7K 1% .125W F TC=0+-100 RESISTOR 46.4K 1% .125W F TC=0+-100 RESISTOR 127K 1% .125W F TC=0+-25	28480 24546 24546 24546 28480	0699-0144 C4-1/8-T0-2322-F C4-1/8-T0-2672-F C4-1/8-T0-4642-F 0698-3550
A3R36 A3R37 A3R38 A3R38 A3R39 A3R40	0678-4475 0757-0280 0757-0288 0698-3226 0698-8827	0 3 1 7 4	2 4 6	RESISTOR 9.76K 1% .125W F TC=0+100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 9.09K 1% .125W F TC=0+100 RESISTOR 6.49K 1% .125W F TC=0+-100 RESISTOR 1M 1% .125W F TC=0+-100	03888 24546 19701 24546 28480	PMES5-1/8-T0-9761-F C4-1/8-T0-1001-F MF4C1/8-T0-9971-F C4-1/8-T0-6491-F 0698-B827
A3R41 A3R42 A3R43 A3R44 A3R44 A3R45	1810-0206 1810-0316 0699-0753 0699-0753 0699-0753	8 1 1 1 1	1 2 4	NETWORK-RES 8-SIP10.0K OHM X 7 NETWORK-RES 16-DIP10.0K OHM X 8 RESISTOR 2.74K .1% .125W F TC=0+-25 RESISTOR 2.74K .1% .125W F TC=0+-25 RESISTOR 2.74K .1% .125W F TC=0+-25	01121 01121 28480 28480 28480 28480	2084103 3168103 0699-0753 0679-0753 0679-0753
A3R46 A3R47 A3R48 A3R49 A3R50	0679-0753 0699-0154 1810-0319 1810-0319 3698-3550	1 6 4 4 0	1 2	RESISTÓR 2.74K .1% .125W F TC=0+-25 RESISTOR 7.2K .1% .125W F TC=0+-25 NETWORK-RES 16-DIP100.0K 0NH X B NETWORK-RES 16-DIP100.0K 0NH X 8 RESISTOR 127K 1% .125W F TC=0+-25	28480 28480 01121 01121 28480	0679-0753 0679-0154 3168104 3168104 0678-3550
A3851 A3852 A3853 A3854 A3855	0698-4475 0698-4483 0698-3162 0698-4435 075-0442	05029		RESISTOR 9.76K 1% .125W F TC=0+-100 RESISTOR 26.7K 1% .125W F TC=0+-100 RESISTOR 46.4K 1% 1.25W F TC=0+-100 RESISTOR 45.4K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100	03888 24546 24546 24546 24546 24546	PMES5-1/8-T0-9761-F C4-1/8-T0-2672-F C4-1/8-T0-462-F C4-1/8-T0-2322-F C4-1/8-T0-2322-F C4-1/8-T0-1002-F
A3R56 A3R57 A3R58 A3R59 A3R60	0698-3154 0698-3154 0698-3827 0698-8827 0698-8827 0698-3160	0 0 4 4 3	3	RESISTOR 4.22K 1% .125W F TC=0+-100 RESISTOR 4.22K 1% .125W F TC=0+-100 RESISTOR 1M 1% .125W F TC=0+-100 RESISTOR 1M 1% .125W F TC=0+-100 RESISTOR 31.6K 1% .125W F TC=0+-100	24546 24546 28480 28480 28480 24546	C4-1/8-T0-4221-F C4-1/8-T0-4221-F 0698-8827 0690-8827 C4-1/8-T0-3162-F
A3R61 A3R62 A3R63 A3R64 A3R65	0698-3160 0698-3160 0698-3160 0698-8827 0698-8827	8384 4		RESISTOR 31.6K 1% .125W F TC=0+-100 RESISTOR 31.6K 1% .125W F TC=0+-100 RESISTOR 31.6K 1% .125W F TC=0+-100 RESISTOR 1M 1% .125W F TC=0+-100 RESISTOR 1M 1% .125W F TC=0+-100	24546 24546 24546 28480 28480	C41/8-T0-3162-F C41/8-T0-3162-F C41/8-T0-3162-F 0678-8827 0678-8827 0678-8827
A3R56 A3R67 A3R68 A3R69 A3R70	0698-8827 0757-0398 0698-3154 0757-0442 0698-3158	4 4 0 9 4	1	RESISTOR 1M 1Z .125W F TC=0+100 RESISTOR 75 1X .125W F TC=0+-100 RESISTOR 4.22K 1X .125W F TC=0+-100 RESISTOR 10K 1X .125W F TC=0+-100 RESISTOR 23.7K 1X .125W F TC=0+100	28480 24546 24546 24546 24546 24546	0678-8827 C4-1/8-T0-75R0-F C4-1/8-T0-4221-F C4-1/8-T0-1002-F C4-1/8-T0-2372-F
A3R71 A3R72 A3R73 A3R74 A3R75	1810-0316 0757-0298 0698-3156 0699-0073 0699-0073	1 2 8	1 4	NETWORK-RES 16-DIP10.0K OHM X 8 RESISTOR 9.09K 12.125W F TC=0+-100 RESISTOR 14.7K 12.125W F TC=0+-100 RESISTOR 10M 12.125W F TC=0+-150 RESISTOR 10M 12.125W F TC=0+-150	01121 19701 24546 28480 28480	3168103 HF4C1/B-T0-9091-F C4-1/8-T0-1472-F 0699-0073 0699-0073
A3R76 A3R77 A3R78 A3R79 A3R80	0757-0280 0757-0280 0698-3132 0698-3453 0698-3755	33427	1 1	RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 261 1% .125W F TC=0+-100 RESISTOR 196K 1% .125W F TC=0+-100 RESISTOR 700 .5% .25W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-1001-F C4-1/8-T0-2610-F C4-1/8-T0-1963-F C5-1/8-T0-960R-D
A3R81 A3R82 A3R83 A3R84 A3R85	0757-1022 0699-1017 0699-1017 0699-1017 0699-1016	302201	1 3 3	RESISTOR 1.78K 1% .25W F TC=0+-100 RESISTOR 150 .01% .125W F TC=0+-10 RESISTOR 150 .01% .125W F TC=0+-10 RESISTOR 150 .01% .125W F TC=0+-10 RESISTOR 300 .01% .125W F TC=0+-10	24546 28480 28480 23480 28480 28480	C5-1/4-T0-1781-F 0679-1017 0679-1017 0679-1017 0679-1017 0679-1016
A3R86 A3R87 A3R88 A3R89 A3R89 A3R90	0699-1016 0699-1016 0757-0442 0757-0438 0698-3260	1 1 9 3 9	1	RESISTOR 300 .01% .125W F TC=0+-10 RESISTOR 300 .01% .125W F TC=0+-10 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 464K 1% .125W F TC=0+-100	28430 28480 24546 24546 28480	0679-1016 0679-1016 C4-1/8-T0-1002-F C4.1/8-T0-5111-F 0678-3260
A3R93 A3R94 A3R95 A3R95 A3R95 A3R97	0698~3456 0699~0073 0757~0280 0757~0442 0757~0442	58329 9	1	RESISTOR 207K 1% .125W F TC=0+-100 RESISTOR 10M 1% .125W F TC=0+-150 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100	24546 23480 24546 24546 24546 24546	C4-1/8-T0-2873-F 0679-073 C4-1/8-T0-1001-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F
A3R98 A3TL1 A3TL2 A3TL3 A3TL4	0679-0073 1258-0124 1258-0124 1258-0124 1258-0124 1258-0124	8 7777 7	4	RESISTOR 10H 1% .125W F TC=0+-150 PIN-PROGRAMING DUMPER .30 CONTACT PIN-PROGRAMING DUMPER .30 CONTACT PIN-PROGRAMING DUMPER .30 CONTACT PIN-PROGRAMING DUMPER .30 CONTACT	28480 91506 91506 91506 91506 91506	0679-0073 8136-47561 8136-47561 8136-47561 8136-47561 8136-47561

See introduction to this section for ordering information *Indicates factory selected value

-

. —

Table 6-3. Replaceable Parts

AU11 AU113 AU113 AU113 AU114 AU113 AU114 AU	A/B/ Option	Mfr Part Number	Mfr Code	Description	Qty	C D	HP Part Number	Reference Designation
A3U22 1826-0130 8 IC COMPARATOR GP QUAD 14-DIP-P PKG 01295 LM33PN A3U23 1826-0139 8 IC COMPARATOR GP QUAD 14-DIP-P PKG 01275 LM33PN A3U30 1826-01389 9 5 IC FF TTL LS D-TYPE OCTL 01275 SN74L5377N A3U31 1820-1858 9 1 IC FF TTL LS D-TYPE OCTL 01275 SN74L5377N A3U33 1826-0726 0 1 IC COM PARE DOTL 01275 SN74L5377N A3U34 1826-0726 0 1 IC OF F TTL LS D-TYPE OCTL 01275 SN74L5377N A3U34 1826-0726 0 1 IC OF APP LOW-BLASH-HIMP DTO-99 PKG 24355 AD565JM/BIN A3U40 1820-1207 2 1 IC GATE TTL LS NAND 0HAD 2-INP 01275 SN74L530N A3U41 1820-1198 0 1 IC CATE TTL LS NAND QUAD 2-INP 01275 SN74L530N A3U42 1820-1207 2 1 IC COTR TTL LS INSYNCHRO POG-EDGE-TRIG 01275 SN74L530N A3U41 1820-1430 3 1 IC DCDR TTL LS INSYNCHRO POG-EDGE-TRIG 01275		LM339N TL084CN LM339N	01295 01295 01295	IC COMPARATOR GP QUAD 14-DIP-P PKG IC OP AMP LOW-BIAS-H-IMPD QUAD 14-DIP-P IC Comparator GP QUAD 14-DIP-P PKG		8 7 8	1826-0138 1826-0410 1826-0138	A3U11 A3U12 A3U13
A3U32 1820-1658 9 1 IC FF TTL LS D-TYPE OCTL 61295 CN74L5372N A3U33 1826-0726 0 1 IC CPT TTL LS D-TYPE OCTL 61295 CN74L5372N A3U34 1826-0726 0 1 IC CDN V 12-B D/A 24-DIP-P PKG 24355 AD565JN/BIN A3U34 1820-1207 2 1 IC OP AMP LOW-BIAS-H-IMPD TO-99 PKG 24355 SN74L530N A3U40 1820-1207 2 1 IC GATE TTL LS NAND 8-INP 01295 SN74L530N A3U41 1820-1198 0 1 IC GATE TTL LS NAND QUAD 2-INP 01295 SN74L530N A3U42 1820-1430 3 1 IC DRVR TTL LS LIME DAVA OCTI. 01295 SN74L54AN A3U43 1820-1430 3 1 IC DCR TTT LS BIN SYNCIRKO P05-EDGE-TRIG 01295 SN74L51AN A3U44 1858-0047 5 1 TRANSISTOR ARRAY 16-PIN PLSTC DIP 13566 ULN-2003A A3U51 1820-1216 3 2 IC DCR TTL LS 3-TO-8-LINE 3-INP 01295 SN74L5138N A3U52 1820-1265 9 1 IC SCMHITT-TRIG T		TL084CN LM339N LM339N	01295 01295 01295	IC OP AMP LOW-BIAS-H-IMPD GUAD 14-DIP-P IC Comparator GP Quad 14-DIP-P PKG IC Comparator GP Quad 14-DIP-P PKG	5	8	1826-0410 1826-0138 1826-0138	A3U21 A3U22 A3U23
A3U42 1820-2024 3 1 IC DRVR TTL LS LINE DRVR OCT. 01295 SN74L5244N A3U43 1820-1430 3 1 IC DRVR TTL LS LINE DRVR OCT. 01295 SN74L5244N A3U44 1858-047 5 1 IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG 01295 SN74L5161AN A3U50 1820-1216 3 2 IC DCDR TTL LS 3-TO-8-LINE 3-INP 01295 SN74L513BN A3U51 1820-1216 3 2 IC DCR TTL LS 3-TO-8-LINE 3-INP 01295 SN74L513BN A3U52 1820-1853 7 1 IC DCR TTL LS INV HEX 1-INP 01295 SN74L513BN A3U53 1820-1853 9 IC CFT TTL LS D-TYPE OCTL 01295 SN74L5377N A3U54 1820-1858 9 IC FF TTL LS D-TYPE OCTL 01295 SN74L5377N A3U55 1826-0537 3 1 IC 517 V RGLTR TO-37 27014 LM37H MSC 1480-0116 8 2 PIN-GRV .062-IN-DIA .25-IN-LG STL 20A00 1480-0116 MSC 1480-0116 3 1 EXTR-PC BD BLK POLYC .062-BD-THKNS 29480 4940-0248		GN74LS377N AD565JN/BIN HA2-2605-5	01295 24355 34371	IC FF TTL LS D-TYPE OCTL IC CONV 12-B D/A 24 DIP-P PKG IC OP AMP LOW-BIAS-H-IMPD TO-99 PKG	1	9 0 2	1820-1858 1826-0726 1826-0413	A3U32 A3U33 A3U34
A3U52 1820-1416 5 1 IC SCHMITT-TRIG TTL LS INV HEX 1-INP 01295 SN74LS14N A3U53 1820-1853 9 IC FF TTL LS D-TYPE OCTL 01295 SN74LS14N A3U54 1820-1858 9 IC FF TTL LS D-TYPE OCTL 01295 SN74LS37N A3U54 1826-0539 3 1 IC 317 V RGLTR T0-37 27014 LH317H MSC 1480-0116 8 2 PIN-GRV .062-IN-DIA .25-IN-LG STL 28400 1480-0116 MSC 4040-0748 3 1 EXTR-PC BD BLK POLYC .062-BD-THKNS 28400 4040-0748		SN74LS244N SN74LS161AN ULN-2003A	01275 01275 13696	IC DRVR TTL LS LINE DRVR OCTI. IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG . TRANSISTOR ARRAY 16-PIN PLSTC DIP	1 1 1	3 3 5	1820-2024 1820-1430 1858-0047	A3U42 A3U43 A3U44
MSC 4040-0748 3 1 EXTR-PC BD DLK POLYC .062-BD-THKNS 23480 4040-0748		SN74LS14N SN74LS377N SN74LS377N	01295 01295 01295	IC SCHMITT-TRIG TTL LS INV HEX 1INP IC FF TTL LS D-TYPE OCTL IC FF TTL LS D-TYPE OCTL		5 9 9	1820-1416 1820-1858 1820-1858	A3U52 A3U53 A3U54
		4040-0748	23480	EXTR-PC BD BLK POLYC .062-BD-THKNS	1	3	4040-0748	MSC
		ч						
					Ì			

• ---.

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
A4	03776-60004	7	1	ANALOG MONITOR ASSEMBLY	28480	03776-60004	
A4C3 A4C5 A4C13 A4C14 A4C15	0160-2230 0160-3879 0160-0576 0180-0562 0180-0570	27519	1 1 12 1 1	CAPACITOR-FXD 3300PF +-5% 300VDC MICA CAPACITOR-FXD .01UF +-20% 100VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD 33UF+-20% 10VDC CER CAPACITOR-FXD 220PF +-20% 100VDC CER	28480 28490 20480 56289 20932	0140-2230 0160-3879 0160-0576 196D336X0010KA1 5024EM100RD221M	
A4C18 A4C19 A4C20 A4C21 A4C22	01600576 01600576 01302818 01802818 01600576	លភ្ជមល	3	CAPACITOR-FXD 100 +-20% 53VDC CER CAPACITOR-FXD 100 +-20% 50VDC CER CAPACITOR-FXD 2.200 +-20% 35VDC TA CAPACITOR-FXD 2.200 +-20% 35VDC TA CAPACITOR-FXD 100 +-20% 53VDC CER	28430 28480 28480 28480 28480 28480	0150-0576 0120-0576 0130-2918 0180-2918 0180-2918 0150-0576	
A4C23 A4C26 A4C27 A4C28 A4C28	0160-0576 0130-2818 0160-0576 0160-0576 0160-0576 0160-0576	ស្ទស្ស		CAPACITOR-FXD .10F +-20X 50VDC CER CAPACITOR-FXD 2.20F +-20X 35VDC TA CAPACITOR-FXD .10F +-20X 50VDC CER CAPACITOR-FXD .10F +-20X 50VDC CER CAPACITOR-FXD .10F +-20X 50VDC CER	28480 28480 28480 28480 28480 28480	0160-0576 0130-2818 0160-0576 0160-0576 0160-0576 0160-0576	
A4C33 A4C34 A4C35 A4C36	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	សសល		CAPACITOR-FXD .10F +-20X SOVDC CER CAPACITOR-FXD .10F +-20X SOVDC CER CAPACITOR-FXD .10F +-20X SOVDC CER CAPACITOR-FXD .10F +-20X SOVDC CER	28480 28480 28480 28480 28480	0160-0576 0160-0576 0160-0576 0160-0576	
A4CR1 A4CR6 A4CR7	1990-0450 1990-0450 1990-0450	4 4 4	3	LED-LAMP LUMINT=800UCD IF=50MA-MAX LED-LAMP LUMINT=800UCD IF=50MA-MAX LED-LAMP LUMINT=900UCD IF=50MA-MAX	28480 28480 28480	5382-4434 5082-4494 5382-4484	
A401 A402 A403 A404	1855-0386 1855-0386 1854-0215 1853-0036	9 7 1 2	2 1 1	TRANSISTOR J-FET 2N4392 N-CHAN D-MODE TRANSISTOR J-FET 2N4392 N-CHAN D-MODE TRANSISTOR NPN SI PD=350MW FT=300MHZ TRANSISTOR PNP SI PD=310MW FT=250MHZ	04713 04713 04713 28480	2N4392 2N4372 2N3904 1853-0036	
A4R3 A4R18 A4R19 A4R20 A4R21	0498-3155 0757-0200 0698-3155 0757-0440 0698-0084	17179	4 1 1 1	RESISTOR 4.64K 1% .125W F TC=0+-100 RESISTOR 5.62K 1% .125W F TC=0+-100 RESISTOR 4.64K 1% .125W F TC=0+-100 RESISTOR 7.5K 1% .125W F TC=0+-100 RESISTOR 2.15K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4~1/8~T0~4641~F C4~1/8~T0~5621~F C4~1/8~T0~5621~F C4~1/8~T0~7501~F C4~1/8~T0~7501~F C4~1/8~T0~2151~F	
A4R22 A4R34 A4R35 A4R36 A4R37	0757-0290 1810-0319 0698-3155 0757-0280 0698-3155	5 4 1 3 1	1 1 1	RESISTOR 6.19K 12 .125W F TC=0+-190 NETWORK-RES 16-DIP100.0K 0HH X 8 RESISTOR 4.64K 12 .125W F TC=0+-100 RESISTOR 1K 12 .125W F TC=0+-100 RESISTOR 4.64K 12 .125W F TC=0+-100	19701 01121 24546 24546 24546	hF4C1/8-T0-6191-F 3160104 C4 1/8-T0-4641-F C4-1/8-T0-1001-F C4-1/8-T0-4641-F	
A4R46	1810-0204	6	1	NETWORK-RES B-SJP1.0K OHM X 7	61121	2084102	
A4U10 A4U16 A4U21 A4U25 A4U26	1820-1278 1820-1112 1820-1112 1820-1112 1820-1211 1820-1416	78385	1 3 1 1	IC CNTR TTL LS BIN UP/DOWN SYNCHRO IC FF TTL LS D-TYPE POS-EDGC-TRIG IC FF TTL LS D-TYPE POS-EDGC-TRIG IC GATE TTL LS EXCL-OR QUAD 2-INP IC SCHMITT-TRIG TTL LS INV HEX 1-TAP	01295 01295 01295 01295 01295 01295	SN74LS171N SN74LS74AN SN74LS74AN SN74LS74AN SN74LS86N SN74LS84N	
A4U28 A4U31 A4U35 A4U36 A4U37	1826-0410 1820-1112 1820-1300 1820-1201 1826-0188	9 8 6 6 8	1 3 1 1	IC OP AMP LOW-BIAS-H-IMPD QUAD 14-DIF-P IC FF TTL LS D-TYPE POS-EDEC-TRIG IC SHF-RGTR TTL LS R-S PRL-IN PRL-OUT IC GATE TTL LS AND QUAD 2-IMP IC CONV 8-B-D/A 16-DIP-C PKG	01295 01295 01295 01295 01295 04713	TL084CN SN74LS74AN SN74LS195AN SN74LS08N MC1408L-8	
A4U3B A4U40 A4U41 A4U45 A4U45	1826-0138 1820-1208 1820-1246 1820-1246 1820-1300 1820-2056	8 39 6 1	1 1 1 3	IC COMPARATOR OF QUAD 14-DIP-P PKG IC GATE TTL LS OF QUAD 2INP IC GATE TTL LS AND QUAD 2INP IC SMF-RGTR TTL LS R-S PRL-IN PRL-OUT IC FF TTL LS DTYPE POS-EDGETRIG COM	01295 01295 01295 01295 01295 81295	LM339N SN741.532N SN74LS39N SN74LS195AN SN74LS195AN SN74LS378N	
A4U50 A4U51 A4U53 A4U55 A4U55 A4U55	1820-1216 1320-1492 1820-2056 1820-1300 1820-2056	37161	1 1	IC DCDR TTL LS 3-TO-8-LINC 3-INP IC GER TTL LS INV MEX 1 INP IC FF TTL LS D-TYPE POCHEDGE-TRIG COM IC GHR-RGTR TTL LS R-5 PRL-TN PRL-CUT IC FF TTL LS D-TYPE POCHEDGE-TRIG COM	01295 01295 01295 01295 01295 01295	SN74LS138N SN74LS36CAN SN74LS36CAN SN74LS175AN SN74LS175AN SN74LS378N	
MSC MSC MSC	1258-0124 4040-0748 4040-0752	7 3 9	1 1 1	PIN-PROGRAMING DUMPER .30 CONTACT EXTR-PC BD BLK POLYC .662-DD-THKNS EXTR-PC BD YEL PGLYC .062-BD-THKNS	71506 28480 28480	8136-47561 4040-0749 4040-0752	

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
0204	13776-60204	1	1	ANALOG MONITOR ASSEMBLY OPT DO1	28430	03776-60204	
A204C1 A204C2 A204C3 A204C4 A204C5	0160-4115 0160-2397 0160-2387 0160-2387 0160-4426 0160-4426	NN000	1 3 5	CAPACITOR-FXD .22UF +-12 63VDC MET-POLYC CAPACITOR-FXD 1000PF +-12 500VDC MICA CAPACITOR-FXD 1000PF +-12 500VDC MICA CAPACITOR-FXD .01UF +-12 100VDC CER CAPACITOR-FXD .01UF +-12 100VDC CER	K7723 28480 28480 28480 28480 28480	TPA220NF63 0160-2387 0160-2387 0160-2387 0160-4426 0160-4426	
A204C6 A204C7 A204C8 A204C9 A204C9 A204C10	0160-2387 0160-4426 0160-4426 0160-4426 0160-4512 0160-4426	02272	1	CAPACITOR-FXD 1000PF +-1% 500VDC HICA CAPACITOR-FXD .01UF +-1% 100VDC CER CAPACITOR-FXD .01UF +-1% 100VDC CER CAPACITOR-FXD 120PF +-5% 200VDC CER CAPACITOR-FXD .01UF +-1% 100VDC CER	28480 28480 28480 28480 28480 28480	0160-2387 0160-4426 0160-4426 0160-4426 0160-4426 0160-4426	
A204C11 A204C12 A204C13 A204C13 A204C14 A204C14	0160-4031 0160-4337 0160-0576 0130-0562 0160-3877	54515	1 1 19 1 1	CAPACITOR-FXD 330PF +-5% 100VDC CER CAPACITOR-FXD 47PF +-5% 200VDC CER 0+-30 CAPACITOR-FXD 1UF +-20% 50VDC CER CAPACITOR-FXD 32UF+-20% 10VDC TA CAPACITOR-FXD 100PF +-20% 200VDC CER	28480 28480 28480 56287 28480	0140-4031 0160-4337 0140-0574 1960336X0010XA1 0140-3877	
A204017 A204018 A204019 A204017 A204020 A204020	9160-0576 0160-0576 0160-0576 0180-2818 0130-2818	55544	3	CAPACITOR-FXD .1UF +-20% SJVDC CER CAPACITOR-FXD .1UF +-20% S0VDC CER CAPACITOR-FXD .1UF +-20% S0VDC CER CAPACITOR-FXD .2.UF+-20% 35VDC TA CAPACITOR-FXD 2.2UF+-23% 35VDC TA	28480 28480 28480 28480 28480 28430	0160-0576 0160-0576 0160-0576 0180-2818 0180-2813	
A204C22 A204C23 A204C24 A204C25 A204C25 A204C26	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0180-2818	មាមល្ល។		CAPACITOR-FXD .1UF +-202 SOVDC CER CAPACITOR-FXD .1UF +-202 SOVDC CER CAPACITOR-FXD .1UF +-202 SOVDC CER CAPACITOR-FXD .1UF +-202 SOVDC CER CAPACITOR-FXD 2.2UF+-202 SOVDC CAR	28480 28480 28480 28480 28480 28480	0140-0576 0140-0576 0140-0576 0160-0576 0160-0576 0180-2818	
A204C27 A204C28 A204C29 A204C29 A204C30 A204C31	0140-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	លលលល		CAPACITOR-FXD .1UF +-20X SOVDC CER CAPACITOR-FXD .1UF +-20X SOVDC CER CAPACITOR-FXD .1UF +-20X SOVDC CER CAPACITOR-FXD .1UF +-20X SOVDC CER CAPACITOR-FXD .1UF +-20X SOVDC CER	28480 28480 28480 28480 28480 28480	0160-0576 0160-0576 0160-0576 0160-0576 0140-0576 0160-0576	
A204C32 A204C33 A204C34 A204C35 A204C35 A204C36	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	លលលល		CAPACITOR-FXD .1UF +-20% 50VDC CCR CAPACITOR-FXD .1UF +-20% 50VDC CCR CAPACITOR-FXD .1UF +-20% 50VDC CCR CAPACITOR-FXD .1UF +-20% 50VDC CCR CAPACITOR-FXD .1UF +-20% 50VDC CCR	28480 28480 26480 28480 28480	0166-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	
A204037 A204038	0160-4566 0160-0576	1 5	1	CAPACITOR-FXD 2200PF +-1% 53VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER	51642 28480	200-50-NP0-222F 0160-0576	001
A204CR1 A204CR2 A204CR3 A204CR4 A204CR4 A204CR5	1770-0450 1970-0450 1970-0450 1970-0450 1970-0450 1970-0450	44444	7	LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX	28480 28480 28480 28480 28480 28480	5032-4484 5082-4484 5082-4484 5082-4484 5082-4484 5082-4484	
A204CR6 A204CR7 A204CR8 A204CR9 A204CR2 A204CR10	1990-0450 1990-0450 1901-1098 1901-1098 1901-1098 1901-1098	4 4 1 1	4	LED-LAMP LUM-INT=800UCD IF=50MA-MAX LCD-LAMP LUM-INT=800UCD IF=50MA-MAX DIODE-SWITCHING 1N4150 50V 200MA 4NG DIODE-SWITCHING 1N4150 50V 200MA 4NG DIODE-SWITCHING 1N4150 50V 200MA 4NG	28480 28480 9N171 9N171 9N171	5082-4484 5082-4484 1N4150 1N4150 1N4150 1N4150	
A204CR11 A204CR12 A204CR13	1701-1098 1902-0958 1902-0958	1 2 2	5	DIODE-SWITCHING 1N4150 50V 200MA 4NS DIODE-ZNR 10V 5% DO-35 PD≊.4W TC=+.075% DIODE-ZNR 10V 5% DO-35 PD≅.4W TC=+.075%	9N171 28480 23480	1N4150 1902-0958 1902-0958	
A204LK1 A204LK2	1460-1336 1460-1336	4	2	WIREFORM CU BRT-TIN Wireform Cu Brt-tin	28490 28430	1460-1336 1460-1336	
A20401 A20462 A20463 A20403 A20404 A20405	1855-0386 1355-0386 1854-0215 1353-0036 1855-0386	99129	7 1 1	TRANSISTOR J-FET 204392 N-CHAN D-MODE TRANSISTOR J-FET 204392 N-CHAN D-MODE TRANSISTOR NPN SI PD=350MW FT=300MH/Z TRANSISTOR PNP SI PD=310MW FT=250MHZ TRANSISTOR J-FET 204392 N-CHAN D-MODE	04713 04713 04713 28480 04713	2N4392 2N4392 2N3904 1853-0036 2N4392	
A20406 A20407 A20408 A20409	1855-0386 1855-0386 1855-0386 1855-0386	5 9 9 9		TRANSISTOR J-FET 2N4392 N-CHAN D-MODE TRANSISTOR J-FET 2N4392 N-CHAN D-MODE TRANSISTOR J-FET 2N4392 N-CHAN D-MODE TRANSISTOR J-FET 2N4392 N-CHAN D-MODE	04713 04713 04713 04713	2#4392 2N4392 2#4392 2N4392	
A204R1 A204R2 A204R3 A204R4 A204R5	0678-3155 0678-3155 0678-3155 0678-6322 0678-4332	1 1 0 5	5 5 2	RESISTOR 4.64K 1Z .125W F TC=0+-100 RESISTOR 4.64K 1Z .125W F TC=0+-100 RESISTOR 4.64K 1Z .125W F TC=0+-100 RESISTOR 4K .1Z .125W F TC=0+-25 RESISTOR 4K .1Z .125W F TC=0+-25	24546 24546 24546 28480 28480	C4-1/8-T0-4641-F C4-1/8-T0-4641-F C4-1/8-T0-4641-F 0690-6322 0698-4339	
A204R6 A204R7 A204R8 A204R9 A204R10	0698-6322 0598-6514 0698-7375 0698-6624 0698-8721	02557	0 N N N	RESIGTOR 4K .12 .125W F TC=0+-25 RESISTOR 10.65K .25% .125W F TC=0+-25 RESISTOR 28.64K .12 .125W F TC=0+-50 RESISTOR 2K .12 .125W F TC=0+-25 RESISTOR 13.95K .12 .125W F TC=0+-25	28480 28480 19701 28480 28480 28490	0678-6322 0678-6514 MF4C1/8-T2-28641-B 0698-6624 0698-6624	

See introduction to this section for ordering information *Indicates factory selected value

i

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
A204R11 A204R12 A204R13 A204R13 A204R14 A204R15	0698-6360 0698-7329 0698-6624 0757-0464 0698-6322	00000	4 1	RESISTOR 10K .12 .125W F TC=0+-25 RESISTOR 3.266K .12 .125W F TC=0+-50 RESISTOR 2K .12 .125W F TC=0+-25 RESISTOR 90.9K 12 .125W F TC=0+-100 RESISTOR 94.K .12 .125W F TC=0+-25	28480 19701 28480 24546 28480	0678-6360 MF4C1/8-T2-3266R-B 0670-6624 C4-1/8-T0-9692-F 0678-6322	
A204R16 A204R17 A204R18 A204R19 A204R19 A204R21	0698-6514 0698-4339 0698-6322 0698-7375 0698-0084	20059	2	RESISTOR 10.65K .25% .125W F TC=0+-25 RESISTOR 11.111K .1% .125W F TC=0+-50 RESISTOR 4K .1% .125W F TC=0+-50 RESISTOR 28.64K .1% .125W F TC=0+-50 RESISTOR 2.15K 1% .125W F TC=0+-100	28480 28430 28480 19731 24546	0678-6514 0578-4337 0690-6322 mF4C1/8-T2-23641-B C4-1/8-T0-2151-F	
A204R22 A204R23 A204R24 A204R25 A204R25 A204R26	0757-0290 0757-0290 0698-6614 0698-0084 0698-8457	55398	2 1 1	RESISTOR 6.12K 1% .125W F TC=0+-100 RESISTOR 6.19K 1% .125W F TC=0+-100 RESISTOR 7.5K .1% .125W F TC=0+-25 RESISTOR 2.15K 1% .125W F TC=0+-100 RESISTOR 2.552K .25% .125W F TC=0+-25	19701 19701 28480 24546 28480	HF4C1/8-T0-6191-F HF4C1/8-T0-6191-F 0678-6614 C4-118-T0-2151-F 0698-3459	
A204827 A204828 A204829 A204830 A204831	0757-0280 0598-6322 0698-6360 0698-7360 0698-4523	30689	4 1 [°] 1	RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 4K .1% .125W F TC=0+-25 RESISTOR 10K .1% .125W F TC=0+-25 RESISTOR 373.5K .1% .125W F TC=0+-50 RESISTOR 169K 1% .125W F TC=0+-100	24546 28480 28480 19731 24546	C4+1/8-T8-1001-F 8690-6322 8698-6360 MF4C1/8-T2-39852-B C4+1/8-T0+1693-F	
A204R32 A204R33 A204R34 A204R35 A204R35 A204R36	0757-0476 0698-6117 1810-0319 0698-3155 0757-0280	9 1 4 1 3	1 1 2	RESISTOR 301K 1% .125W F TC=0+-100 RESISTOR 102.3K .1% .125W F TC=0+-50 NETWORK-RES 16-D1P100.3K GBM X 8 RESISTOR 4.64K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100	24546 28480 D1121 24546 24546	C4 ·1/8-T9-3013-F 0698-6117 3168104 C4 ·1/8-T0· 4641-F C4·1/8-T0-1001-F	
A204R37 A204R38 A204R39 A204R39 A204R40 A204R41	0698-3155 1810-0319 0698-6360 0757-0280 0757-0280	14633		RESISTOR 4.64K 1% .125W F TC=0+-100 NETWORK-RES 16-DTP100.9K OWH X 3 RESISTOR 10K .1% .125W F TC=0+-25 REGISTOR 1K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100	24546 01121 28480 24546 24546	C41/8-T0-4641-F 3168104 0690-6360 C41/8T01001-F C4-1/8-T01001-F	
A204R42 A204R43 A204R44 A204R45 A204R45 A204R46	0811-1001 0811-1001 0698-3721 0698-6360 1810-0204	4 4 7 6 6	2	RESISTOR 300 .12 3₩ P₩ TC=0+-20 RESISTOR 300 .12 3₩ P₩ TC=0+-20 RESISTOR 13.95K .12 .125₩ F TC=0+-25 RESISTOR 10K .12 .125₩ F TC=0++25 NETWORK-RES 9-SIP1.0K 0(M X 7	23480 28490 23480 28480 28480 01121	0311-1901 0811-1001 0698-8721 0698-6360 2084192	
A204847	0757-0401	0	1	RESISTOR 100 12 .125W F TC=0+-100	24546	C4-1/8-TC-101-F	
A204U10 A204U11 A204U12 A204U13 A204U13 A204U14	1320-1278 1820-1112 1320-1278 1820-1112 1320-1112 1320-1144	7 8 7 8 6	11 B 1	IC CNTR TIL LS BIN UP/DOWN SYNCHRO IC FF TIL LS D-TYPE POS-EDGE-TRIG IC CNIR TIL LS BIN UP/DOWN SYNCHRO IC FF TIL LS D-TYPE POS-EDGE-TRIG IC GATE TIL LS NOR GUAD 2-INP	01275 01275 01275 01275 01275 01275	GN74LS191N GN74LS74AN SN74LS191N SN74LS74AN SN74LS74AN	001
A204U15 A204U16 A204U20 A204U20 A204U21 A204U22	1820-1112 1820-1112 1820-1276 1820-1276 1820-1112 1820-1278	83787 87		IC FF TTL LS D-TYPE POS-EDGE-TRIG IC FF TTL LS D-TYPE POS-EDGE-TRIG IC CNTR TTL LS BIN UP/DOWN SYNCHRO IC FF TTL LS D-TYPE POS-EDGE-TRIG IC CNTR TTL LS BIN UP/DOWN SYNCHRO	01295 01295 01295 01295 01295 01295	CN74LS74AN SN74LS74AN SN74LS191N SN74LS74AN SN74LS74AN	
A234U23 A204U24 A204U25 A204U25 A204U26 A204U27	1820-1112 1820-1112 1820-1211 1820-1416 1826-0410	8 8 8 5 7	1 1 3	IC FF TTL LS D-TYPE PGS-EDGE-TRIG IC FF TTL LS D-TYPE PGS-EDGE-TRIG IC GATE TTL LS EXCL-OR GUAD 2-TNP IC SCHMITT-TRIG TTL LS INV HEX 1-INP IC GP AMP LOW-BIAS-H-IMPD GUAD 14 DIP P	01295 01295 01295 01295 01295 01295	SN74LS74AN SN74LS74AN SN74LS86N SN74LS86N SN74LS14N TL084CN	
A204U28 A204U30 A204U31 A204U32 A204U33	1826-0410 1820-1278 1820-1112 1820-1278 1820-2024	97 87 3	2	IC OP AMP LOW-BIAS-H-IMPD QUAD 14-DIP-P IC CNTR TTL LS BIN UP/DOWN SYNCHRO IC FF TTL LS D-TYPE POS-EDGE-TRIG IC CNTR TTL LS DIN UP/DOWN SYNCHRO IC DRVR TTL LS LINE DRVR OCTL	01295 01295 01295 01295 01295 01295	TL 084CN SN74LS191N SN74LS74AN SN74LS191N SN74LS244N	
A204U34 A204U35 A204U36 A204U36 A204U38 A204U40	1320-1278 1820-1300 1820-1201 1826-0138 1820-1208	7 6 6 8 3	3 1 2 1	IC CNTR TTL LS 8IN UP/DOWN SYNCHRO IC SHF-ROTR TTL LS R-S PRL-IN PRL-OUT IC GATE TTL LS AND QUAD 2-INP IC COMPARATOR GP QUAD 14-DJP-P PKG IC GATE TTL LS OR QUAD 2-INP	01295 01295 01295 01295 01295 01295	SN74LS171N SN74LS175AN SN74LSJOON LM339N CN74LS32N	
A204041 A204042 A204043 A204044 A204044 A204045	1820-1246 1820-1278 1820-2024 1820-1278 1820-1278 1820-1300	97376	1	IC GATE TTL LS AND QUAD 2INP IC CNTR TTL LS BIN UP/DOWN SYNCHRO IC DRVR TTL LS LINE DRVR OCTL IC CNTR TTL LS BIN UP/DOWN SYNCHRO IC SHF-RGTR TTL LS R-S PRLIN PRL-OUT	61295 01225 01295 01295 01295 01295	SN74LS09N SN74LS191N SN74LS191N SN74LS191N SN74LS191AN SN74LS195AN	
A204046 A204047 A204048 A204050 A204051	1820-2056 1826-0726 1826-0138 1820-1216 1820-1492	1 0 8 3 7	3 1 1 1	IC FF TTL LS D-TYPE POS-EDCE-TRIG COM IC CONV 12-B-D/A 24-DIP-P PKG IC COMPARATOR GP GUAD 14-D1P-P PKG IC CODR TTL LS 3-TO-8-LINE 3-INP IC RFR TTL LS INV HEX 1-TNP	01225 24355 01225 01225 01225	SN74LS378N AD565JN/BIN LM339N SN74LS138N SN74LS138N SN74LS36BAN	
A204U52 A204U53 A204U54 A204U55 A204U55 A204U55	1820-1278 1820-2056 1820-1278 1820-1300 1820-2056	7 1 7 6 1		IC CNTR TTL LS BIN UP/DOWN SYNCHRO IC FF TTL LS D TYPE POS-EDEE-TRIG COM IC CNTR TTL LS BIN UP/DOWN SYNCHRO IC SHF-RGTR TTL LS R-S PRL-IN PRL-CUT IC FF TTL LS D-TYPE POS-EDGE-TRIG COM	01295 01295 01295 01295 01295 01295	SN74LS191N SN74LS378N SN74LS191N SN74LS195AN SN74LS378N	

See introduction to this section for ordering information *Indicates factory selected value

6-19

.

٦

		•	
Table	6-3.	Replaceable	Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
A204057 A204058	1826-0413 1826-0410	29	1	IC OP AMP LOW-BIAS-H-IMPD TO-99 PKG IC OP AMP LOW-BIAS-H-IMPD QUAD 14-DIP-P	34371 01295	HA2-2605-5 TL084CN	
MSC MSC MSC MSC	1258-0124 1480-0116 4040-0748 4040-0752	7 8 3 9	3 2 1 1	PIN-PREGRAMING DUMPER .30 CONTACT PIN-GRU .062-IN-DIA .2S-IN-LG STL EXTR-PE BD &LK POLYC .062-BD-THKNS EXTR-PE BD YEL POLYC .062-BD-THKNS	91506 28480 28480 28480 28480	3136-475G1 1480-0116 4040-0748 4040-0752	001 ∎
			-				
			i				
				· · ·			
				·			
	:						

-

Table 6.3 Renlaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Optior
A5	93776-60005	0	1	TRANSIENTS ASSEMELY OPTION 001	28430	03776-60005	F
A5C1 A5C2 A5C3 A5C4 A5C5	0160-4564 0160-4040 0160-5118 0160-5113 0160-513	9 6 1 5	3 1 2 27	CAPACITOR-FXD 5600PF +-12 100VDC CER CAPACITOR-FXD 1000PF +-52 100VDC CER CAPACITOR-FXD .22UF +-52 63VDC MET-POLYC CAPACITOR-FXD .22UF +-52 63VDC MET-POLYC CAPACITOR-FXD .1UF +-202 50VDC CER	51642 28430 28480 28480 28480 28480	300-100-NP0-562F 3160-4040 0160-5118 0160-5118 0160-5118	
ASC6 ASC7 ASC8 ASC9 ASC10	0160-4441 0160-0576 0160-4426 01604426 01604586	1 5 2 2 5	1 28 11	CAPACITOR-FXD .47UF +-13X 53VDC CER CAPACITOR-FXD .1UF +-20X 53VDC CER CAPACITOR-FXD .31UF +-1X 183VDC CER CAPACITOR-FXD.01UF +-1% 100VDC CAPACITOR-FXD.033UF +-1% 100VDC CER	23430 23480 28480 28480 28480 28480	0160-4441 01600576 0160-4426 0160-4426 0160-4586	
A5C12 A5C13 A5C14 A5C15 A5C16	01600576 01600576 01604426 01603849 01604426	55212	1	CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .01UF +-1X 100VDC CER CAPACITOR-FXD .01UF +-1X 100VDC CER CAPACITOR-FXD .01UF +-1X 100VDC CER	28480 28480 28480 28480 28480 28480	0140-0576 0160-0576 0140-4426 0140-4426 0140-3847 0140-4426	
ASC17 ASC18 ASC19 ASC20 ASC21	0160-4426 0160-4426 0160-4586 0160-4586 0160-4426 0160-4426	N N 0 N N		CAPACITOR-FXD .01UF +-1% 100VDC CER CAPACITOR-FXD .01UF +-1% 100VDC CER CAPACITOR-FXD .033UF +-1% 100VDC CER CAPACITOR-FXD .01UF +-1% 100VDC CER CAPACITOR-FXD .01UF +-1% 100VDC CER	28480 20480 28480 28480 28480 28480	0160-4426 0160-4426 0160-4586 0160-4586 0160-4426 0160-4426	
A5C23 A5C24 A5C25 A5C25 A5C27 A5C27 A5C27 A5C27 A5C27 A5C31 A5C23 A5C31 A5C31 A5C32	0150-5378 0160-5378 0160-5378 0160-4586 0160-3874 0160-3874 0180-2697 0180-2697 0180-2697 0180-2697	5555527777	3 2 6	$\begin{array}{llllllllllllllllllllllllllllllllllll$	28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480	0150-5378 0150-5378 0150-5378 0160-576 0160-3874 0130-2697 0130-2697 0130-2697 0130-2697	
A5C33 A5C34 A5C35 A5C36 A5C37	0160-0576 0160-0576 0160-0627 0160-4586 0160-4535	55754	1 4	CAPACITOR-FXD .1UF +-20% SOVDC CER CAPACITOR-FXD .1UF +-20% SOVDC CER CAPACITOR-FXD 1UF +-5% CAPACITOR-FXD .033UF +-1% 100VDC CER CAPACITOR-FXD 1UF +-10% SOVDC CER	28480 28480 28480 28480 28480 28480	0160-0576 0160-0576 0160-0627 0160-0627 0150-4536 0160-4535	001
A5C3B A5C39 A5C40 A5C41 A5C42	0160~0576 0160~0576 0160~4535 0160~4587 0160~4587	505460	з	CAPACITOR-FXD .10F +-23X 50VDC CER CAPACITOR-FXD .10F +-20X 50VDC CER CAPACITOR-FXD 10F +-10X 50VDC CER CAPACITOR-FXD 2700FF +-1X 100VDC CER CAPACITOR-FXD .0330F +-1X 100VDC CER	28480 28480 28480 51642 28480	0160-0576 0160-0576 0160-4535 300-100-NP0-272F 0160-4586	I
A5C43 A5C44 A5C45 A5C45 A5C46 A5C47	0160-4587 0160-4426 0160-4426 0160-4426 0160-4426 0160-4426	NNNO		CAPACITOR-FXD 2700PF +-12 100VDC CER CAPACITOR-FXD .01UF +-12 100VDC CER CAPACITOR-FXD .01UF +-12 100VDC CER CAPACITOR-FXD .01UF +-12 100VDC CER CAPACITOR-FXD .01UF +-12 100VDC CER	51642 28460 20486 28480 28480 28480	306-100-NPC-272F 3163-4426 0160-4426 0150-4426 0150-4426 0160-4426	
A5C49 A5C50 A5C51 A5C52	0160-0576 0160-4426 0160-4426 0160-0576	15 N N N		CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .01UF +-1% 100VDC CER CAPACITOR-FXD .01UF +-1% 160VDC CER CAPACITOR-FXD .1UF +-23% 50VDC CER	28488 28480 28480 28480 28480	0160-0576 0160-4426 0160-4426 0160-0576	
A5C53 A5C54 A5C55 A5C55 A5C58 A5C58 A5C59 A5C69 A5C60 A5C61 A5C61 A5C62 A5C63	$\begin{array}{c} 0140-0576\\ 0150-4426\\ 0160-0576\\ 0160-4535\\ 0160-4535\\ 0160-0576\\ 0160-0576\\ 0160-0576\\ 0160-4564\\ 0160-4586\\ 0160-4586\\ 0160-4586\\ \end{array}$	50050000000000000	1	$\begin{array}{llllllllllllllllllllllllllllllllllll$	28480 28480 28480 28480 28480 28480 28480 51642 28480 28480 28480 28480	0140-0576 0150-4426 0160-4535 0160-4535 0160-4535 0160-4567 0160-0576 0160-0576 0160-0578 0163-4586 0140-4586 0140-44586	
ASC64 ASC65 ASC66 ASC67 ASC68	0160-4426 0160-4586 0160-0576 0160-0576 0160-0576 0160-0576	លលលល		CAPACITOR-FXD .01UF +-1X 100VDC CER CAPACITOR-FXD .033UF +-1X 100VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER	28480 28480 28480 28480 28480 28480	0140-4426 0149-4586 0140-0576 0140-0576 0140-0576 0140-0576	
A5C69 A5C70 A5C71 A5C73 A5C73	0160-4426 0160-0576 0160-0576 0160-4835 0160-4835	25577	8	CAPACITUR-FXD .010F +-1X 100VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .1UF +-10X 50VDC CER CAPACITOR-FXD .1UF +-10X 50VDC CER	28480 28480 28480 28480 28480 28480	0160-4426 0150-0576 0150-0576 0150-0576 0150-4835 0150-4835	

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
ASC75 ASC76 ASC77 ASC78 ASC78 ASC79	0160-4586 0160-4564 0160-4426 0160-4426 0160-4426 0160-4586	G N N O G		CAPACITOR-FXD .033UF +-12 100VDC CER CAPACITOR-FXD 5600PF +-12 100VDC CER CAPACITOR-FXD .01UF +-12 100VDC CER CAPACITOR-FXD .01UF +-12 100VDC CER CAPACITOR-FXD .033UF +-12 100VDC CER	28480 51642 28430 28480 28480	0160-4586 300-100-NP0-562F 0160-4426 0160-4426 0160-4586	
ASC80 ASC81 ASC82 ASC83 ASC84	0160-4587 0160-4426 0160-4426 0160-4387 0160-4387	6226 7	1	CAPACITOR-FXD 2700PF +-12 100VDC CER CAPACITOR-FXD .01UF +-12 100VDC CER CAPACITOR-FXD .01UF +-12 100VDC CER CAPACITOR-FXD 101PF +-3PF 200VDC CER CAPACITOR-FXD .1UF +-102 50VDC CER	51642 28480 28480 28480 28480	300100NP0272F 01604426 01604426 016044389 01604835	
ASC85 ASC86 ASC87 ASC88 ASC88 ASC89	0140-4835 0160-0576 0130-2697 0180-2697 0160-4535	7 5 7 7 4		CAPACITOR-FXD .1UF +-10% SOVDC CER CAPACITOR-FXD .1UF +-20% SOVDC CER CAPACITOR-FXD 10UF+-10% 25VDC TA CAPACITOR-FXD 10UF+-10% 25VDC TA CAPACITOR-FXD 1UF +-10% 50VDC CER	28480 28480 28480 28480 28480 28480	0160-4835 0160-0576 0130-2697 0180-2697 0160-4535	
A5C90 A5C91 A5C92 A5C93 A5C94	0160-0576 0160-4835 0160-4835 0160-4835 0160-4835 0160-4835	5777777		CAPACITOR-FXD .1UF +-202 50VDC CER CAPACITOR-FXD .1UF +-102 50VDC CER CAPACITOR-FXD .1UF +-102 50VDC CER CAPACITOR-FXD .1UF +-102 50VDC CER CAPACITOR-FXD .1UF +-102 50VDC CER	28480 28480 28480 28480 28480 28480	0140-0576 0160-4835 0160-4835 0160-4835 0160-4835 0160-4835	
A5C75 A5C76 A5C77 A5C78 A5C78 A5C99	0160-4426 0160-4426 0160-4426 0160-4426 0160-4426 0160-4426	N N N N N		CAPACITOR-FXD .01UF +-1% 100VDC CER CAPACITOR-FXD .01UF +-1% 100VDC CER CAPACITOR-FXD .01UF +-1% 100VDC CER CAPACITOR-FXD .01UF +-1% 100VDC CER CAPACITOR-FXD .01UF +-1% 100VDC CER	28480 28480 28480 28480 28480 28480	0160-4426 0160-4426 0160-4426 0160-4426 0160-4426 0160-4426	
A5C100 A5C101 A5C102 A5C103 A5C104	0160-4426 0160-4586 0160-3872 0160-0576 0160-3875	25053	1 2	CAPACITOR-FXD .01UF +-12 100VDC CER CAPACITOR-FXD .033UF +-12 100VDC CER CAPACITOR-FXD 2.2FF +-2SFF 200VDC CER CAPACITOR-FXD .1UF +-202 50VDC CER CAPACITOR-FXD 22FF +-52 200VDC CER 0+-30	28480 20480 28480 28480 28480 28480	0160-4426 0160-4586 0160-3872 0160-0576 0160-0576 0160-3875	
A5C105 A5C106 A5C107 A5C108 A5C108 A5C109	0160-3374 0160-3875 0160-0576 0160-0576 0160-0576	2 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		CAPACITOR-FXD 10PF +-5% 200VDC CER CAPACITOR-FXD 22PF +-5% 200VDC CER 0+-30 CAPACITOR-FXD 1UF +-20% 50VDC CER CAPACITOR-FXD 1UF +-20% 50VDC CER CAPACITOR-FXD 1UF +-20% 50VDC CER	23480 20480 28480 28480 28480 28480	0160-3874 0160-3875 0160-0576 0160-0576 0160-0576 0160-0576	
ASCR1 ASCR2 ASCR3 ASCR4 ASCR5	17010040 17010040 17010040 17010040 17010040 17010040	1 1 1 1 1	25	DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28480 28480 28480 28480	1701-0040 1701-0040 1701-0040 1701-0040 1701-0040 1701-0040	001
ASCR6 ASCR7 ASCR8 ASCR9 ASCR10	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040 1901-0040	1 1 1 1 1		DIODE-SWITCHING 30V 50HA 2NS DO-35 DIODE-SWITCHING 30V 50HA 2NS DO-35 DIODE-SWITCHING 30V 50HA 2NS DO-35 DIODE-SWITCHING 30V 50HA 2NS DO-35 DIODE-SWITCHING 30V 50HA 2NS DO-35	28480 28480 28480 28480 28480 28480	1701-0040 1701-0040 1701-0040 1701-0040 1701-0040 1701-0040	
ASCR11 ASCR12 ASCR13 ASCR13 ASCR14 ASCR15	1901-0040 1901-0040 1901-0040 1901-0040 1901-0535 1901-0040	1 1 9 1	1	DIODE-SWITCHING 30V 50MA 2NS DO-3S DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SM SIG SCHOTTKY DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28480 28480 28480 28480	1901-0040 1901-0040 1901-0040 1901-0040 1901-0535 1901-0040	
ASCR16 ASCR17 ASCR18 ASCR19 ASCR20	1901-0846 1901-0846 1901-0040 1901-0040 1901-0040 1901-0040	5 5 1 1	5	DIDDE-CUR RGLTR 1N5284 100V DD-7 DIODE-CUR RGLTR 1N5284 100V DD-7 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DD-35 DIODE-SWITCHING 30V 50MA 2NS DD-35	04713 04713 28480 28480 28480 28480	1N5284 1N5284 1901-0040 1931-0040 1901-0040	
A5CR21 A5CR22 A5CR23 A5CR23 A5CR24 A5CR25	1701-0040 1701-0840 1701-040 1701-040 1901-0040 1701-0040	1 1 1 1		DIDDE-SWITCHING 30V 50MA 2NS DO-35 DIDDE-SWITCHING 30V 50MA 2NS DO-35 DIDDE-SWITCHING 30V 50MA 2NS DO-35 DIDDE-SWITCHING 30V 50MA 2NS DO-35 DIDDE-SWITCHING 30V 50MA 2NS DO-35	29480 28480 29480 28480 28480 28480	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040 1901-0040	
A5CR26 A5CR27 A5CR28	1901-0040 1901-0040 1901-0040	1 1 1		DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28480	1901-0040 1901-0040 1901-0040	
4581 4582 4583 4584 4585	0698-8826 0757-0279	3 3 0 9 9	2 2 4	RESISTOR 825K 1% .125W F TC=0+-100 RESISTOR 825K 1% .125W F TC=0+-100 RESISTOR 3.16K 1% .125W F TC=0+-100 RESISTOR 3.16K 1% .125W F TC=0+-100 RESISTOR 3.8.3K 1% .125W F TC=0+-100	28480 28480 24546 24546 24546 24546	0698-8826 0693-8826 C4-1/8-T0-3161-F C4-1/8-T0-3161-F C4-1/8-T0-3832-F	
N526 A527 N528 A529 A529 N5210	0698-3454	9 5 5 3 3 3	1 1 2	RESISTOR 38.3K 1% .125₩ F TC=0+-100 RESISTOR 18.2K 1% .125₩ F TC=0+-100 RESISTOR 287K 1% .125₩ F TC=0+-100 RESISTOR 215K 1% .125₩ F TC=0+-100 RESISTOR 215K 1% .125₩ F TC=0+-100	24546 24546 24546 24546 24546	C41/8-T0-3832-F C41/8-T0-1822-F C41/8-T0-2873-F C41/8-T0-2153-F C41/8-T8-2153-F	

--.

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
A5R11 A5R12 A5R13 A5R14 A5R14 A5R15	9698-6353 0698-6353 9698-3162 0757-0438 3757-0401	7 7 0 3 0	6 1 6 3	RESISTOR 50K .1% .125W F TC=0+-25 RESISTOR 50K .1% .125W F TC=0+-25 RESISTOR 46.4K 1% .125W F TC=0+-100 RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100	28480 28480 24546 24546 24546 24546	0678-6353 0698-6353 C4-1/8-T0-4642-F C4-1/8-T0-5111-F C4-1/8-T0-101-F	
A5R 16 A5R 17 A5R 18 A5R 19	0757-0401 0757-0458 0698-8827 0757-0978	0 7 4 6	3 3 2	RESISTOR 100 1% .125₩ F TC=0+-100 RESISTOR 51.1K 1% .125₩ F TC=0+-100 RESISTOR 1M 1% .125₩ F TC=0+-100 RESISTOR 95.3K 1% .125₩ F TC=0+-100	24546 24546 28480 24546	C4~1/8-T0-101-F C4~1/8-T0-5112-F 0698-8827 C4-1/8-T0-9532-F	
A5R20	0698-8534	0	1	RESISTOR 15.6K .25% .125W F TC=0+-100	28480	0698-8534	
A5R21 A5R22 A5R23 A5R24 A5R25	0698-4509 0693-4474 0757-0473 3698-8960 0757-0453	17662	1 1 1 1	RESISTOR 80.6K 12 .125W F TC=0+-100 RESISTOR 8.45K 12 .125W F TC=0+-100 RESISTOR 221K 12 .125W F TC=0+-100 RESISTOR 750K 12 .125W F TC=0+-100 RESISTOR 30.1K 12 .125W F TC=0+-100	24546 24546 24546 28480 24546	C4-1/8-T0-8062-F C4-1/8-T0-8451-F C4-1/8-T0-2213-F 8698-8960 C4-1/8-T0-3012-F	
A5R26 A5R27 A5R28 A5R29 A5R30	0678-3157 0698-3453 0698-3457 0698-3457 0698-3457 0698-6353	ยา <u>ย</u> 6 6 7	3 6 3:	RESISTOR 26.1K 12 .125W F TC=0+-100 RESISTOR 196K 12 .125W F TC=0+-100 RESISTOR 316K 12 .125W F TC=0+-100 RESISTOR 316K 12 .125W F TC=0+-100 RESISTOR 50K .12 .125W F TC=0+-25	24546 24546 28480 28480 28480	C4-1/8-T0-2612-F C4-1/8-TC-1963-F 0698-3457 0698-3457 0698-6353	
A5R31 A5R32 A5R33 A5R34 A5R35	0598-6353 1810-0224 1810-0224 1810-0224 1810-0224 1810-0224	7 0 0 0 0	5	RESISTOR 50K .1% .125W F TC=0+-25 Network-res 0-51P33.0K 0MM X 4 Network-res 8-51P33.0K 0MM X 4 Network-res 8-51P33.0K 0MM X 4 Network-res 8-51P33.0K 0MM X 4	28480 01121 01121 01121 01121 01121	0698-6353 2088333 2088333 2088333 2088333 2088333 2088333	
A5R36 A5R37 A5R38 A5R39 A5R39 A5R40	0698-3450 0757-0438 0698-3453 0757-0284 D698-3453	93272	1	REGISTOR 42.2K 1% .125W F TC=0+-100 RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 196K 1% .125W F TC=0+-100 RESISTOR 150 1% .125W F TC=0+-100 RESISTOR 196K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-4222-F C4-1/8-T0-5111-F C4-1/8-T0-1963-F C4-1/8-T0-151-F C4-1/8-T0-1963-F	
A5R 41 A5R 42 A5R 43 A5R 44 A5R 44	0698-3453 0698-3161 0698-3161 0698-3451 0698-3451 0699-0369	29905	1 1	RESISTOR 196K 12 .125W F TC=0+-100 RESISTOR 38.3K 12 .125W F TC=0+-100 RESISTOR 38.3K 12 .125W F TC=0+-100 RESISTOR 133K 12 .125W F TC=0+-103 RESISTOR 110.5K .12 .125W F TC=0+-25	24546 24546 24546 24546 28489	C4~1/8-T0-1963~F C4-1/8-T0-3032~F C4-1/8-T0-3032-F C4-1/8-T0-1333-F 0699-0369	
A5R45 A5R46 A5R47 A5R48 A5R48	0698-6360 0698-631 0698-4339 0698-8784 0698-8784	645N8	6 3 1 1 1	RESISTOR 10K .1X .125W F TC=0+-25 RESISTOR 2.5K 1%,125W F TC=0+-25 RESISTOR 11.111K .1X .125W F TC=0+-50 RESISTOR 19.6K .1X .125W F TC=0+-25 RESISTOR 2.567K .25X .125W F TC=0+-25	28480 28480 28480 28480 28480 28480	0678-6360 0698-6631 0698-4339 0698-8784 0698-8784 0678-8459	001
ASR50 ASR51 ASR52 ASR53 ASR53 ASR54	0698-3179 0698-3960 0698-3960 0698-8961 0698-8961 0698-3960	96 67 6	1 3 1	RESISTOR 2.55K 12 .125W F TC=0+-100 RESISTOR 1.1M 12 .125W F TC=0+-100 RESISTOR 1.1M 12 .125W F TC=0+-100 RESISTOR 909K 12 .125W F TC=0+-100 RESISTOR 1.1M 12 .125W F TC=0+-100	24546 28480 28480 28480 28480 28480	C4~1/8-T0-2551 0698-3960 0698-3960 0698-3960 0698-8961 0698-3960	
A5855 A5856 A5857 A5858 A5858 A5859	0698-3243 0698-3453 0698-3271 0698-3271 0698-3271 0698-6353	8 2 2 2 7	1 2	RESISTOR 178K 12 .125W F TC=0+-100 RESISTOR 196K 12 .125W F TC=0+-100 RESISTOR 115K 12 .125W F TC=0+-100 RESISTOR 115K 12 .125W F TC=0+-100 RESISTOR 50K .12 .125W F TC=0+-25	24546 24546 24546 24546 28480	C4-1/8-T0-1783-F C4-1/8-T0-1963-F C4-1/8-T0-1153-F C4-1/8-T0-1153-F D698-6353	
ASR 60	0698-6353	7		RESISTOR 50K .1% .125W F TC=0+-25	28480	0698-6353	
A5R61 A5R62 A5R63	1810-0224 0757-0465 0757-0280	0 6 3	1 3-	NETWORK-RES 8-SIP33.0K 0HM X 4 RESISTOR 100K 1% .125W F TC=0+~100 RESISTOR 1K 1% .125W F TC=0+~100	01121 24546 24546	2088333 C4-1/8-T0-1003-F C4-1/8-T0-1001-F	
A5R64 A5R65 A5R66 A5R67 A5R68	0678-3136 0698-3453 0757-0401 0698-6360 0698-6320	82043	2 2	RESISTOR 17.8K 1% .125W F TC=0+-100 RESISTOR 196K 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 10K .1% .125W F TC=0+-25 RESISTOR 5K .1% .125W F TC=0+-25	24546 24546 24546 28480 03888	C4-1/8-T0-1782-F C4-1/8-T0-1963-F C4-1/8-T0-101 -F 0698-6360 PME55-1/8-T9-5001-B	
A5R69 A5R70 A5R71 A5R72 A5R73	0698-4211 0757-0284 0757-0447 0678-6117 0757-0467	2 7 4 1 8	1 1 1 1	RESISTOR 158K 1%.125W FTC=0+-100 RESISTOR 150 1%.125W FTC=0+-100 RESISTOR 16.2K 1%.125W FTC=0+-100 RESISTOR 182.3K.1%.125W FTC=0+-50 RESISTOR 121K 1%.125W FTC=0+-100	24546 24546 24546 28480 24546	C4-1/8-TO-1583F C4-1/8-T0-151-F C4-1/8-T0-1522-F 0698-6117 C4-1/8-T0-1213-F	
A5R74 A5R75 A5R76 A5R77 A5R78	0678-4486 0678-4497 0698-6627 0678-8827 0698-7929	36345	1 1 1	RESISTOR 24.9K 1% .125W F TC=0+-100 RESISTOR 48.7K 1% .125W F TC=0+-100 RESISTOR 25K .1% .125W F TC=0+-25 RESISTOR 1M 1% .125W F TC=0+-100 RESISTOR 9.09K .1% .125W F TC=0+-50	24546 24546 23480 28480 19701	C4-1/8-T0-2492-F C4-1/8-T0-4072-F 0698-6627 0698-8827 MF4C1/8-T2-9091-B	
A5879 A5880 A5881 A5882 A5883	0698-8283 0757-0438 0757-0442 0757-0438 0757-0438 0757-0442	63939 9	1	RESISTOR 25.84K .12 .125W F TC=0+-50 RESISTOR 5.11K 12 .125W F TC=0+-100 RESISTOR 10K 12 .125W F TC=0+-100 RESISTOR 5.11K 12 .125W F TC=0+-100 RESISTOR 10K 12 .125W F TC=0+-100	19781 24546 24546 24546 24546 24546	MF4C1/8-T2-25841-B C4-1/8-T3-5111-F C4-1/8-T0-1062-F C4-1/8-T0-5111-F C4-1/8-T0-1062-F	

.

• •

1

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
A5R84 A5R85 A5R86 A5R87 A5R88	0757-0978 0757-0441 0698-3157 0757-0441 0757-0441	80409	32	RESISTOR 95.3K 12 .125W F TC=0+-100 RESISTOR 8.25K 12 .125W F TC=0+-100 RESISTOR 19.6K 12 .125W F TC=0+-100 RESISTOR 9.25K 12 .125W F TC=0+-100 RESISTOR 8.25K 12 .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C41/8-T0-9532-F C41/8-T0-8251-F C41/8-T0-8251-F C41/8-T0-8251-F C41/8-T0-8251-F	
A5R89 A5R90 A5R91 A5R92 A5R93	0698-3226 0698-3157 0698-4499 0757-0286 0757-0458	7 3 8 3 7	1	RESISTOR 6.47K 12 .125W F TC=3+-100 RESISTOR 19.6K 12 .125W F TC=0+-106 RESISTOR 54.9K 12 .125W F TC=0+-100 RESISTOR 1K 12 .125W F TC=0+-100 RESISTOR 1K 12 .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-6491-F C4-1/8-T0-1962-F C4-1/8-T0-5492-F C4-1/8-T0-1001-F C4-1/8-T0-5112-F	
A5R94 A5R95	0698-3457 0698-8958	6 2	1	RESISTOR 316K 1% .125W F TC=0+-100 Resistor 511K 1% .125W F TC=0+-100	28480 28480	0678- 34 57 0678-8953	
A5R96 A5R97	0757-0450 0698-7360	9 8	1 1	RESISTOR 22.1K 1% .125W F TC=0+-100 RESISTOR 398.5K .1% .125W F TC=0+-50	24546 19701	C4-1/8-T0-2212-F MF4C1/8-T2-39852-B	
ASR93 ASR99 ASR100 ASR101 ASR102	0757-0280 0699-0750 0698-8640 0698-7934 0698-7934	3 8 7 2 2	1 1 2	RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 16.783K .1% .125W F TC=0+-25 RESISTOR 4.734K .1% .125W F TC=0+-25 RESISTOR 12.1K .1% .125W F TC=0+-25 RESISTOR 12.1K .1% .125W F TC=3+-25	24546 28480 28480 19701 19701	C4-1/8-T0-1001-F 0679-0750 0678-8640 MF4C1/8-T9-1212-B MF4C1/8-T9-1212-B	
A5R103 A5R104 A5R105 A5R106 A5R107	0698-6360 0698-6360 0698-3159 0698-3159 0698-4121	6 6 5 5 3	1	RESISTOR 10K .1% .125W F TC=0+-25 RESISTOR 10K .1% .125W F TC=0+-25 RESISTOR 26.1K 1% .125W F TC=0+-100 RESISTOR 26.1K 1% .125W F TC=0+-100 RESISTOR 11.3K 1% .125W F TC=0+-100	28480 28480 24546 24546 24546 24546	0698-6360 0698-6360 C4.1/8-T0-2612-F C4.1/8-T0-2612-F C4.1/8-T0-1132-F	
A5R103 A5R109 A5R119 A5R111 A5R111 A5R112	0698-8179 0698-6358 0698-8179 0698-6361 0757-0442	9 2 9 7 9	3	RESISTOR 288K .1% .125W F TC=0+-25 RESISTOR 100K .1% .125W F TC=0+-25 RESISTOR 268K .1% .125W F TC=0+-25 RESISTOR 8K .1% .125W F TC=0+-25 RESISTOR 10K 1% .125W F TC=0+-100	19781 28480 19781 28480 24546	₩F4C1/8-T9-2883~B 6692-6350 MF4C1/8-T9-2883-B 6698-6361 C4 1/8-T0-1002-F	
ASR 113 ASR 114 ASR 115 ASR 116 ASR 116 ASR 117	0757-0416 0757-0199 0757-0199 0757-0442 0698-4307	7 3 3 9 7	1 4 1	RESISTOR 511 12 .125W F TC=0+-100 RESISTOR 21.5K 12 .125W F TC=0+-100 RESISTOR 21.5K 12 .125W F TC=0+-100 RESISTOR 10K 12 .125W F TC=0+-100 RESISTOR 14.3K 12 .125W F TC=0+-100	24546 24546 24546 24546 24546	C41/8-T0-5118-F C4-1/8-T0-2152-F C41/8-T0-2152-F C4-1/8-T0-1002-5 C41/8-T0-1002-5 C41/8-T0-1432-F	
A5R118 A5R119 A5R120 A5R121 A5R122	0698-4520 0757-0458 0698-6360 0698-6358 0699-0115	6 7 6 2 9	1	RESISTOR 143K 12 .125W F TC=0+-100 RESISTOR 51.1K 12 .125W F TC=0+-100 RESISTOR 13K .12 .125W F TC=0+-25 RESISTOR 100K .12 .125W F TC=0+-25 RESISTOR 14.23K .12 .125W F TC=0+-50	24546 24546 28480 28480 28480 28480	C4…1/8-T0-1433-F C4-1/8-T0-5112-F 0698-6360 0698-6358 0698-6358	0.01
A5R 1 23 A5R 1 24 A5R 1 25 A5R 1 26 A5R 1 27	0 698-6631 0 698-6631 0 698-6517 0 698-6517 0 698-4470	445555	2 1	RESISTOR 2.5K .1% .125W F TC=0+-25 RESISTOR 2.5K .1% .125W F TC=0+-25 RESISTOR 34.85K .25% .125W F TC=0+-25 RESISTOR 34.85K .25% .125W F TC=0+-25 RESISTOR 6.99K 1% .125W F TC=0+-100	28480 28430 28480 28480 28480 24546	0690-6631 0598-6631 0690-6517 0690-6517 0690-6517 C4-1/8-T0-6931-F	
A5R128 A5R129 A5R130 A5R131 A5R131 A5R132	0698-3572 0757-0438 0698-8827 0757-0199 0757-0199	6 3 4 3 3	1	RESISTOR 60.4K 1% .125W F TC=0+-100 RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 1M 1% .125W F TC=0+-100 RESISTOR 21.5K 1% .125W F TC=0+-100 RESISTOR 21.5K 1% .125W F TC=0+-100	24546 24546 28480 24546 24546	C4-1/8-T0-6042-F C4-1/8-T0-5111-F 0698-8927 C4-1/8-T0-2152-F C4-1/8-T0-2152-F	
A5R 1 33 A5R 1 34 A5R 1 35 A5R 1 36 A5R 1 36 A5R 1 37	0698-6360 0698-6358 0698-8179 0699-0808 1810-0374	6 2 9 7 1	1 1	RESISTOR 10K .12 .125₩ F TC=0+-25 RESISTOR 100K .12 .125₩ F TC=0+-25 RESISTOR 288K .12 .125₩ F TC=0+-25 RESISTOR 18.4K .12 .125₩ F TC=0+-25 NETWORK-RES 8-SIP1.0K OKM X 4	28480 28480 19701 28480 01121	0692-6360 0698-6358 HF4C1/8-T9-2823-B 0679-0838 2088102	
ASR138 ASR139 ASR140 ASR141 ASR142	1810-0316 1810-0365 1810-0365 1810-0406 0698-6320	1 0 0 0 8	1 2 4	NETWORK-RES 16-DJP10.0K OHM X 8 NETWORK-RES 6-SJP2.2K OHM X 5 NETWORK-RES 6-SJP2.2K OHM X 5 NETWORK-RES 0-SJP10.0K OHM X 4 RESISTOR 5K .12 .125W F TC=0+-25	01121 01121 01121 01121 01121 03888	316B103 206A222 206A222 208B103 2ME55-1/8-T2-5031-B	
5R143 ASR144 ASR145	1810-0406 1810-0406 1810-0406	0 0 0		NETWORK-RES 8-SIP10.0K ONM X 4 NETWORK-RES 0-SIP10.0K DNM X 4 NETWORK-RES 8-SIP10.0K ONM X 4	01121 01121	2088103 2088103 2088103	
5R146	0757-0438	3		RESISTOR 5.11K 1% .125W F TC=0+-100	01121 24546	2086103 C4-1/8-T0-5111-F	
ASR 1 47 ASR 1 47 ASR 1 49 ASR 150 ASR 151 ASR 152 ASR 153 ASR 154 ASS 1 ASS 1	0757-0454 0757-0454 0757-0462 0698-3136 0698-3260 0698-0083 0698-0083 0698-3452 3101-1841 3101-2135	3 3 3 8 9 8 8 1 8 5	2 1 1 2 1 1 1	RESISTOR 33.2K 1% .125W F TC=9+-100 RESISTOR 33.2K 1% .125W F TC=9+-100 RESISTOR 75K 1% .125W F TC=9+-100 RESISTOR 75K 1% .125W F TC= 0+-100 RESISTOR 464K 1% .125W F TC= 0+-100 RESISTOR 1.96K 1% .125W F TC= 0+-100 RESISTOR 1.96K 1% .125W F TC= 0100 RESISTOR 147K 1% .125W F TC= 0100 SWITCH-SL 4-1A DIP-SLIDE-ASSY .1A SOUDC SWITCH-RKR DIP-RKR-ASSY DPDT .05A 30UDC	24546 24546 24546 24546 24546 24546 24546 24546 29480 28480 28480	C4-1/8-T9-3322-F C4-1/8-T0-3322-F C4-1/8-T0-7502-F C4-1/8-T0-7502-F C4-1/8-T0-1982-F C4-1/8-T0-1961-F C4-1/8-T0-1961-F C4-1/8-T0-1961-F C4-1/8-T0-1473-F 3101-1841 3101-2135	

.

Table 6-3. Replaceable Parts

7

				Table 6-3. Replaceable Parts			
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
A5TP1 A5TP2 A5TP3 A5TP4 A5TP5	1251-0600 1251-0600 1251-0600 1251-0600 1251-0600 1251-0630	0 0 0 0 0	8	CONNECTOR-SGL CONT PIN 1.14-HM-BSC-SZ SQ CONNECTOR-SGL CONT PIN 1.14-HM-BSC-SZ SQ CONNECTOR-SGL CONT PIN 1.14-HM-BSC-SZ SQ CONNECTOR-SGL CONT PIN 1.14-HM-BSC-SZ SQ CONNECTOR-SGL CONT PIN 1.14-HM-BSC-SZ SQ	28480 28480 28480 28480 28480 28480	1251-0600 1251-0600 1251-0600 1251-0600 1251-0600 1251-0600	
A5TP6 A5TP7 A5TP8	1251-0600 1251-0600 1251-0600	0 0 0		CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ	28480 28480 28480	1251-0600 1251-0600 1251-0600	
ASU11 ASU12 ASU21 ASU22 ASU23	1826-0417 1826-0417 1820-1971 1858-0045 1826-0753	6 67 33	4 1 4 10	IC SWITCH ANLG QUAD 16-DIP-C PKG IC SWITCH ANLG QUAD 16-DIP-C PKG IC SWITCH ANLG QUAD 16-DIP-P PKG TRANSISTOR ARRAY 12-LEAD T0-101 IC OP AMP LOW-BIAS-H-IMPD QUAD 14-DIP-C	27014 27014 17856 3L585 04713	LF13333D LF13333D DG201CJ CA3018A MC34004BL	
A5U24 A5U25 A5U31 A5U32 A5U33	1826-0741 1926-0753 1826-0138 1858-0045 1826-0753	93833	6 4	IC OP AMP LOW-BJAS-H-IMPD DUAL TO-99 PKG IC OP AMP LOW-BIAS-H-IMPD GUAD 14-DIP-C IC COMPARATOR GP QUAD 14-DIP-P PKG TRANSISTOR ARRAY 12-LEAD TO-101 IC OP AMP LOW-BIAS-H-IMPD QUAD 14-DIP-C	04713 04713 01295 3L585 04713	MC34002AG MC340048L LM339N CA3018A MC34004BL	
ASU34 ASU35 ASU36 ASU34 ASU41 ASU42	1826-0741 1926-0753 1826-0753 1826-0753 1826-0412 1858-0045	9 3 3 1 3	2	IC OP AMP LOW-BIAS-H-IMPD DUAL TO-99 PKG IC OP AMP LOW-BIAS-H-IMPD QUAD 14-DIP-C IC OP AMP LOW-BIAS-H-IMPD QUAD 14-DIP-C IC COMPARATOR PRCN DUAL 8-DIP-PKG TRANSISTOR ARRAY 12-LEAD TO-101	04713 04713 04713 27014 3L585	MC34002AG MC34004BL MC34004BL LM393N CA3018A	
A5U43 A5U44 A5U45 A5U51 A5U52	1826-0753 1826-0741 1826-0741 1826-0741 1826-0138 1826-0138	39938		IC OP AMP LOW-BIAS-H-IMPD QUAD 14-DIP-C IC OP AMP LOW-BIAS-H-IMPD DUAL TO-99 PKG IC OP AMP LOW-DIAS-H-IMPD DUAL TO-99 PKG IC COMPARATOR GP QUAD 14-DIP-P PKG IC COMPARATOR GP QUAD 14-DIP-P PKG	04713 04713 04713 01295 . 01295	MC34004BL. MC34002AG MC34002AG LM337N LM337N	
ASU53 ASU54 ASU55 ASU36 ASU57	1826-0065 1826-0753 1826-0503 1826-0065 1826-0417	0 3 1 0 4	2	IC COMPARATOR PRCN 8-DIP-P PKG IC OP AMP LOW-BIAS-H-IMPD QUAD 14-DIP-C IC SMPL/HOLD TO-99 PKG IC Comparator PRCN 8-DIP-P PKG IC SWITCH ANLG QUAD 16-DIP-C PKG	S0545 04713 27014 S0545 27014	UPC311C MC34004BL LF396H UPC311C LF13333D	001
A5U61 A5U62 A5U63 A5U64 A5U65 A5U65	1820-1440 1826-0138 1826-0597 1826-0590 1200-0185 1826-0414	500000	1 1 1 1	IC LCH TTL LS QUAD IC COMPARATOR GP QUAD 14-DIP-P PKG IC CONV 10-B-A/D 18-DIP-C PKG IC MULTIPLXR 4-CHAN-ANLG DUAL 16-DIP-C INSULATOR-XSTR NYLON V REF TD-5	01295 01295 28480 27014 28480 27014	SN74LS279N LN339N 1826-0597 LF13509D 1200-0185 LHD070-2H	
A5U66 A5U67 A5U68 A5U71 A5U72	1826-0417 1826-0412 1826-0753 1820-1212 1820-1491	6 1 3 9 6	1	IC SWITCH ANLG QUAD 16-DIP-C PKG IC COMPARATOR PRCN DUAL 3-DIP-P PKG IC OP AMP LOW-BIAS-H-IMPD QUAD 14-DIP-C IC FF TTL LS J-K NGG-EDGE-TRIG IC BFR TTL LS NON-INV HEX 1-INP	27014 27014 04713 01295 01295	LF13333D LM393N MC34004BL SN74LS112AN SN74LS1567AN	
ASU73 ASU75 ASU76 ASU81 ASU82	1020-2024 1026-0741 1026-0503 1020-1112 1020-1246	3 9 1 8 9	1 1 1	IC DRVR TTL LS LINE DRVR OCTL IC OP AMP LOW-BIAS-H-IMPD DUAL TO-99 PKG IC SMPL/HOLD TO-99 PKG IC FF TTL LS D-TYPE POS-EDGE-TRIG IC GATE TTL LS AND QUAD 2-INP	01295 04713 27014 01295 01295	SN74LS244N MC34002AG LF39BH SN74LS74AN SN74LS74AN SN74LSJ9N	
A5U83 A5U84 A5U85 A5U85 A5U87	18201997 19260581 18260753 18260753 18260753 18580045	75333 333	2 1	IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN IC Switch Anig 16-DIP-C PKG IC OP AMP LOW-BIAS-H-IMPD Quad 14-DIP-C IC OP AMP LOW-BIAS-H-IMPD QUAD 14-DIP-C TRANSISTOR ARRAY 12-LEAD TO-101	01295 27014 04713 04713 34585	SN74LS374N LF13508D MC34004BL MC34004BL CA3018A	
A5U?1 A5U?2 A5U?3 A5U?4 A5U?5	1828-1216 1820-1197 1820-1997 1820-1997 1820-1934 1826-0471	39722	1 1 1 1	IC DCDR TTL LS 3-TO-B-LINE 3-INP IC GATE TTL LS NAND QUAD 2-INP IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN IC CONV 8-B-D/A 16-DIP-C PKG IC OP AMP LOW-DRIFT TO-59 PKG	01295 01295 01295 04665 28480	SN74LS138N SN74LS00N SN74LS374N DAC-08EQ 1626-0471	
A5U96	1026-0741	9		IC OP AMP LOW-BIAS-H-IMPD DUAL TO-99 PKG	04713	MC34082AG	
MSC MSC MSC	1480-0116 4040-0748 4040-0753	8 3 0	2 1 1	PIN-GRV .062-IN-DIA .25-IN-LG STL EXTR-PC BD BLK POLYC .062-BD-THKNS EXTR-PC BD GRN POLYC .062-BD-THKNS	28480 28480 28480	1480-0115 4040-0748 4040-0753	

_

7

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part A/B/ Number Option
	03776-60006	1	1	ANALOG RECEIVER ASSEMBLY	28480	0377660006
A6 A6C1 A6C2 A6C3 A6C4 A6C5	0140-0576 0180-2818 0180-2818 0160-0576 0160-0576	54455	- 19 2	CAPACITOR-FXD .1UF +-20X SOVDC CER CAPACITOR-FXD 2.2UF+-20X 35VDC TA CAPACITOR-FXD 2.2UF+-20X 35VDC TA CAPACITOR-FXD .1UF +-20X SOVDC CER CAPACITOR-FXD .1UF +-20X SOVDC CER	28480 28480 28480 28480 28480 28480	0160-0576 0180-2818 0100-2818 0160-0576 0160-0576
A6C6 A6C7 A6C8 A6C9 A6C10	0160-4387 0160-4387 0160-3374 0160-0576 0160-0576	4401010	3 1	CAPACITOR-FXD 47PF +-52 200VDC CER 0+-30 CAPACITOR-FXD 47PF +-52 200VDC CER 0+-30 CAPACITOR-FXD 10PF +-5PF 200VDC CER CAPACITOR-FXD 1UF +-202 50VDC CER CAPACITOR-FXD .1UF +-202 50VDC CER	28480 28480 28480 28480 28480 28480	0160-4387 0160-4387 0160-3874 0160-0576 0160-0576
A6C14 A6C15 A6C16 A6C17 A6C18	0180-0374 0130-0374 0160-0685 0160-0685 0160-0685 0160-0685	33777	2 4	CAPACITOR-FXD 10UF+-10Z 20VDC TA CAPACITOR-FXD 10UF+-10Z 20VDC TA CAPACITOR-FXD 0.1UF 1Z 63VDC CAPACITOR-FXD 0.1UF 1Z 63VDC CAPACITOR-FXD 0.1UF 1Z 63VDC	56289 56289 28480 28480 28480 28480	150D106X902CB2 153D136X902332 0140-0685 0160-0685 0160-0685
A6C19 A6C20 A6C21 A6C22 A6C22 A6C23	0150-0576 0160-4426 0160-4426 0160-4426 0160-4426 0150-4426	50000	7	CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .01UF +-1X 100VDC CER CAPACITOR-FXD .01UF +-1X 100VDC CER CAPACITOR-FXD .01UF +-1X 100VDC CER CAPACITOR-FXD .01UF +-1X 100VDC CER	28480 28480 28480 28480 28480 28480	0160-0576 0160-4426 0160-4426 0160-4426 0160-4426 0160-4426
A6C24 A6C25 A6C26 A6C27 A6C28	0160-4426 0160-4426 0160-4566 0180-2211 0180-2211	22111	1 2	CAPACITOR-FXD .01UF +-1% 186VDC CER CAPACITOR-FXD .01UF +-1% 100VDC CER CAPACITOR-FXD 2200PF +-1% 50VDC CER CAPACITOR-FXD 5UF>50-10% 150VDC AL CAPACITOR-FXD 5UF+50-10% 150VDC AL	28480 28480 51442 56289 56289	01604426 0160-4426 20C50-NP0-222F 30D505F150CC2 30D505F150CC2
A6C29 A6C30 A6C31 A6C32 A6C33	0160-0576 0160-0576 0160-4426 0180-3115 0180-3115	មម្លាក	2	CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .01UF +-1X 100VDC CER CAPACITOR-FXD 330UF+50-10X 63VDC AL CAPACITOR-FXD 330UF+50-10X 63VDC AL	28430 28480 28480 28480 28480 28480	0160-0576 016.0-0576 0160-4426 0180-3115 0100-3115
A6C34 A6C35 A6C36 A6C37 A6C38	0180-0197 0180-0197 0180-0197 0180-0197 0180-1846 0180-1846	8 8 8 8 6 6	3	CAPACITOR-FXD 2.2UF+-10% 26VDC TA CAPACITOR-FXD 2.2UF+-10% 28VDC TA CAPACITOR-FXD 2.2UF+-10% 28VDC TA CAPACITOR-FXD 2.2UF+-10% 35VDC TA CAPACITOR-FXD 2.2UF+-10% 35VDC TA	56289 56287 56289 56289 56289 56289	150D225X9020A2 150D225X9020A2 150D225X9026A2 150D225X903582 150D225X903582
A6C39 A6C40 A6C41 A6C42 A6C43	0160-4387 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	4 ហេ ហេ ហេ		CAPACITOR-FXD 47PF +-5% 2000DC CER 0+-30 CAPACITOR-FXD .1UF +-20% 500DC CER CAPACITOR-FXD .1UF +-20% 500DC CER CAPACITOR-FXD .1UF +-20% 500DC CER CAPACITOR-FXD .1UF +-20% 500DC CER	28480 28480 28480 28480 28480 28480	0160-4387 6160-0576 0160-0576 0160-0576 0160-0576 0160-0576
AGC44 A6C45 AGC46 A6C47 A6C48	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	មាលមាល		CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER	28480 28480 28480 28480 28480 28480	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576
A6C49 A6C50 A6C51	0160-0576 0160-0576 0160-0685	557		CAPACITOR-FXD .1UF +-20X 53VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD 0.1UF 1X 63VDC	28480 28480 28480	0160-0576 0160-0576 0160-0685
A6CR1 A6CR2 A6CR3 A6CR4 A6CR5	1902-0943 1902-0951 1901-0376 1901-0376 1901-0376	00000	1 1 4	DIODE-ZNR 2.4V 5% DO-35 PD=.4W TC=037% DIODE-ZNR 5.1V 5% DO-35 PD=.4W TC=+.035% DIODE-GEN PRP 35V 50MA DO-35 DIODE-GEN PRP 35V 50MA DO-35 DIODE-GEN PRP 35V 50MA DO-35	28480 23480 23480 28480 28480 28480	1902- 8943 1902-0951 1901-0376 1901-0376 1901-0376
A&CR& A&CR7 A&CR8 A&CR9 A&CR9 A&CR10	1901-0376 1901-0731 1901-0731 1901-0731 1901-0731 1901-0731	67777	4	DIODE-GEN PRP 350 50MA DO-35 DIODE-PWR RECT 4000 1A DIODE-PWR RECT 4030 1A DIODE-PWR RECT 4030 1A DIODE-PWR RECT 4030 1A	28480 28480 28480 28480 28480 28480	1701-0376 1961-0731 1701-0731 1701-0731 1701-0731 1701-0731
A6D51 A6D52 A6D53 A6D54 A6D55	1 990 0 450 1 990 0 450	4444	8	LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX	28480 28480 28490 28480 28480 28480	5082-4484 5082-4484 5082-4484 5082-4484 5082-4484 5082-4484
A6DS6 A6DS7 A6DS8	1990-0450 1990-0450 1990-0450	4 4 4		LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-HAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX	28480 28480 28480 28480	5082-4484 5082-4484 5082-4484
АбК 1 АбК 2 АбК 3	0490-1262 0490-1262 0490-1262	7 7 7	3	RELAY 2C 12VDC-COIL 2A 120VAC RELAY 2C 12VDC-COIL 2A 120VAC RELAY 2C 12VDC-COIL 2A 120VAC	28480 28480 28480	0490-1262 0490-1262 0490-1262

÷

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part A/B/ Number Option
A6L1 A6L2	2100-1641 9100-1641	0 0	2	INDUCTOR RF-CH-MLD 2400H 5% ,166DX,385LG INDUCTOR RF-CH-MLD 2400H 5% ,166DX.385LG	28480 28480	9100-1641 9100-1641
A6Q1 A6Q2 A6Q3 A6Q4 A6Q5	1855-0386 1855-0386 1855-0386 1855-0386 1855-0386 1855-0386	9 99 99 9	7	TRANSISTOR J-FET 2N4392 N-CHAN D-MODE TRANSISTOR J-FET 2N4392 N-CHAN D-MODE TRANSISTOR J-FET 2N4392 N-CHAN D-MODE TRANSISTOR J-FET 2N4392 N-CHAN D-MODE TRANSISTOR J-FET 2N4392 N-CHAN D-MODE	04713 04713 04713 04713 04713 04713	2N4392 2N4392 2N4392 2N4392 2N4392 2N4392
A6Q6 A6Q7	1855-0386 1855-0386	9 9		TRANSISTOR J-FET 2N4392 N-CHAN D-MODE TRANSISTOR J-FET 2N4392 N-CHAN D-MODE	04713 04713	2N4392 2N4392
a6r 1 A6r2 A6r3 A6r4 A6r5	1810-0273 0757-0346 0757-0346 0757-0346 0757-0346 0757-0280	4 N N N 6	1 3 3	NETWORK-RES 10-SIP470.0 OHM X 9 RESISTOR 10 1% .125W F TC=0+100 RESISTOR 10 1% .125W F TC=0+-100 RESISTOR 10 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0:-100	01121 24546 24546 24546 24546	210A471 C4 1/8-T0-10R0-F C4 1/8-T0-10R0-F C4 1/8-T0-10R0-F C4 1/8-T0-10R0-F C4 1/8-T0-10R0-F
A&R6 A&R7 A&RB A&R9 A&R9 A&R1D	0678-0085 0757-0438 0757-0438 0698-3154 0698-3161	03309	1 2 2 1	RESISTOR 2.61K 1Z .125W F TC=0+-100 RESISTOR 5.11K 1Z .125W F TC=0+-100 RESISTOR 5.11K 1Z .125W F TC=0+-100 RESISTOR 4.22K 1Z .125W F TC=0+-100 RESISTOR 30.3K 1Z .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4 1/8-T0-2611-F C4-1/8-T0-5111-F C4-1/8-T0-5111-F C4-1/8-T0-4021-F C4-1/8-T0-3832-F
A6R11 A6R12 A6R13 A6R14 A6R15	0698-3449 0698-3154 0757-0288 0698-3449 0698-3449	6 0 1 6	6 3	RESISTOR 28.7K 1% .125W F TC=0+-100 RESISTOR 4.22K 1% .125W F TC=0+-100 RESISTOR 9.09K 1% .125W F TC=0+-100 RESISTOR 28.7K 1% .125W F TC=0+-100 RESISTOR 28.7K 1% .125W F TC=0+-100	24546 24546 19701 24546 24546	C4 1/8-T0-2872-F C4 1/8-T0-2872-F MF4C1/8-T0-2871-F C4 1/8-T0-2872-F C4 1/8-T0-2872-F
46R16 46R17 46R18 46R19 46R20	0698-3449 0757-0442 0698-3449 0757-0280 0698-3449	69636	5	RESISTOR 23.7K 1% .125₩ F TC=0+-100 RESISTOR 10K 1% .125₩ F TC=0+-100 RESISTOR 28.7K 1% .125₩ F TC=0+-100 RESISTOR 1K 1% .125₩ F TC=0+-100 RESISTOR 28.7K 1% .125₩ F TC=0+-100	24546 24546 24546 24546 24546	C4 ·1/8-T0-2372-F C4 ·1/8-T0-1002-F C4 ·1/8-T0-2072-F C4 ·1/8-T0-2072-F C4 -1/8-T0-2872-F C4 -1/8-T0-2872-F
AGR21 AGR22 AGR23 AGR24 AGR25	0757-0280 0757-0416 0757-0416 0757-0465 0699-0144	37764	2 2 4	RESISTOR 1K 12 .125W F TC=0+-100 RESISTOR 511 12 .125W F TC=0+-100 RESISTOR 511 12 .125W F TC=0+-100 RESISTOR 100K 12 .125W F TC=0+-100 RESISTOR 10K .012 .1W F TC=0+-5	24546 24546 24546 24546 28480	C4 1/8-T0-1001-F C4-1/8-T0-511%-F C4-1/8-T0-511%-F C4-1/8-T0-1003-F 0699-0144
A6R26 A6R27 A6R28 A6R29 A6R30	0699-0144 0699-0144 0699-0144 0757-0289 0698-0083	44428	1 1	RESISTOR 10K .01% .1W F TC=0++5 RESISTOR 10K .01% .1W F TC=0++5 RESISTOR 10K .01% .1W F TC=0++5 RESISTOR 13.3K 1% .125W F TC=0++100 RESISTOR 1.96K 1% .125W F TC=0+-100	28480 28480 28480 19701 24546	0699-0144 0679-0144 0679-0144 MF4CI/8-T0-1332-F C4-1/8-T0-1981 -F
A&R31 A&R32 A&R33 A&R33 A&R34 A&R35	0757-0419 0757-0442 0757-0442 0757-0442 0757-0442 0757-0442	0999999	1	RESISTOR 681 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C41/8-T0601R-F C41/8-T0-1002-F C41/8-T01002-F C41/8-T01002-F C4-1/8-T01002-F
A6R36 A6R37 A6R38 A6R39 A6R39 A6R40	8698-7682 0698-7398 0698-6977 0698-3700 0698-3700	7 2 1 2 1	12113	RESISTOR 52.98K .1% .125W F TC=0+-50 RESISTOR 6.124K .1% .125W F TC=0+-50 RESISTOR 30K .1% .125W F TC=0+-25 RESISTOR 715 1% .125W F TC=0+-100 RESISTOR 316 1% .125W F TC=0+-100	19701 19701 28480 24546 24546	NF4C1/B-T2-52981-B NF4C1/B-T2-6124R-B 3698-6977 C4-1/8-T0-7158-F C4-1/8-T0-316R-F
agr41 Agr42 Agr43 Agr44 Agr45	0757-0317 0698-6360 0811-3608 0679-0244 0698-6362	76158	1 4 3 1 4	RESISTOR 1.33K 1% .125W F TC=0+-100 RESISTOR 10K .1% .125W F TC=0+-25 RESISTOR 300 .01% 3W PW TC=0+-20 RESISTOR 3.22K .1% .125W F TC=0+-53 RESISTOR 1K .1% .125W F TC=0+-25	24546 28480 28480 23480 28480	C41/8-T61331-F 96586360 0811-3608 0679-0244 0693-6362
A6R46 A6R47 A6R48 A6R49 A6R50	0698-6519 0757-0428 0698-6362 0698-6362 0757-0424	7 1 8 8 7	2 2 1	RESISTOR 26.7K .1% .125W F TC=0+-25 RESISTOR 1.62K 1% .125W F TC=0+-100 RESISTOR 1K .1% .125W F TC=0+-25 RESISTOR 1K .1% .125W F TC=0+-25 RESISTOR 1.1K 1% .125W F TC=0+-100	28480 24546 23430 28480 24546	9698-6519 C4178-T0-1621-F 9698-6362 C498-6362 C498-6362 C4-178-T0-1191-F
A&R\$1 A&R52 A&R53 A&R54 A&R55	0757-0428 0698-3502 0698-8179 0698-6519 0698-7678	1 9 7 1	1 1 1	RESISTOR 1.62K 1Z .125W F TC=0+0-100 RESISTOR 41.2K 1Z .125W F TC=0+-100 RESISTOR 268K .12 .125W F TC=0+-25 RESISTOR 26.7K .12 .125W F TC=0+-25 RESISTOR 79.81K .12 .125W F TC=0+-50	24546 24546 19701 29480 19701	C41/8-T0-1621-F C4-1/8-T0-4122-F MF4C1/8-T9-2023-B 0678-6519 MF4C1/8-T2-79311-B
A6R56 A6R57 A6R58 A6R59 A6R59 A6R60	0498-5498 0498-5498 0757-0340 0757-0340 0498-6515	79663	2	RESISTOR 1.5M .12 .5W F TC=0+-50 RESISTOR 1.5M .12 .5W F TC=0+-50 RESISTOR 10K 12 .25W F TC=0+-100 RESISTOR 10K 12 .25W F TC=0+-100 RESISTOR 43.5K .12 .125W F TC=0+-25	28490 28480 24546 24546 28480	0678-5478 8678-5478 85-1/4-TD-1002-F 85-1/4-TD-1602-F 9698-6515
A6R61 A6R62 A6R63 A6R64 A6R64	0757-0288 0698-8799 0698-8863 0698-3444 0698-6624	1 9 8 1 5	1 1 1	RESISTOR 9.09K 12 .125W F TC=0+-100 RESISTOR 21.5K .12 .125W F TC=0+-25 RESISTOR 5.2K .12 .125W F TC=0+-25 RESISTOR 316 12 .125W F TC=0+-100 RESISTOR 2K .12 .125W F TC=0+-25	19701 28430 28480 24546 28480	MF4C1/8-T0-9091-F 0578-8799 0698-8863 C4 -1/8-T0-316R - F 0698-6624

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
A6R66 A6R67 A6R63 A6R69 A6R70	0698-6360 0698-7398 0698-3444 0699-1016 0811-3698	621 11	1	RESISTOR 10K .1% .125W F TC=0+-25 RESISTOR 6.124K .1% .125W F TC=0+-50 RESISTOR 316 1% .125W F TC=0+-10 RESISTOR 300 .01% .125W F TC=0+-10 RESISTOR 300 .01% 3W PW TC=0+-20	28480 19701 24546 28480 28480	0698-6360 MF4C1/8-T2-6124R-B C4-1/8-T0-316R-F 0699-1016 0811-3608	
А6871 А6872 А6873 А6874 А6875	08113608 0811-3607 0698-6353 0698-6353 0698-0082	1 0 7 7 7	1 2 1	RESISTOR 300 .01% 3W PW TC=0+-20 RESISTOR 600 .01% 3W PW TC=0+-20 RESISTOR 50K .1% .125W F TC=0+-25 RESISTOR 50K .1% .125W F TC=0+-25 RESISTOR 464 1% .125W F TC=0+-100	28480 28480 28480 28480 23480 24546	0811-3608 0811-3607 0698-6353 0698-6353 C41/8-T04640F	
A&R76 A&R77 A&R78 A&R78 A&R79 A&R83	0698-4405 0698-4428 0698-6360 0698-6360 0757-0288	6 3 6 6 1	2	RESISTOR 197 12 .125W F TC=0+-100 RESISTOR 1.69K 12 .125W F TC=0+-100 RESISTOR 10K .12 .125W F TC=0+-25 RESISTOR 10K .12 .125W F TC=0+-25 RESISTOR 9.09K 12 .125W F TC=0+-100	24546 24546 23480 28480 19701	C4-1/8-T0-107R-F C4-1/8-T0-1691-F 0698-6360 0698-6360 MF4C1/8-T0-9091-F	
A&R 81 A&R 82 A&R 83 A&R 84 A&R 85	0698-4405 0698-6362 0698-8167 0698-3548 0698-4454	ង២៣៤ ស	1 1 3	RESISTOR 107 12 .125W F TC=0+-100 RESISTOR 1K .12 .125W F TC=0+-25 RESISTOR 18K .12 .125W F TC=0+-25 RESISTOR 18K .12 .125W F TC=0+-100 RESISTOR 523 12 .125W F TC=0+-100	24546 28480 19701 24546 24546	C4-1/8-T0-107R-F 0698-6362 MF4C1/8-T9-1802-B C4-1/8-T0-732R-F C4-1/8-T0-523R-F	
A6R86 A5R87 A6R38 A5R89 A5R90	0698-7329 0698-4454 9757-0403 0698-7929 0698-7329	8 10 10 10 10 10 10 10 10 10 10 10 10 10	3 1 1	RESISTOR 3.266K .1% .125W F TC=0+-50 RESISTOR 523 1% .125W F TC=0+-100 RESISTOR 121 1% .125W F TC=0+-100 RESISTOR 9.09K .1% .125W F TC=0+-50 RESISTOR 3.266K .1% .125W F TC=0+-50	19701 24546 24546 19701 19701	MF4C1/8-T2-3266R-B C4-1/8-T0-523R-F C4-1/8-T0-121R-F MF4C1/8-T2-9091-B MF4C1/8-T2-3266R-B	
A&R91 A&R92 A&R93 A&R93 A&R94 A&R95	0698-4454 0699-3750 0698-3488 0698-7327 0698-3454	5 8 3 9 3	1 1 1	RESISTOR 523 1% ,125W F TC=0+-100 RESISTOR 16.703K .1% ,125W F TC=0+-25 RESISTOR 442 1% ,125W F TC=0+-100 RESISTOR 3.266K .1% ,125W F TC=0+-50 RESISTOR 215K 1% ,125W F TC=0+-100	24546 28480 24546 19701 24546	C4-1/8-T0-523R-F 0699-0750 C4-1/8-T0-422R-F MF4C1/8-T2-3266R-B C4-1/8-T0-2153-F	
A6R96 A6U17 A6U21 A6U22 A6U31 A6U32	0757-0465 1826-0410 1320-1440 1826-0360 1820-1200 1826-0410	6 95859	4 1 1 1	RESISTOR 100K 12 .125W F TC=0+-100 IC OP AMP LOW-BIAS-H-IMPD QUAD 14-DIP-P IC LCH TTL LS QUAD IC COMPARATOR GP QUAD 16-DIP-P PKG IC INV TTL LS HEX IC OP AMP LOW-BIAS-H-IMPD QUAD 14-DIP-P	24546 01295 01295 04713 01295 01295	C4 -1/B-T0-1003-F TL084CN SN74L5279N MC3431P SN74L505N TL084CN	
ASUS1 AGU52 AGU54 AGU55 AGU55 AGU61	1320-1144 1858-0047 1826-0138 1826-0410 1820-1177	6 5 8 9 1	1 1 2 1	IC GATE TTL LS NOR QUAD 2INP TRANSISTOR ARRAY 16-PIN PLSTC DIP IC Comparator of Quad 14DIP-P PKG IC OP AMP LOW-BIAS-H-TMPD QUAD 14DIP-P IC INV TTL LS HEX 1-INP	01295 13606 01295 01295 01295	SN74LS02N ULN-2003A LM339N TL084CN SN74LS04N	
A&U62 A&U64 A&U65 A&U71 A&U72	1820-2056 1826-0138 1826-0532 1820-1197 1820-2056	1 6 9 1	2 2 1	IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC COMPARATOR GP QUAD 14-DIP-P PKG IC OP AMP GP QUAD 14-DIP-C PKG IC GATE TTL LS NAND QUAD 2-INP IC FF TTL LS D-TYPE POS-EDGE-TRIG COM	01295 01295 34371 01295 01295	SN74LS378N LM339N HA1-4605-5 SN74LS00N SN74LS378N	
A6U75 A6U77 A6U73 A6U81 A6U82	1826-0532 1826-0178 1826-0438 1820-1216 1820-1997	6 6 1 3 7	1 1 1 1	IC OP AMP GP QUAD 14-DIP-C PKG IC V RGLTR TO-39 IC V RGLTR TO-39 IC DCDR TTL LS 3-TO-8-LINE 3-INP IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN	34371 27014 27014 01295 01295	HA1-4605-5 LM320H-12 LM340LAH-12 SN74LS138N SN74LS374N	
A6U85 MSC MSC MSC MSC	1826-0410 1258-0124 1480-0116 4040-0748 4040-0754	9 7 8 3 1	4 2 1 1	IC OP AMP LOW-BIAS-H-IMPD QUAD 14-DIP-P PIN-PROGRAMING DUMPER .30 CONTACT PIN-GRV .062-IN-DIA .25-IN-LG STL EXTR-PC BD BLK POLYC .062-BD-THKNS EXTR-PC BD BLU POLYC .062-BD-THKNS	01295 91506 28480 28480 28480 28480	TL084CN 8136-475G1 1480-0116 4040-0748 4040-0754	

-.

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
A7	03776-60007	2	1	SAR, A/D CONVERTER & DIGITAL D/P ASSY	28460	03776-60007	-
A7C1 A7C2 A7C3 A7C4 A7C5	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	េសសសស	29 .	CAPACITOR-FXD .1UF +-202 50VDC CER CAPACITOR-FXD .1UF +-202 50VDC CER CAPACITOR-FXD .1UF +-202 50VDC CER CAPACITOR-FXD .1UF +-202 50VDC CER CAPACITOR-FXD .1UF +-202 50VDC CER	28480 28480 28480 28480 28480 28480	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	
A7C6 A7C7 A7C8 A7C9 A7C10	0160-0576 0160-0576 8160-0576 0160-0576 0160-0576 0160-0576	សលលល	-	CAPACITOR-FXD .1UF +-202 50VDC CER CAPACITOR-FXD .1UF +-202 50VDC CER CAPACITOR-FXD .1UF +-202 50VDC CER CAPACITOR-FXD .1UF +-202 50VDC CER CAPACITOR-FXD .1UF +-232 50VDC CER	28480 28480 28480 28480 28480 28480	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	
A7C11 A7C12 A7C13 A7C14 A7C15	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	លលលល		CAPACITOR-FXD 1UF +-202 SOVDC CER CAPACITOR-FXD 1UF +-202 SOVDC CER CAPACITOR-FXD 1UF +-202 SOVDC CER CAPACITOR-FXD 1UF +-202 SOVDC CER CAPACITOR-FXD 1UF +-202 SOVDC CER	28480 28480 28480 28480 28480 28480	0140-0576 0140-0576 0140-0576 0140-0576 0140-0576 0140-0576	
A7C16 A7C17 A7C18 A7C19 A7C20	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	លល្ខល្ល		CAPACITOR-FXD .1UF +-202 50VDC CER CAPACITOR-FXD .1UF +-202 50VDC CER CAPACITOR-FXD .1UF +-202 50VDC CER CAPACITOR-FXD .1UF +-202 50VDC CER CAPACITOR-FXD .1UF +-202 50VDC CER	28480 28480 28480 28480 28480 28480	0140-0576 0140-0576 0140-0576 0140-0576 0140-0576 0140-0576	
A7C21 A7C22 A7C23 A7C24 A7C25	0160-0576 0180-0374 0180-0374 0160-0576 0160-0576	ឲាយសមាធ		CAPACITOR-FXD .1UF +-20Z 50VDC CER CAPACITOR-FXD 10UF+-10Z 20VDC TA CAPACITOR-FXD 10UF+-10Z 20VDC TA CAPACITOR-FXD .1UF +-22Z 50VDC CER CAPACITOR-FXD .1UF +-22Z 50VDC CER	28480 56287 56287 28480 28480	0140-0576 150D104X902002 150D106X902002 0160-0576 0160-0576	
A7C26 A7C27 A7C28 A7C29 A7C34	8160-0576 8160-0576 8160-0576 8160-0576 8160-0576 8160-0576	ឆត្តស្ត្រ		CAPACITOR-FXD .10F +-20X SOVDC CER CAPACITOR-FXD .10F +-20X SOVDC CER CAPACITOR-FXD .10F +-20X SOVDC CER CAPACITOR-FXD .10F +-20X SOVDC CER CAPACITOR-FXD .10F +-20X SOVDC CER	20400 20400 20400 20400 20400 20400 20400	0160~0576 0160~0576 0160~0576 0160~0576 0160~0576 0160~0576	
A7C35 A7C38 A7C39 A7C40 A7C41	0160-4992 0130-0197 0180-1846 0180-1846 0180-1846 0180-0197	7 8 6 8	1 2 5	CAPACITOR-FXD 330PF 1% 63VDC CAPACITOR-FXD 2.2UF+-18% 23VDC TA CAPACITOR-FXD 2.2UF+-10% 35VDC TA CAPACITOR-FXD 2.2UF+-10% 35VDC TA CAPACITOR-FXD 2.2UF+-10% 25VDC TA	23486 56287 56287 56287 56287 56287	0140-4992 153D225X9020A2 150D225X9035B2 153D225X903582 150D225X903582 156D225X9020A2	
A7C42 A7C43 A7C44 A7C45	0180-1846 0180-1846 0160-0576 0180-1846	6 6 5 6		CAPACITOR-FXD 2.2UF+-10% 35VDC TA CAPACITOR-FXD 2.2UF+-10% 35VDC TA CAPACITOR-FXD 1.2UF+-10% 35VDC CER CAPACITOR-FXD 2.2UF+-10% 35VDC TA	56287 56287 28480 56289	150D225X903582 150D225X9035B2 0160-0576 150D225X9035B2	
A7CR11 A7CR12 A7CR13 A7CR14 A7CR15	1901-0539 1901-0539 1901-0539 1901-0539 1902-1374	00 10 10 10 10 10 10 10 10 10	4	DIODE-SM SIG SCHOTTKY DIODE-SM SIG SCHOTTKY DIODE-SM SIG SCHOTTKY DIODE-SM SIG SCHOTTKY DIODE-ZNR 5.1V 1% DD-35 PD=.5W	29480 28480 28480 28480 28480 28480	17013539 1701-0539 1701-0539 1701-0539 1701-0539 1732-1374	
A7CR17 A7CR18 A7CR19 A7CR20	1902-0943 1932-0953 1902-0953 1901-0040	5 7 7 1	1 2 1	DIDDE-ZNR 2.4V 5% DO-35 PD=.4W TC=+.037% DIDDE-ZNR 6.2V 5% DD-35 PD=.4W TC=+.053% DIDDE-ZNR 6.2V 5% DO-35 PD=.4W TC=+.053% DIDDE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28480 28480 28480	1902-0 94 3 1902-0953 1902-0953 1902-0953 1931-0040	
A7DS1 A7DS2 A7DS3 A7DS4 A7DS5	1990-0450 1990-0450 1990-0450 1990-0450 1990-0450 1990-0450	4 4 4 4 4 4	10	LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD JF=50MA-MAX	28480 28480 28480 28480 28480 28480	5082-4484 5092-4484 5082-4484 5082-4484 5082-4484	
A7D56 A7D57 A7D58 A7D59 A7D510	1790-0450 1990-0450 1990-0450 1990-0450 1990-0450 1990-0450	4 4 4 4 4		LED-LAMP LUM-INT-3000CD 1F=50MA-MAX LED-LAMP LUM-INT=8000CD 1F=50MA-MAX LED-LAMP LUM-INT=800UCD 1F=50MA-MAX LED-LAMP LUM-INT=800UCD 1F=50MA-MAX LED-LAMP LUM-INT=900UCD 1F=50MA-MAX	20480 20400 20480 20480 20480 20480	5382-4484 5082-4484 5382-4484 5882-4484 5882-4484	
A7F1 A7F2	2110-0218 2110-0218	9	2	FUSE .1A 250V .25X.27 FUSE .1A 250V .25X.27	23480 28480	2110-0218 2110-0218	
A7K 1	0490-1262	7	1	RELAY 2C 12VDC-COIL 2A 120VAC	28480	0490-1262	
A7L1 A7L2	7100-1641 7100-1641	0 0	2	INDUCTOR RF-CH-MLD 24300 5% ,166DX.385LG INDUCTOR RF-CH-MLD 24000 5% ,166DX.385LG	28480 28480	9100-1641 9100-1641	
A7LK1	1469-1336	4	1	WIREFORM CU BRT-TIN	28480	1460-1336	
A7Q1 A7Q2 A7Q3 A7Q4 A7Q5	1855-0386 1855-0386 1855-0386 1855-0386 1855-0386 1855-0386	9 9 9 9 9 9	11	TRANSISTOR J-FET 2N4392 N-CHAN D-MODE TRANSISTOR J-FET 2N4392 N-CHAN D-MODE TRANSISTOR J-FET 2N4392 N-CHAN D-MODE TRANSISTOR J-FET 2N4392 N-CHAN D-MODE TRANSISTOR J-FET 2N4392 N-CHAN D-MODE	04713 04713 04713 04713 04713 04713	2N4392 2N4392 2N4392 2N4392 2N4392 2N4392	

, ---

- :

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
A7Q6 A7Q7 A7Q8 A7Q9 A7Q10	1855-0386 1855-0386 1855-0386 1853-0271 1853-0271	99977	ن	TRANCISTOR J-FET 2N4392 N.CHAN D-MODE TRANSISTOR J-FET 2N4392 N.CHAN D-MODE TRANSISTOR J-FET 2N4392 N.CHAN D-MODE TRANSISTOR PNP 2N4403 SI TO-92 PD=310MW TRANSISTOR PNP 2N4403 SI TO-92 PD=310MW	04713 04713 04713 04713 04713 04713	2N4392 2N4392 2N4392 2N4352 2N4403 2N4403	
A7Q11 A7Q12 A7Q13 A7Q14 A7Q15	1853-0271 1854-0467 1854-0467 1854-0467 18554-0467 1855-0386	75559	7	TRANSISTOR PNP 2N4403 SI TO-92 PD=310MU TRANSISTOR NPN 2N4401 SI TO-92 PD=310MU TRANSISTOR NPN 2N4401 SI TO-92 PD=310MU TRANSISTOR NPN 2N4401 SI TO-92 PD=310MU TRANSISTOR J-FET 2N4392 N-CHAN D-MODE	04713 03508 03508 03508 03508 04713	2N4403 2N4401 2N4401 2N4401 2N4392	
A7Q16 - A7Q17 A7Q18 A7Q19 A7Q20	1855-0386 1853-0036 1854-0215 1855-0386 1854-0467	2 1 9 5	1 1	TRANSISTOR J-FET 2N4392 N-CHAN D-MODE TRANSISTOR PNP SI PD=310HW FT=250HHZ TRANSISTOR NPN SI PD=350HW FT=300HHZ TRANSISTOR J-FET 2N4392 N-CHAN D-MODE TRANSISTOR NPN 2N4401 SI TO-92 PD=319HW	04713 28480 04713 04713 03508	2N4392 1853-0036 2N3904 2N4392 2N4401	
A7Q21 A7Q22 A7Q23 A7Q24 A7Q25	1853-0271 1853-0271 1853-0271 1854-0467 1854-0467	77755		TRANSISTOR PNP 2N4403 SI TO-92 PD=310MW TRANSISTOR PNP 2N4403 SI TO-92 PD=310MW TRANSISTOR PNP 2N4403 SI TO-92 PD=310MW TRANSISTOR NPN 2N4401 SI TO-92 PD=310MW TRANSISTOR NPN 2N4401 SI TO-92 PD=310MW	04713 04713 04713 03503 03508	2N4403 2N4403 2N4403 2N4403 2N4401 2N4401	
A7Q26	1854-0467	5		TRANSISTOR NPN 2N4401 SI TO-92 PD=310HW	03508	2N4401	
A7R1 A7R2 A7R3 A7R4 A7R5	0698-3449 0757-0280 0698-3449 0757-0280 0698-3449	63 63 63 6	8 7	RESISTOR 28.7K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 28.7K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 28.7K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-2872-F C4-1/8-T0-1001-F C4-1/8-T0-2872-F C4-1/8-T0-1001-F C4-1/8-T0-2872-F	
A7R6 A7R7 A7R8 A7R9 A7R10	0757-0280 0698-3449 0757-0280 1810-0317 1810-0572	3 6 3 2 1	1 1	RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 28.7K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 NETWORK-RES 14-DIP510.6 0HM X 7 NETWORK-RES 14-DIP1.2K 0HM X 7	24546 24546 24546 01121 28480	C4-1/8-T0-1001-F C4-1/8-T0-2872-F C4-1/8-T0-1001-F 314B511 1810-0572	
A7R11 A7R12 A7R13 A7R14 A7R15	0698-4107 0698-4107 0698-3332 0698-3332 0698-3332 0698-3404	5 5 6 3 3	2 2 1	RESISTOR 23.7 1% .25W F TC=0+-100 RESISTOR 23.7 1% .25W F TC=0+-100 RESISTOR 80.6 1% .5W F TC=0+-100 RESISTOR 80.6 1% .5W F TC=0+-100 RESISTOR 383 1% .5W F TC=0+-100	24546 24546 28480 28480 28480	C5-1/4-T0-23R7-F C5-1/4-T0-23R7-F 6698-3332 0698-3332 0698-3332 0698-3404	
A7R16 A7R17 A7R18 A7R19 A7R20	0698-5334 0698-5334 0757-0442 0757-0442 0757-0442 0757-0442	22999	2 5	RESISTOR 603 .5% .5W F TC=0+-100 RESISTOR 603 .5% .5W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100	28480 28480 24546 24546 24546 24546	0678-5334 0698-5334 C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F	Ā
A7R21 A7R22 A7R23 A7R24 A7R25	6757-0410 9757-0410 8698-3154 9757-0283 0698-3449	1 1 0 1 6	2 2 1	RESISTOR 301 12 .125W F TC=0+-100 RESISTOR 301 12 .125W F TC=0+-100 RESISTOR 4.22K 12 .125W F TC=0+-100 RESISTOR 9.09K 12 .125W F TC=0+-100 RESISTOR 28.7K 12 .125W F TC=0+-100	24546 24546 24546 19701 24546	C4-1/8-T0-301R-F C4-1/8-T0-301R-F C4-1/8-T0-4221-F MF4C1/8-T0-9091-F C4-1/8-T0-2872-F	
A7R26 A7R27 A7R28 A7R29 A7R33	0678-3449 0678-3449 0678-3437 0698-6364 0698-6364	6 2 0 0	1 2	RESISTOR 28.7K 1% .125W F TC=0+-100 RESISTOR 28.7K 1% .125W F TC=0+-100 RESISTOR 133 1% .125W F TC=0+-100 RESISTOR 50 .1% .125W F TC=0+-25 RESISTOR 50 .1% .125W F TC=0+-25	24546 24546 24546 28480 28480	C4-1/8-T0-2872-F C4-1/8-T0-2872-F C4-1/8-T0-133R-F 0698-6364 0698-6364	
A7R 31 A7R 32 A7R 33 A7R 34 A7R 35	0757-0442 1310-0573 0757-0710 0698-3154 0698-3451	9 2 4 0 0	1 2 1	RESISTOR 10K 1% .125₩ F TC=0+-10C NETWORK-RES 14-DIP100.0 OHM X 7 RESISTOR 75 1% .25₩ F TC=0+-100 RESISTOR 4.22K 1% .125₩ F TC=0+-100 RESISTOR 133K 1% .125₩ F TC=0+-100	24546 28490 24546 24546 24546	C4-1/8-T0-1002-F 1810-0573 C5-1/4-T0-75RC-F C4-1/8-T0-4221-F C4-1/8-T0-1333-F	
A7836 A7837 A7838 A7839 A7839	0698-3449 0757-0280 0757-0200 0757-0442 0757-0442	6 3 7 9 3	1	RESISTOR 28.7K 1% .125W F TC=0+100 RESISTOR 1K 1% .125W F TC=0+100 RESISTOR 5.62K 1% .125W F TC=0+100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-2372-F C4-1/8-T6-1001-F C4-1/8-T0-5621-F C4-1/8-T0-1002-F C4-1/8-T0-1001-F	
A7R 41 A7R 42 A7R 43 A7R 45 A7R 45	0757-0440 0757-0278 0757-0280 0757-0420 0757-0420 0757-0710	7 9 3 3 4	1 1	RESISTOR 7.5K 12 .125W F TC=0+-100 RESISTOR 1.78K 12 .125W F TC=0+-100 RESISTOR 1K 12 .125W F TC=0+-100 RESISTOR 750 12 .125W F TC=0+-100 RESISTOR 75 12 .25W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-7501-F C4-1/8-T0-1781-F C4-1/8-T0-1001-F C4-1/8-T0-751-F C5-1/4-T0-7580-F	
A7R47 A7 R49 A7R96	1818-0364 0757-1094 0757-0465	9 9 6	1 1 1	NETWORK-RES 6-GIP470.0 OHM X 5 RESISTOR 1.47K 1% .125W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100	01121 24546 24546	206A471 C4-1/8-T0-1471-F C4-1/8-T0-1003-F	
A7T2	15506-80001	7	1	TRANSFORMER ASSEMBLY	28480	15506-80001	
A7U11 A7U12 A7U21 A7U22 A7U24	1620-2244 1820-1199 1820-1432 1820-1112 1826-0410	9 1 5 8 9	1 3 3 3 4	IC FF TTL LS DHTYPE POSHEDGE-TRIG COM IC INV TTL LS HEX 1-INP IC CNTR TTL LS DIN SYNCHRO POSHEDGEHTRIG IC FF TTL LS DHTYPE POSHEDGEHTRIG IC OP AMP LOW-BIASHHIMPD QUAD 14-DIPPP	01295 01295 01295 01295 01295 01295	SN74LS379N SN74LS04N SN74LS163AN SN74LS163AN SN74LS74AN TL384CN	

See introduction to this section for ordering information *Indicates factory selected value

. .

F.

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
A7U25 A7U31 A7U32 A7U34 A7U34 A7U41	1926-3410 1820-1432 1820-1197 1826-8138 1920-1432	95985	. 2	IC OP AMP LOW-BIAS-H-IMPD GUAD 14-DIP-P IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG IC GATE TTL LS NAND GUAD 2-INP IC COMPARATOR GP GUAD 14-DIP-P PKG IC CNTR TTL LS BIN SYNCHRO PGS-EDGE-TRIG	01225 01225 01225 01225 01225 01225	TL084CN SN74LS163AN SN74LS00N LM339N SN74LS163AN	
A7U42 A7U45 A7U47 A7U51 A7U52	1920-1197 1326-0503 1826-0410 1320-1112 1820-1199	9 1 9 8 1	1	IC GATE TTL LS NAND QUAD 2-INP IC SMPL/HOLD TC-99 PKG IC OP AMP LOW-DIAS-K-IMPD QUAD 14-DIP-P IC FF TTL LS D-TYPE PGS-COGE-TRIG IC INV TTL LS HEX 1-INP	01295 27014 01295 01295 01295	SN74LS00N LF393H TL084CN SN74LS74AN SN74LS74AN	
A7U61 A7U62 A7U64 A7U65 A7U65 A7U67	1820-1203 1820-1200 1826-0410 1813-0257 1820-1199	8 5 7 5 1	1 1 1	IC GATE TTL LS AND TPL 3-INP IC INV TTL LS HEX IC OP AMP LGM-BIAS-H-INPD GUAD 14-DIP -P A/D 12-BIT 28-CBRZ/SDP BPLR IC INV TTL LS HEX 1-INP	01275 01275 01275 28486 01275	SN74LS11N SN74LS05N TL084CN 1813-6257 SN74LSJ4N	A
A7U71 A7U72 A7U74 A7U75 A7U75 A7U77	1820-1197 1820-2056 1826-0138 1820-2102 1826-0178	9 1 8 3 6	2 2 1	IC CATE TTL LS NAND QUAD 2INP IC FF TTL LS D-TYPE POS-EC6E-TRIG COM IC COMPARATOR GP QUAD 14-DIP-P PKG IC LCH TTL LS D-TYPE GCTL IC V RGLTR TO-39	01275 01275 01295 01295 01295 27014	SN74LS00N SN74LS370N LM339N SN74LS373N LM320H-12	
A7U81 A7U82 A7U83 A7U85 A7U87	1320-1112 1320-2056 1820-1416 1820-2102 1826-0438	3 1 5 8 1	1 1	IC FF TTL LS D-TYPE POS-EDGE-TRIG IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC SCHMITT-IRIG TTL LS INV HEX 1-INP IC LCH TTL LS D-TYPE OCTL IC V RGLTR TO-39	01295 01295 01295 01295 01295 27014	SN74LS74AN SN74LS378N SN74LS14N SN74LS373N LH340LAH-12	
MSC MSC MSC	1480-0116 4040-0748 4040-0755	8 3 2	2 1 1	PIN-GRV .062-IN-DIA .25-IN-LG STL EXTR-PC BD RLK POLYC .062-BD-THKNS EXTR-PC BD VIO POLYC .062-BD-THKNS	28480 28480 28480	1480-0116 4040-0748 4040-0755	

--

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part A/E Number Opt	
A107	03776-60107	3	1	SAR,A/D CONVERTER & DIGITAL O/P ASSY	28430	03776-60107	1
A107C1 A107C2 A107C3 A107C4 A107C5	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	ទទទទទ	29	CAPACITOR-FXD .1UF +-202 SOVDC CER CAPACITOR-FXD .1UF +-202 SOVDC CER CAPACITOR-FXD .1UF +-202 SOVDC CER CAPACITOR-FXD .1UF +-202 SOVDC CER CAPACITOR-FXD .1UF +-202 SOVDC CER	28480 20480 28480 28480 28480 28480	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	
A107C6 A107C7 A107C3 A107C9 A107C9 A107C13	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 9160-0576	ຍຄວນຍ		CAPACITOR-FXD .1UF +-20% SOVDC CER CAPACITOR-FXD .1UF +-20% SOVDC CER CAPACITOR-FXD .1UF +-20% SOVDC CER CAPACITOR-FXD .1UF +-20% SOVDC CER CAPACITOR-FXD .1UF +-20% SOVDC CER	28480 28480 28480 28480 28480 28480	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	
A107C11 A107C12 A107C13 A107C14 A107C14 A107C15	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	ម្មលាល		CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER	28480 28480 28480 28480 28480 28480	C160-0576 D160-0576 D160-0576 D160-0576 D160-0576 D160-0576	
A107C16 A107C17 A107C18 A107C19 A107C19 A107C20	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	សលលស		CAPACITUR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER	28480 28480 28480 28480 28480 28480	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	
A107C21 A107C22 A107C23 A107C24 A107C25	0160-0576 0180-0374 0180-0374 0160-0576 0160-0576	57755	2	CAPACITOR-FXD 1UF +-202 SOUDC CER CAPACITOR-FXD 10UF+-102 20VDC TA CAPACITOR-FXD 10UF+-102 20VDC TA CAPACITOR-FXD 1UF +-202 SOVDC CER CAPACITOR-FXD .1UF +-202 SOVDC CER	28480 56289 56289 28480 28480	0160-0576 150D106X9020B2 150D106X9020B2 0160-0576 0160-0576	
A107C26 A107C27 A107C28 A107C29 A107C34	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	ມນອນອ		CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER	28480 28480 28480 28480 28480 28480	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	
A107C35 A107C36 A107C38 A107C39 A107C39 A107C40	0160-4992 0160-5026 0180-0197 0130-1846 0180-1846	7 0 8 6 6	1 1 2 5	CAPACITOR-FXD 330PF 1% 63VDC CAPACITOR-FXD 3209PF 1% 63VDC CAPACITOR-FXD 2.2UF+-10% 26VDC TA CAPACITOR-FXD 2.2UF+-10% 35VDC TA CAPACITOR-FXD 2.2UF+-10% 35VDC TA	28480 28480 56289 56289 56289	0160-4992 0150-5026 150D225X9020A2 150D225X9035%2 150D225X9035%2	
A107C41 A107C42 A107C43 A107C44 A107C45	0130-0197 0180-1846 0180-1846 0160-0576 0180-1846	36655		CAPACITOR-FXD 2.2UF+-13% 20VDC TA CAPACITOR-FXD 2.2UF+-10% 35VDC TA CAPACITOR-FXD 2.2UF+-10% 35VDC TA CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD 2.2UF+-10% 35VDC TA	56287 56287 56289 28480 56289	150D225X9020A2 150D225X9035B2 150D225X9035B2 0160-0576 150D225X9035B2	
A107CR11 A107CR12 A107CR13 A107CR14 A107CR14 A107CR15	1901-0539 1901-0539 1901-0539 1901-0539 1901-0539 1902-1374	33338	4	DIDDE-SM SIG SCHOTTKY DIDDE-SM SIG SCHOTTKY DIDDE-SM SIG SCHOTTKY DIDDE-SM SIG SCHOTTKY DIDDE-ZNR 5,1V 12 DO-35 PD=.5W	28480 28480 28480 28480 28480 28480	1901-0539 1901-0539 1901-0539 1901-0539 1902-1374	
A107CR16 A107CR17 A107CR17 A107CR13 A107CR19 A107CR20	1902-1374 1902-0943 1902-0953 1902-0953 1902-0953 1901-0040	8 5 7 7 1	1 2 1	DIDDE-ZNR 5.1V 12 DO-35 PD=.5W DIDDE-ZNR 2.4V 52 DO-35 PD=.4W TC=0372 DIDDE-ZNR 6.2V 52 DO-35 PD=.4W TC=+.0532 DIDDE-ZNR 6.2V 52 DO-35 PD=.4W TC=+.0532 DIDDE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28480 28480 28480 28480	1902-1374 1902-0943 1902-0953 1902-0953 1903-0953	
A107DS1 A107DS2 A107DS3 A107D54 A107D54 A107D55	1790-0450 1970-0450 1970-0450 1790-0450 1790-0450 1990-0450	4 4 4 4 4 4	10	LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=805UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX	28480 28480 28480 28480 28480 28480	5082-4484 5082-4484 5082-4484 5082-4484 5082-4484 5082-4484	
A107DS6 A107DS7 A107DS8 A107DS8 A107DS9 A107DS10	1998-0450 1990-0450 1990-0458 1990-0458 1990-0450 1990-0450	44444		LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX	23480 23480 23480 28480 28480 28480	5082-4484 5082-4484 5082-4484 5082-4484 5082-4484 5082-4484	
A107F1 A107F2	2110-0218 2110-0218	9 9	2	FUSE .1A 250V .25X.27 FUSE .1A 250V .25X.27	28486 28480	2110-0218 2110-0218	
A1 07K 1	8490-1262	7	1	RELAY 2C 12VDC-COIL 2A 120VAC	28480	6490-1262	
A107L1 A107L2	7100-1641 9100-1641	0 0	5	INDUCTOR RF-CH-MLD 240UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 240UH 5% .166DX.385LG	28480 28480	9100-1641 9100-1641	
A107Q1 A107Q2 A107Q3 A107Q4 A107Q5	1855-0386 1855-0386 1855-0386 1855-0386 1855-0386 1855-0386	9 9 9 9 9	11	TRANSISTOR J-FET 2N4392 N-CHAN D-MODE TRANSISTOR J-FET 2N4392 N-CHAN D-MODE TRANSISTOR J-FET 2N4392 N-CHAN D-MODE TRANSISTOR J-FET 2N4392 N-CHAN D-MODE TRANSISTOR J-FET 2N4392 N-CHAN D-MODE	04713 04713 04713 04713 04713 04713	2N4392 2N4392 2N4392 2N4392 2N4392 2N4392	

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
A107Q6 A107Q7 A107Q8 A107Q9 A107Q9 A107Q10	1855-0386 1855-0386 1855-0386 1855-0386 1853-0271 1853-0271	99977	· E	TRANSISTOR J-FET 2N4392 N-CHAN D-MODE TRANSISTOR J-FET 2N4392 N-CHAN D-MODE TRANSISTOR J-FET 2N4392 N-CHAN D-MODE TRANSISTOR PNF 2N4403 SI TO-92 PD-310HW TRANSISTOR PNP 2N4403 SI TO-92 PD=310HW	04713 04713 04713 04713 04713 04713	2N4392 2N4392 2N4392 2N4403 2N4403 2N4403	
A107Q11 A107Q12 A107Q13 A107Q14 A107Q15	1853-6271 1854-0467 1854-0467 1854-0467 1855-0386	75559	7	TRANSISTOR PNP 2N4403 SI TO-92 PD=310MW TRANSISTUR NPN 2N4401 SI TO-92 PD=310MW TRANSISTOR NPN 2N4401 SI TO-92 PD=310MW TRANSISTOR NPN 2N4401 SI TO-92 PD=310MW TRANSISTOR J-FET 2N4392 N-CHAN D-MODE	04713 03538 03508 03538 03538 04713	2N4403 2N4401 2N4401 2N4401 2N4401 2N4392	
A107Q16 A107Q17 A107Q18 A107Q19 A107Q20	1855-0386 1853-0036 1854-0215 1855-0386 1854-0467	9 2 1 9 5	1 1	TRANSISTOR J-FET 2N4322 N·CHAN D-MODE TRANSISTOR PNP SI PD=310MJ FT=250MHZ TRANSISTOR NPN 3I PD=350MJ FT=300MHZ TRANSISTOR J-FET 2N4392 N-CHAN D-MODE TRANSISTOR NPN 2N4401 SI TD-92 PD=310MW	04713 28480 04713 04713 03508	2N4372 1853-0036 2N3904 2N4372 2N4372 2N4401	
A107Q21 A107Q22 A107Q23 A107Q24 A107Q25	1853-0271 1853-0271 1853-0271 1854-0467 1854-0467	7 7 7 5 5		TRANSISTOR PNP 2N4463 ST TO-92 PD=316MW TRANSISTOR PNP 2N4403 SI TO-92 PD=310MW TRANSISTOR PNP 2N4403 SI TO-92 PD=310MW TRANSISTOR NPN 2N4401 SI TO-92 PD=310MW TRANSISTOR NPN 2N4401 SI TO-92 PD=310MW	04713 04713 04713 03508 03508	2N4403 2N4403 2N4403 2N4403 2N4401 2N4401	
A1 07Q26	1854-0467	5		TRANSISTOR NPN 2N4401 SI TD-92 PD=310MW	03508	214401	
A107R1 A107R2 A107R3 A107R4 A107R5	0698-3449 0757-0280 0698-3449 0757-0280 0698-3449	63 63 63 6	8 7	RESISTOR 28.7K 12 .125W F TC=0+-100 RESISTOR 1K 12 .125W F TC=0+-100 RESISTOR 28.7K 12 .125W F TC=0+-100 RESISTOR 1K 12 .125W F TC=0+-100 RESISTOR 28.7K 12 .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-TC-2872-F C4-1/8-T9-1901-F C4-1/8-T0-2872-F C4-1/8-T0-1001-F C4-1/8-T0-2872-F	
A107R6 A107R7 A107R8 A107R9 A107R10	0757-0280 0698-3449 0757-0280 1810-0317 1810-0572	3 6 3 2 1	1 1	RESISTOR 1K 1Z .125W F TC=0+-100 RESISTOR 28.7K 1Z .125W F TC=0+-100 RESISTOR 1K 1Z .125W F TC=0+-100 NETWORK-RES 14-DIP1510.0 OHM X 7 NETWORK-RES 14-DIP1.2K OHM X 7	24546 24546 24546 01121 28480	C4-1/8-T0-1001-F C4-1/8-T0-2872-F C4-1/8-T0-1001-F 314E511 1810-9572	
A107R11 A107R12 A107R13 A107R14 A107R15	0698-4107 0698-4107 0757-1002 0757-1002 0698-3404	5 5 9 9 3	2 2 1	RESISTOR 23.7 1% .25₩ F TC=0+-100 RESISTOR 23.7 1% .25₩ F TC=0+-100 RESISTOR 61.9 1% .5₩ F TC=0+-100 RESISTOR 61.9 1% .5₩ F TC=0+-100 RESISTOR 383 1% .5₩ F TC=0+-100	24546 24546 28480 28480 28480 28480	C5-1/4-T0-23R7-F• C5 1/4-TD-23R7-F 0757-1002 0757-1092 0692-3404	
A107R16 A107R17 A107R18 A107R19 A107R19 A107R20	0693-5334 0698-5334 0757-0442 0757-0442 0757-0442	229999	2 5	RESISTOR 603 .5% .5W F TC=3+-100 RESISTOR 603 .5% .5W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100	28480 28480 24546 24546 24546	0693-5334 0698-5334 C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F	B
A107R21 A107R22 A107R23 A107R24 A107R25	0757-0410 0757-0410 0698-3154 0757-0288 0698-3449	1 1 0 1 6	2 2 1	RESISTOR 301 1% .125W F TC=0+-100 RESISTOR 301 1% .125W F TC=0+-100 RESISTOR 4.22K 1% .125W F TC=0+-100 RESISTOR 9.09K 1% .125W F TC=0+-100 RESISTOR 28.7K 1% .125W F TC=0+-100	24546 24546 24546 19701 24546	C4~1/8-T0~301R+F C4~1/8-T0~301R+F C4~1/8-T0~4721-F MF4C1/8-T0~9091-F C4~1/8-T0~2872-F	
A1 07R26 A1 07R27 A1 07R28 A1 07R29 A1 07R30	0698-3449 0698-3449 0698-3437 0698-6364 0698-6364 0698-6364	6 6 2 0 0	1 2	RESISTOR 28.7K 12 .125W F TC=0+-100 RESISTOR 28.7K 12 .125W F TC=0+-100 RESISTOR 133 12 .125W F TC=0+-100 RESISTOR 50 .12 .125W F TC=0+-25 RESISTOR 50 .12 .125W F TC=0+-25	24546 24546 24546 28480 28480	C4 ~1/8-T0-2872-F C4 1/8-T0-2872-F C4 1/8-T0-133R-F 0692-6364 0698-6364	
A107R31 A107R32 A107R33 A107R33 A107R34 A107R35	0757-0442 1810-0573 0757-0710 0698-3154 0699-3451	9 2 4 0 0	1 1 1	RESISTOR 10K 1% .125₩ F TC=0:-100 NETWORK-RES 14 DIP100.0 CHM X 7 RESISTOR 75 1% .25₩ F TC=0+-100 RESISTOR 4.22K 1% .125₩ F TC=0+-100 RESISTOR 133K 1% .125₩ F TC=0+-100	24546 78480 24546 24546 24546	C4.1/0-T0-1002-F 1810-0573 C5-1/4-T0-7500-F C4.1/8-T0-4221-F C4.1/8-T0-1333-F	
A107R36 A107R37 A107R38 A107R39 A107R39 A107R40	0698-3449 0757-0280 0757-0200 0757-0442 0757-0280	6 3 7 9 3	1	RESISTOR 20.7K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 5.62K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4 -1/8-T0 -2872-F C4 -1/8-T0-1001-F C4 -1/8-T0-5621-F C4 -1/8-T0-1002-F C4 -1/8-T0-1001-F	
A107R41 A107R42 A107R43 A107R44 A107R44 A107R45	0757-0440 0698-3150 0757-0280 0698-4144 0757-0420	7 6 3 0 3	1 1 1 1	RESISTOR 7.5K 1% .125W F TC=0+-100 RESISTOR 2.37K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 21.5 1% .25W F TC=0+-100 RESISTOR 750 1% .125W F TC=0+-100	24546 24546 24546 28480 24546	C4~1/8-T0~7501-F C4~1/8-T0~2371-F C4~1/8-T0~1001-F 0678-4144 C4~1/8-T0~751-F	
A1 07R46 A1 07R47 A1 07R48 A1 07R48 A1 07R49 A1 07R96	0698-8244 1810-0364 1810-0364 0757-1094 0757-0465	9 9 9 9 9 9	1 2 1 1	RESISTOR 64.3 1% .25W F TC=0+-100 NETWORK-RES 6-SIP470.0 DHM X 5 NETWORK-RES 6-3IP470.0 DHM X 5 RESISTOR 1.47K 1% .125W F TC=0+-100 RESISTOR 1.03K 1% .125W F TC=0+-100	19701 01121 01121 24546 24546	MF52C1/4-T0-64R3-F 2C(A471 206A471 C4-1/8-T0-1471-F C4-1/8-T0-1003-F	
A107T1	15506-80081	7	1	TRANSFORMER ASSEMBLY	28480	15506-80001	
A107U11 A107U12 A107U21 A107U22 A107U22 A107U24	1820-2244 1820-1199 1820-1432 1820-1112 1826-0410	9 1 5 8 9	1 3 3 3 4	IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC INV TTL LS HEX 1-INP IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG IC FF TTL LS D-TYPE POS-EDGE-TRIG IC OP AMP LGW-BIAS-H-IMPD QUAD 14-D1P-P	01295 01295 01295 01295 01295 01295	SN24LS379N SN74LS04N SN74LS163AN SN74LS74AN TL384CN	

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
A107U25 A107U31 A107U32 A107U34 A107U34 A107U41	1826-0410 1820-1432 1820-1197 1826-0138 1820-1432	0.0000	N KI	IC OP AMP LOW-BIAS-H-IMPD GUAD 14-DIP-P IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG IC GATE TTL LS NAND QUAD 2-INP IC COMPARATOR GP QUAD 14-DIP-P PKG IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG	01275 01275 01295 01295 01295 01295	TL084CN SN74LS163AN SN74LS00N LM339N SN74LS163AN	
A1 07U42 A1 07U45 A1 07U47 A1 07U51 A1 07U52	1820-1197 1826-0503 1826-0418 1820-1112 1820-1199	9 1 9 8 1	1	IC GATE TTL LS NAND QUAD 2-INP IC SAPL/HOLD TO-99 PKG IC OP AMP LOW-BIAS-H-IMPD QUAD 14-DIP-P IC FF TTL LS D-TYPE PGS-ECGE-TRIG IC INV TTL LS HEX 1-INP	01295 27014 01295 01295 01295 01295	SN741.500N LF398H TL084CN SN74L574AN SN74L574AN SN74LS04N	
A107U61 A107U62 A107U64 A107U65 A107U65	1020-1203 1820-1200 1826-0410 1813-0257 1820-1179	85951	1 1 1	IC GATE TTL LS AND TPL 3-INP IC INV TTL LS HEX IC OP AMP LOW-BIAS-H-IMPD QUAD 14-D1P-P A/D 12-BIT 28-CBRZ/SDR BPLR IC INV TTL LS HEX 1-INP	01295 01295 01295 28480 01295	GN74LS11N SN74LS05N TL084CN 1813-0257 SN74LS04N	B
A107U71 A107U72 A107U74 A107U75 A107U77	1820-1197 1820-2056 1826-0138 1829-2102 1826-0178	9 1 8 3 6	2 2 1	IC GATE TTL LS NAND QUAD 2INP IC FF TTL LS D-TYPE POS-EDEE-TRIG COM IC COMPARATOR GP QUAD 14DIP-P PKG IC LCH TTL LS D-TYPE CCTL IC V RGLTR TO-39	01295 01295 01295 01295 01295 27014	SN74LS00N SN74LS37BN LM339N SN74LS373N LM320H-12	
A107U81 A107U82 A107U83 A107U83 A107U85 A107U87	1820-1112 1820-2056 1820-1416 1820-2102 1826-0438	8 1 5 8 1	1	IC FF TTL LS D-TYPE POS-EDGE-TRIG IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC SCHMITT-TRIG TTL LS INV HEX 1INP IC LCH TTL LS D-TYPE OCTL IC V RGLTR TD-39	01295 01295 01295 01295 01295 27014	SN74LS74AN SN74LS378N SN74LS14N SN74LS373N LH340LAH-12	
MSC MSC MSC	1480~0116 4040-0748 4040-0755	8 3 2	2 1 1	PIN-GRV .062-IN-DIA .25-IN-LG STL Extr-PC BD BLK PCLYC .062-3D-THKNS Extr-PC BD VIO POLYC .062-BD-THKNS	28480 28480 28480 28480	1480-0116 4340-0748 4046-0755	

. .

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
AB	03776-60008	3	1	GD, TIMING IMP. NOISE & FREQ DETECT ASSY	28480	03776-60008	_
ABC1 ABC2 ABC3 ASC4 ASC5	0180-0155 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	0 00 00 00 00 00 00 00 00 00 00 00 00 0	1 15	CAPACITOR-FXD 2.2UF+-2GZ 20VDC TA CAPACITOR-FXD .1UF+-2GZ 50VDC CER CAPACITOR-FXD .1UF+-20Z 50VDC CER CAPACITOR-FXD .1UF+-20Z 50VDC CER CAPACITOR-FXD .1UF+-2GZ 55VDC CER	56289 28480 28480 28480 28480 28480	1507225X0020A2 0160~0576 0160~0576 0160~0576 0160~0576	
AEC6 ABC7 AEC8 ABC9 ABC10	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	տատատ		CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER	28480 28480 28480 28480 28480 28480	0160-0576 0160-0576 0150-0576 0150-0576 0150-0576	
A8C11 A8C12 A8C13 A8C14 A8C15	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	លលលល		CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .1UF +-23X 50VDC CER CAPACITOR-FXD .1UF +-23X 50VDC CER CAPACITOR-FXD .1UF +-23X 53VDC CER CAPACITOR-FXD .1UF +-23X 50VDC CER	28480 28480 28480 28480 28480 28480	0140-0576 0140-0576 0140-0576 0140-0576 0140-0576 0140-0576	
ASC16	0160-0576	5		CAPACITOR-FXD .1UF +-20% SOVDC CER	28480	0160-0576	
ABCR1	1990-0450	4	1	LED-LAMP LUM-INT=800UCD IF=50MA-MAX	28480	5082-4484	
ABR1 Abr2 Abr3 Abr4 Abr5	0578-0084 0678-0084 0678-0084 0678-0084 0678-0084 0678-0084	99999	5	RESISTOR 2.15K 1Z .125W F TC=0+-100 RESISTOR 2.15K 1Z .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T9-2151-F C4-1/8-T0-2151-F C4-1/8-T0-2151-F C4-1/8-T0-2151-F C4-1/8-T0-2151-F C4-1/8-T0-2151-F	-
ABR6	0757-0280	3	1	RESISTOR 1K 1Z .125W F TC=0+-100	24546	C4-1/8-T0-1001-F	
ABU11 ABU12 ABU13 ABU14 ABU15	1820-1195 1820-1197 1820-1432 1820-1432 1820-1442	79556	2 3 4 1	IC FF TTL LS D-TYPE POS-ECGE-TRIG CCM IC GATE TTL LS NAND QUAD 2 INP IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG IC GATE TTL LS NOR QUAD 2-INP	01295 01275 01275 01275 01275 01275	GN74LG175N SN74LS100N SN74LS163AN SN74LS163AN SN74LS163AN SN74LS02N	
A3U16 A8U21 A8U22 A8U23 A8U23 A8U24	1820-1197 1820-1432 1820-1216 1820-1851 1820-1851	95385	งงง	IC GATE TTL LS NAND QUAD 2-INP IC CNTR TTL LS DIN SYNCHRO POG-EDGE-TRIG IC DCDR TTL LS 3-TO-8-LINE 3-INP IC ENCDR TTL LS IC LCH TTL LS QUAD	01295 01295 01295 01295 01295 01295	SN74LSOCN SN74LS163AN SN74LS138N SN74LS138N SN74LS148N GN74LS279N	001
ABU25 ABU26 ABU31 ABU32 ABU33	1820-1440 1820-1208 1820-1197 1820-1432 1820-1432	53951	2	IC LCH TTL LS QUAD IC GATE TTL LS OR QUAD 2-INP IC GATE TTL LS NAND QUAD 2-INP IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG IC CNTR TTL LS DECD DUAL 4-BIT	01275 01275 01275 01275 01275 01275	SN741.S279N SN741 S32N SN74LS33N SN74LS163AN SN74LS163AN SN74LS393N	
A8U34 A8U35 A8U36 ACU41 A8U42	1820-1991 1820-1991 1820-1199 1820-1112 1820-1246	1 1 1 9	1 2 1	IC CNTR TTL LS DECD DUAL 4-BIT IC CNTR TTL LS DECD DUAL 4-BIT IC INV TTL LS MEX 1-INP IC FF TTL LS D-TYPE PGS-EDGE-TRIG IC GATE TTL LS AND QUAD 2-INP	01273 01275 01273 01275 01275 01275	SN74LS398N SN74LS399N SN74LS94N SN74LS94N SN74LS99N	
A2U43 A8U44 A8U45 A8U46 A8U46 A8U51	1820-1470 1820-1210 1820-2096 1820-2096 1820-2096 1820-1651	17992	1 1 4	IC MUXR/DATA-SEL ITL LS 2-T0-1-LINE QUAD IC GATE TTL LS AND-OR-INY DUAL 2-INP IC CNTR TTL LS BIN DUAL 4-BIT IC CNTR TTL LS BIN DUAL 4-BIT IC ENCDR TTL LS	01225 01225 01295 01295 01295 01225	SN74LS157N SN74LS51N SN74LS393N SN74LS393N SN74LS393N SN74LS148N	
A8U52 A8U53 A8U54 A8U55 A8U55 A8U56	1820-1201 1820-2096 1820-2096 1820-1211 1820-1208	6993 3	1	IC GATE TTL LS AND QUAD 2-INP IC CNTR TTL LS BIN DUAL 4-BIT IC CNTR TTL LS BIN DUAL 4-BIT IC GATE TTL LS BIN DUAL 4-BIT IC GATE TTL LS OR QUAD 2-INP	01295 01275 01275 01275 01275 01275	SN74L SOBN SN74LS393N SN74LS393N SN74LS353N SN74LS86N SN74LS32N	
ABU61 ABU62 ABU63 ABU64 ABU65	1820-1216 1820-1195 1820-1917 1820-1917 1820-1917 1820-1917	37 11 1	3	IC DCDR TTL LS 3-TO-8-LINE 3-TNP IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC BFR TTL LS LINE DRVR CCTL IC BFR TTL LS LINE DRVR OCTL IC BFR TTL LS LINE DRVR CCTL	01295 01295 01295 01295 01295 01295	SN74LS138N SN74LS175N SN74LS240N SN74LS240N SN74LS240N SN74LS240N	
A8U66	1820-1112	8		IC FF TTL LS D'TYPE POS-EDGE-TRIG	01295	SN74LS74AN	
MSC MSC MSC MSC	1259-0124 1480-0116 4040-0747 4040-0748	7 8 2 3	1 2 1 1	PIN-PROGRAMING JUMPER .39 CONTACT PIN-GRV .062-IN-DIA .25-IN-LG STL EXTR-PC BD GRA POLYC .362-3D-THKNS EXTR-PC BD BLK POLYC .062-BD-THKNS	71506 28480 28480 28480	8136-47561 1480-0116 4040-0747 4040-0748	

See introduction to this section for ordering information *Indicates factory selected value

-

6-35

;

•••

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
A7	03776-60009	4	1	DIGITAL FILTER ASSEMBLY	28480	03776-60009	
A9C1 A9C2 A9C3 A9C4 A9C5	0160-0576 0150-0576 0160-0576 0160-0576 0160-0576	។ សាលាលាលា	20	CAPACITOR-FXD .1UF +-20% SOVDC CER CAPACITOR-FXD .1UF +-20% SOVDC CER CAPACITOR-FXD .1UF +-20% SOVDC CER CAPACITOR-FXD .1UF +-20% SOVDC CER CAPACITOR-FXD .1UF +-20% SOVDC CER	28480 28480 28480 28480 28480 28480	0160-0576 0160-0576 0160-0576 8160-0576 0160-0576	
A9C6 A9C7 A9C8 A9C9 A9C9	0160-0575 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	សលលល		CAPACITOR-FXD .1UF +-20X 53VDC CER CAPACITOR-FXD .1UF +-20X 53VDC CER CAPACITOR-FXD .1UF +-20X 53VDC CER CAPACITOR-FXD .1UF +-20X 53VDC CER CAPACITOR-FXD .1UF +-20X 53VDC CER	28480 28480 28480 28480 28480 28480	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	
A9011 A9012 A9013 A9014 A9015	0160-0576 0160-0576 0180-1846 0180-1846 0180-1846 0180-1846	55636	3	CAPACITOR-FXD .1UF +-20% SOVDC CER CAPACITOR-FXD .1UF +-20% SOVDC CER CAPACITOR-FXD 2.2UF+-10% SOVDC TA CAPACITOR-FXD 2.2UF+-10% 35VDC TA CAPACITOR-FXD 2.2UF+-10% 35VDC TA	28480 28480 56289 56289 56289 56289	0140-0576 0160-0576 150D225X9035B2 150D225X903582 150D225X9035B2	
A7C16 A7C17 A7C18 A7C19 A7C20	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	ទាលទាល		CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER	28480 28480 28480 28480 28480 28480	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	
A9C21 A5C22 A9C23	0160-0576 0160-0576 0160-0576	5 5 5		CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER	28480 28480 28480	0160-0576 0160-0576 0160-0576	
A7CR1 A7CR2	1970-0450 1990-0450	4	2	LED-LAMP LUM-INT=800UCD 1F=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX	28480 26480	5082-4484 5082-4484	
AYR1 A9R2 A9R3 A9R4 A9R5	0757-0280 0698-0082 0698-0082 0757-0442 0757-0442	37799	1 2 2	RESISTOR 1K 1Z .125W F TC=0+-100 RESISTOR 464 1Z .125W F TC=0+-100 RESISTOR 464 1Z .125W F TC=0+-100 RESISTOR 10K 1Z .125W F TC=0+-100 RESISTOR 10K 1Z .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-4640-F C4-1/8-T0-4640-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F	
A7R6 A7R7 A7R6 A7R9 A7R10	0698-8606 0757-0431 0757-0407 0757-0426 0698-0084	7 6 6 9 9	1 1 1 1	RESISTOR 450 .1% .125W F TC=0+-25 RESISTOR 2.43K 1% .125W F TC=0+-100 RESISTOR 200 1% .125W F TC=0+-100 RESISTOR 1.3K 1% .125W F TC=0+-100 RESISTOR 2.15K 1% .125W F TC=0+-100	28480 24546 24546 24546 24546 24546	0698-8606 C4-1/8-T0-2431-F C4-1/8-T0-201-F C4-1/8-T0-1301-F C4-1/8-T0-2151-F	
A9TL1	1258-0124	7	1	PIN-PROGRAMING DUMPER .30 CONTACT	91506	8136-475G1	
A9U11 A7U12 A7U13 A7U13 A7U14 A7U15	1820-2506 1820-1198 1820-2096 1820-1112 1820-1114	6 0 9 8 6	2 1 1 3	IC INV TTL F HEX IC GATE TTL LS NAND QUAD 2INP IC CNTR TTL LS BIN DUAL 4-BIT IC FF TTL LS D-TYPE POS-EDGE-TRIG IC GATE TTL LS NOR QUAD 2INP	07263 01295 01295 01295 01295 01295	74F04PC SN74LS03N SN74LS393N SN74LS74AN SN74LS02N	
A9U16 A9U21 A9U22 A9U23 A9U23	1820-1144 1820-1196 1820-1997 1820-2075 1820-2175	6 87 43	2 3 1 3	IC GATE TTL LS NOR QUAD 2-INP IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN IC MISC TTL LS IC DCDR TTL LS 3-TD-8-LINE 3-INP	01295 01295 01295 01295 01295 01295	SN74LSD2N SN74LS174N SN74LS374N SN74LS245N SN74LS245N SN74LS138N	
A9U25 A9U26 A9U31 A9U32 A9U32 A9U33	1820-1987	8 7 7 5 5	3 1 3 4	IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC GATE TTL LS NAND QUAD 2-INP IC MUXR/DATA-SEL TTL LS 4-TO-1-LINE DUAL IC SHF-RGTR TTL LS COM CLEAR STOR 8-BIT IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG	01295 01295 01295 01295 01295 01295	SN74LS174N SN74L500N SN74L5153N SN74L5153N SN74LS153AN	
A2U34 A2U36 A2U41 A2U42		0 19 65	1 1	IC NMOS 8192 (8K) STAT RAM 90.NS SOCKET-IC 24CDNT DIP DIP-SLDR IC GATE TTL LS NAND QUAD 2INP IC GATE TTL LS NOR QUAD 2INP IC SNF-RGTR TTL LS COM CLEAR STOR 8BIT	50038 28480 01295 01295 01295	MK 4891AN-90 1200-0541 SN74L500N SN74L502N SN74L502N SN74L5299N	
A9U43 A9U44 A9U46 A9U51 A9U52	1820-1216	55539		IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG IC DCDR TTL LS 3-TO-8-LINE 3-INP IC GATE TTL LS NAND QUAD 2-INP	01295 01295 01295 01295 01295 01295	SN74LS163AN SN74LS163AN SN74LS163AN SN74LS138N SN74LS138N	
A7U53 A7U54 A7U56 A7U61 A7U62	1820-1997 1820-1206	5 7 7 1 3	1	IC SHF-RGTR TTL LS COM CLEAR STOR B-BIT IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN IC GATE TTL LS D-TYPE POS-EDGE-TRIG PRL-IN IC DCDR TTL LS 3-TO-8-LINE 3-INP	01295 01295 01295 01295 01295 01295	SN74LS299N SN74LS374N SN74LS374N SN74LS27N SN74LS27N SN74LS138N	
A9U63 A9U64 A9U65	1826-0539	6 3 1 7	1 1 1	IC INV TTL F HEX IC 317 V RGLTR TD-39 ICD 19C5-0035540 Socket-IC 40-Cont DIP DIP-SLDR	07263 27014 28480 29480	74F04PC LH317H 1905-0035 1290-0654	

MSC MSC MSC

HP Part

Mfr Part

Mfr

Table 6-3. Replaceable Parts

A/B/ Option Reference Designation C D Qty Description Number Code Number 1480-0116 4040-0748 4040-0756 PIN-GRV .062-IN-DIA .25-IN-LG STL EXTR-PC BD BLK POLYC .062-BD-THKNS EXTR-PC BD WHT POLYC .062-BD-THKNS 28480 28480 28480 1480-0116 4040-0748 4040-0756 8 3 3 2 1 1

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
A11	03776-60011	9	1	A-LAW ALIGNMENT ASSEMBLY	28480	03776-60011	
A11C1 A11C2 A11C3 A11C4 A11C4 A11C5	0180-0197 0150-0576 0160-0576 0160-0576 0160-0576 0160-0576	8 55555	1 14	CAPACITOR-FXD 2.2UF+-18X 20VDC TA CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER	56289 28480 28480 28480 28480 28480	150D225X9020A2 0160.0576 0160-0576 0160-0576 0160-0576	
A11C6 A11C7 A11C8 A11C8 A11C9 A11C19	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	លលលល		CAPACITOR-FXD JUF +-20X SOUDC CER CAPACITOR-FXD JUF +-20X SOUDC CER CAPACITOR-FXD JUF +-20X SOUDC CER CAPACITOR-FXD JUF +-20X SOUDC CER CAPACITOR-FXD JUF +-20X SOUDC CER	28480 28480 23480 28480 28480 28480	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	
A11C11 A11C12 A11C13 A11C14 A11C14 A11C15	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0575	លលលល		CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER	28480 28480 28480 28480 28480 28480	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	
A11CR1 A11CR2 A11CR3 A11CR3 A11CR4 A11CR5	1990-0450 1990-0450 1901-0731 1901-0731 1901-0731	4 4 7 7 7 7	2 4	LED-LAMP LUM-INT-800UCD 1F=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX DIDDE-PWR RECT 400V 1A DIDDE-PWR RECT 400V 1A DIDDE-PWR RECT 400V 1A	28480 28480 28480 28480 28480 28480	5082-4484 5082-4484 1901-0731 1901-0731 1901-0731 1901-0731	
A1 1CR6	1901-0731	7		DIGDE-PWR RECT 488V 1A	28480	1901-0731	
A11R1 A11R2 A11R3 A11R3 A11R4	0757-0280 0757-0280 1810-0204 1810-0318	3963	2 1 1	RESISTOR 1K 1% .125W F TC=0+-100 Resistor 1k 1% .125W F TC=0+-100 Network-Res 9.51P1.0k ohm x 7 Network-Res 6-SIP1.0k ohm x 5	24546 24546 01121 01121	C4-1/8-T0-1001-F C4-1/8-T0-1001-F 2084102 2064102	
A11U101 A11U102 A11U103 A11U103 A11U104 A11U105	1820-1208 1820-1212 1820-1244 1820-1244 1820-1419 1820-1470	3 9 7 8 1	2 1 3 2	IC GATE TTL LS OR QUAD 2-INP IC FF TTL LS J-K NEG-EDGE-TRIG IC MUXR/DATA-SEL TTL LS 4-TO-1-LINE DUAL IC COMPTR TTL LS MAGTD 4-BIT IC MUXR/DATA-SEL TTL LS 2-TO-1-LINE QUAD	01295 01295 01295 01295 01295 01295	SN74LS32N SN74LS112AN SN74LS153N SN74LS153N SN74LS157N	
A11U106 A11U107 A11U108 A11U108	1820-1444 1320-1199 03776-80031 03779-20305 1820-1444	91429	5 R 1 5	IC MUXR/DATA-SEL TTL LS 2-TO-1-LINE QUAD IC INV TTL LS HEX 1-INP PROM HEAT SINK IC MUXR/DATA-SEL TTL LS 2-TO-1-LINE QUAD	01295 01295 28480 28480 01295	SN74LS298N SN74LS04N 03776-80031 03779-20305 SN74LS298N	A
A11U110 A11U111 A11U112 A11U201 A11U202	1820-1432 1820-1206 1820-1201 1820-1201 1820-1199 1820-1112	5 1 6 1 8	3 2 2 1	IC CNTR TTL LS BIN SYNCHRO PDS-EDGE-TRIG IC GATE TTL LS NOR TPL 3-INP IC GATE TTL LS AND QUAD 2-INP IC INV TTL LS HEX 1-INP IC FTTL LS D-TYPE POS-EDGE-TRIG	01295 01295 01295 01295 01295 01295	SN74LS163AN SN74LS27N SN74LS0BN SN74LS04N SN74LS04N SN74LS74AN	
A11U203 A11U204 A11U205 A11U206	1820-1217 1820-2244 03776-80037 03779-20305 1820-1444	4 7 0 2 9	1 2 2	IC MUXR/DATA-SEL TTL LS 8-TO-1-LINE IC FF TTL LS D-TYPE POS-EDGE-TRIG COM PROM HEAT SINK IC MUXR/DATA-SEL TTL LS 2-TO-1-LINE QUAD	01295 01295 28480 28480 01295	SN74LS151N SN74LS379N 03776-80037 03779-20305 SN74LS298N	
A11U207 A11U208 A11U208 A11U208 A11U209 A11U210	1820-1201 03776-80037 1320-1470 1820-1444 1820-1432	6 0 1 9 5		IC GATE TTL LS AND QUAD 2~INP PROM IC MUXR/DATA-SEL TTL LS 2~TO-1-LINE QUAD IC MUXR/DATA-SEL TTL LS 2-TO-1-LINE QUAD IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG	01295 28490 01295 01295 01295 01295	SN74LSOBN 03776-80037 SN74LS157N SN74LS298N SN74LS298N SN74LS163AN	
A11U211 A11U212 A11U301 A11U302 A11U303	18201203 18201144 18201200 18201203 18201419	8 6 5 8 8	2 1 2	IC GATE TTL LS AND TPL 3-INP IC GATE TTL LS NOR QUAD 2-INP IC INV TTL LS HEX IC GATE TTL LS AND TPL 3-INP IC COMPTR TTL LS MAGTD 4-BIT	01295 01295 01295 01295 01295 01295	SN74LS11N SN74LS02N SN74LS05N SN74LS11N SN74LS11N SN74LS85N	
A11U304 A11U305 A11U306 A11U307 A11U308	1820-1419 1820-1444 1820-1200 1820-2244 03776-80032 03779-20305	895952	1	IC COMPTR TTL LS MAGTD 4-BIT IC MUXR/DATA-SEL TTL LS 2-TO-1-LINE QUAD IC INV TTL LS HEX IC FF TTL LS D-TYPE POS-EDGE-TRIG COM PROM HEAT SINK	01295 01295 31295 01295 28480 28480	SN74LSB5N SN74LS298N SN74LS05N SN74LS05N SN74LS379N 03776-80032 03779-20305	
A11U309 A11U310 A11U311 A11U312 A11U312 A11U401	1820-2384 1820-1432 1820-1206 1820-1208 1820-2024	8 5 1 3 3	1	IC RGTR TTL LS D-TYPE 2-INP 4-BIT IC CNTR TTL LS BIN SYNCHRD POS-EDGE-TRIG IC GATE TTL LS NOR TPL 3-INP IC GATE TTL LS OR QUAD 2-INP IC DRVR TTL LS LINE DRVR OCTL	01275 01275 01275 01275 01275 01275 31275	SN74LS399N SN74LS163AN SN74LS27N SN74LS22N SN74LS22A SN74LS244N	
A110402 A110403 A110404 A110405 A110405 A110406	1820-1858 1820-1858 1820-1858 1820-1858 1820-1987 1820-1987	99955	з З	IC FF TTL LS D…TYPE OCTL IC FF TTL LS D…TYPE OCTL IC FF TTL LS D…TYPE OCTL IC SHF-RGTR TTL LS COM CLEAR STOR 8-BIT IC SHF-RGTR TTL LS COM CLEAR STOR 8-BIT	01295 01295 01295 01295 01295 01295	SN74LS377N SN74LS377N SN74LS377N SN74LS377N SN74LS279N SN74LS279N	

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
A1 1U407 A1 1U408 A1 1U409	1820-1997 03776-80033 03779-20305 03776-80034 03779-20305	76272	1 1 1	IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN PROM HEAT SINK PROM HEAT SINK	01295 28480 28480 28480 28480 28480	SN74LS374N 03776-80033 03776-20305 03776-80034 03779-20305	
A11U410 A11U411 A11U412 A11U501 A11U501	1820-1987 1820-0533 1820-1297 1820-1216 1820-1216 1820-0538	50030	2 1 1	IC SHF-RGTR TTL LS COM CLEAR STOR B-BIT IC GATE TTL NOR DUAL 4-INP IC GATE TTL LS EXCL-NOR DHAD 2-INP IC DODR TTL LS 3-TO-8-LINE 3-INP IC GATE TTL NOR DUAL 4-INP	01295 01295 01295 01295 01295	SN74LS299N GN7423N SN74LS266N SN74LS130N SN7423N	A
A11U512	1820-1204	9	1	IC GATE TTL LS NAND DUAL 4-INP	01275	SN74L520N	
MSC MSC	1480-0116 4040-0749	8	20	PIN-GRV .062-IN-DIA .25-IN-LG STL Extr-PC BD BRN POLYC .062-3D-THKNS	28480 28480	1480-0116 4040-0749	
				· · ·			
				•			
							1

÷

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
A111	03776-60111	9	1	U-LAW ALIGNMENT ASSEMBLY	28430	03776-60111	
A111C1 A111C2 A111C3 A111C4 A111C4 A111C5	0180-2818 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	4 5 5 5 5	1 28	CAPACITOR-FXD 2.2UF+-20X 35VDC TA CAPACITOR-FXD .1UF +-20X 53VDC CER CAPACITOR-FXD .1UF +-20X 53VDC CER CAPACITOR-FXD .1UF +-20X 53VDC CER CAPACITOR-FXD .1UF +-23X 53VDC CER	28480 28480 28480 28480 28480 28480	0180-2018 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	
A111C6 A111C7 A111C3 A111C9 A111C9 A111C10	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	ទទទទទ		CAPACITOR-FXD .1UF +-20X SOVDC CER CAPACITOR-FXD .1UF +-20X SOVDC CER CAPACITOR-FXD .1UF +-20X SOVDC CER CAPACITOR-FXD .1UF +-20X SOVDC CER CAPACITOR-FXD .1UF +-20X SOVDC CER	23480 28480 28480 28480 28480 28480	0140-0576 0160-0576 0160-0576 0160-0576 0140-0576 0140-0576	
A111011 A111012 A111013 A111014 A111015	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	ນ ນນນນ		CAPACITOR-FXD .1UF +-20Z 50VDC CER CAPACITOR-FXD .1UF +-20Z 50VDC CER CAPACITOR-FXD .1UF +-20Z 50VDC CER CAPACITOR-FXD .1UF +-20Z 50VDC CER CAPACITOR-FXD .1UF +-20Z 50VDC CER	28480 28480 28480 28480 28480 28480	0140~0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	
A111C16 A111C17 A111C18 A111C18 A111C19 A111C20	0160-0576 0160-0576 0150-0576 0160-0576 0160-0576 0160-0576	ទទាស	:	CAPACITOR-FXD 1UF +-202 50VDC CER CAPACITOR-FXD 1UF +-202 50VDC CER CAPACITOR-FXD 1UF +-202 50VDC CER CAPACITOR-FXD 1UF +-202 50VDC CER CAPACITOR-FXD 1UF +-202 50VDC CER	23480 20480 28480 28480 28480 28480	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	
A111C21 A111C22 A111C23 A111C23 A111C24 A111C25	0160-0576 31633576 0160-0576 0160-0576 0160-0576 0160-0576	ភភភភភភ		CAPACITOR-FXD .1UF +-202 SOVDC CER CAPACITOR-FXD .1UF +-202 SOVDC CER CAPACITOR-FXD .1UF +-202 SOVDC CER CAPACITOR-FXD .1UF +-202 SOVDC CER CAPACITOR-FXD .1UF +-202 SOVDC CER	28480 28480 28480 28480 28480 28480	0160-0576 3160-0576 0160-0576 0160-0576 0160-0576	
A111C26 A111C27 A111C28 A111C29	0160-0576 0160-0576 0160-0576 0160-0576	ອ ອ ອ ອ ອ ອ		CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER	28480 28480 23480 28480	0160-0576 0160-0576 0160-0576 0160-0576	
A111CR1 A111CR2 A111CR3 A111CR3 A111CR4 A111CR5	1770-0458 1770-0450 1770-0450 1770-0450 1701-0731 1701-0731	4477	3	LED-LAMP LUM-INT≖800UCD IF=50MA-MAX LED-LAMP LUM-INT≕800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX DIODE-PWR RECT 400V 1A DIODE-PWR RECT 400V 1A	28480 28480 28480 28480 28480 28480	5382-4484 5682-4484 5382-4484 1901-0731 1901-0731	
A111CR6	1901-0731	7		DIDDE-PWR RECT 400V 1A	28486	1901-0731	В
A111R1 A111R2 A111R3 A111R4	0757-0280 0757-0280 0757-0280 1810-0204	3336	3	RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 Network-RES 8-SIP1.0K 04M X 7	24546 24546 24546 01121	C4-1/8-T0-1001-F C4-1/8-T0-1001-F C4-1/8-T0-1001-F 208A102	
A111U101 A111U102 A111U103 A111U104	1820-1470 1820-2384 03776-80032 03779-20305 1820-2244	1 8 5 2 9	21162	IC MUXR/DATA-SEL TTL LS 2-TO-1-LINE QUAD IC RGTR TTL LS D-TYPE 2-IN° 4-BIT PROM HEAT SINK IC FF TTL LS D-TYPE POS-EDGE-TRIG COM	01295 01295 28430 28480 01295	SN74LS157N SN74LS399N 03776-80032 03779-20305 SN74LS377N	
A111U105 A111U106 A111U107 A111U107 A111U108 A111U109	1820-1201 1820-1112 1820-1217 1820-1217 1820-1144 1820-1201	6846 6	5 3 2 1	IC GATE TTL LS AND QUAD 2INP IC FF TTL LS D-TYPE POS-EDGE-TRIG IC MUXR/DATA-SEL TTL LS 8-TO-1-LINE IC GATE TTL LS NOR QUAD 2INP IC GATE TTL LS AND QUAD 2-INP	01295 01295 01295 01295 01295 01295	5N74L508N 5N74L574AN 5N74L5151N 5N74L502N 5N74L508N	
A1118110 A1110111 A1110112 A1110113 A1110113 A1110291	1820-1444 1820-1201 1820-1199 1820-1206 1820-1201	7 6 1 1 5	5 2 1	IC HUXR/DATA-SEL TTL LS 2-TO-1-LINE QUAD IC GATE TTL LS AND QUAD 2-INP IC INV TTL LS HEX 1-INP IC GATE TTL LS NOR TPL 3-INP IC GATE TTL LS AND QUAD 2-INP	01295 01295 01295 01295 01295 01295	SN74LS29BN SN74LS0BN SN74LS04N SN74LS04N SN74LS27N SN74LS08N	
A111U202 A111U204 A111U205 A111U205 A111U206 A111U206 A111U207	1820-1112 1320-2244 1820-1419 1320-1282 1820-1282	89833	312	IC FF TTL LS D-TYPE POS-EDGE-TRIG IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC COMPTR TTL LS MAGTD 4-BIT IC FF TTL LS J:K BAR POS-EDGE-TRIG IC GATE TTL LS OR QUAD 2-INP	01295 01295 01295 01295 01295 01295	SN74LS74AN SN74LS379N SN74LS85N SN74LS1J9AN SN74LS1J9AN SN74LS32N	
A111U208 A111U209 A111U210 A111U210 A111U211	1820-1201 1820-1444 03776-80045 03779-20305 1820-1444	69429	1	IC CATE TTL LS AND QUAD 2-INP IC MUXR/DATA-SEL TTL LS 2-TO-1-LINE QUAD PRCM HEAT SINK IC MUXR/DATA-SEL TTL LS 2-TO-1-LINE QUAD	01295 01295 28400 28480 01295	SN74LS08N SN74LS298N 03776-80065 03779-26305 SN74LS298N	
A111U212 A111U213 A111U301 A111U302 A111U303	1820-1208 1820-1203 1820-1444 1820-1444 03776-80031 03779-20305	3399942	1	IC GATE TTL LS OR QUAD 2-INP IC GATE TTL LS AND TPL 3-INP IC MUXR/DATA-SEL TTL LS 2-TO-1-LINE QUAD IC MUXR/DATA-SEL TTL LS 2-TO-1-LINE GUAD PROM HEAT SINK	C1295 01295 01295 01295 28480 28480 28480	SN74L832N SN74L511N SN74L5298N SN74L8298N 03776-80031 03779-20305	

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
A111U304 A111U305 A111U306 A111U307 A111U307 A111U303	1820-1200 1820-1216 1820-1419 1820-1419 1820-1419 1820-1211	53388	1	IC INV TTL LS HEX IC DODR TTL LS 3-TO-8-LINE 3-INP IC COMPTR TTL LS MAGTD 4-BIT IC COMPTR TTL LS MAGTD 4-BIT IC GATE TTL LS EXCL-OR GUAD 2-INP	01295 01295 01295 01295 01295 01295	SN74LS35N SN74LS13BN SN74LS85N SN74LS85N SN74LS85N SN74LS86N	
A111U309 A111U310 A11U311 A11U312 A111U312 A111U313	1820-1199 1820-1432 1820-1432 1820-1432 1820-1432 1820-1432	15555	4	IC INV TTL LS HEX 1-INP IC CNTR TTL LS BIN SYNCHRO POS-EDGE-IRIG IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG IC CNTR TTL LS BIN SYNCHRO POS-EDGE-IRIG IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG	01295 01295 01295 01295 01295 01295	SN74LS04N SN74LS163AN SN74LS163AN SN74LS163AN SN74LS163AN SN74LS163AN	
A111U314 A111U401 A111U402 A111U402 A111U403 A111U404	1520-1112 1820-2024 1520-1853 1820-1858 1520-1858 1520-1858	8 3 9 9 9	1 3	IC FF TTL LS D-TYPE POS-EDGE-TRIG IC DRVR TTL LS LINE DPVR OCTL IC FF TTL LS D-TYPE GCTL IC FF TTL LS D-TYPE OCTL IC FF TTL LS D-TYPE CCTL	01295 01295 01295 01295 01295 01295	SN74LS74AN SN74LS244N SN74LS377N SN74LS377N SN74LS377N SN74LS377N	
A111U405 A111U405 A111U405 A111U407 A111U408	1820-1987 1820-1987 1820-1997 03776-80035 03779-20305	5 5 7 8 2	3 1 1	IC SHF-RGTR TTL LS COM CLEAR STOR 8-BIT IC CHF-RGTR TTL LS COM CLEAR STOR 8-BIT IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN PROM HEAT SINK	01275 01275 01275 28480 28480	SN74LS299N SN74LS299N SN74LS374N 33776~80335 03779~20305	В
A111U4J9 A111U409B A111U410 A111U410 A111U411 A111U412	03776-80036 03779-20305 1820-1987 1820-1470 03776-80066 03779-20305	925152	1	PROM HEAT SINK IC SHF-RGTR TIL I.S COM CLEAR STOR 8-3IT IC MUXR/DATA-SEL TIL LS 2-TO-1-LINE GUAD PRCM HEAT SINK	28430 28480 01295 01295 28430 28430	03776-80036 03779-20305 SN74LS257N CN74LS157N 03776-80066 83779-20305	
A111U413 A111U414	1820-1217 1820-0471	4	1	IC MUXR/DATA-SEL TTL LS C-TO-1-LINE IC INV TTL HEX 1-INP	01275 01275	SN74LS151N SN7406N	
MSC MSC	1480-0116 4040-0749	3	20	PIN-GRV .162-IN-DIA .25-IN-LG STL Extr-PC BD BRN POLYC .062-BD-THKNS	28480 28488	1430-0116 4646-0745	

···--

Table 6-3. Replaceable Parts

				· ·		
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part A/B/ Number Option
A12	03776-60012	9	1	DIGITAL RECEIVER ASSEMBLY	23480	
A12C1 A12C2 A12C3 A12C3 A12C4 A12C5	0121-0436 0160-4492 0160-4492 0160-0576 0160-0576	4 N N D N	1 2 20 3	CAPACITOR-V TRMR-AIR 2.6-23.5PF 350V CAPACITOR-FXD 18PF +-52 200VDC CER 0+-30 CAPACITOR-FXD 18PF +-52 200VDC CER 0+-30 CAPACITOR-FXD .47UF +-202 50VDC CER CAPACITOR-FXD .47UF +80-202 50VDC CER	23480 28480 28480 28480 28480 28480	03776-60012 169-0509-125 0160-4492 0160-4492 0160-0576 0160-3486
A12C6 A12C7 A12C8 A12C8 A12C9 A12C19	0160-3486 0160-3486 0160-0576 0160-0576 0160-0576 0160-0576	ល លលល		CAPACITOR-FXD .47UF +80-20X 50VDC CER CAPACITOR-FXD .47UF +80-20X 50VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER	28480 28480 28480 28480 28480 28480	0160-3486 C160-3486 0160-0576 0160-0576 0160-0576
A12C11 A12C12 A12C13 A12C14 A12C14 A12C15	0140-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	មកម្មស		CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER	28480 28480 28480 28480 28480 28480	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576
A12C16 A12C17 A12C18 A12C19 A12C20	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	មានមាន		CAPACITOR-FXD .1UF +-20% 53VDC CER CAPACITOR-FXD .1UF +-20% 53VDC CER CAPACITOR-FXD .1UF +-20% 53VDC CER CAPACITOR-FXD .1UF +-20% 53VDC CER CAPACITOR-FXD .1UF +-23% 53VDC CER	28480 28480 28480 28480 28480 28480	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576
A12C21 A12C22 A12C23 A12C24 A12C24 A12C25	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0180-0197	5 5 5 5 8	3	CAPACITOR-FXD .1UF +-20X SOVDC CER CAPACITOR-FXD .1UF +-20X SOVDC CER CAPACITOR-FXD .1UF +-20X SOVDC CER CAPACITOR-FXD .1UF +-20X SOVDC CER CAPACITOR-FXD 2.2UF+-10X 20VDC TA	28480 28480 28480 28480 28480 56289	0160-0576 0160-0576 0160-0576 0163-0576 150D225X9020A2
A12C26 A12C27 A12C30 A12C31 A12C32	0180-0197 0180-0197 0160-0576 0160-0576 0160-0576 0160-3508	3 8 5 5 9	1	CAPACITOR-FXD 2.2UF+-10% 20VDC TA CAPACITOR-FXD 2.2UF+-10% 20VDC TA CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD 1UF +80~20% 50VDC CER	56289 56239 28480 28480 28480 28480	150D225X9020A2 150D225X9020A2 0160-0576 0160-0576 0160-3508
A12CR1 A12CR2 A12CR3 A12CR4 A12CR4 A12CR5	1990-0450 1990-0450 1990-0450 1990-0450 1990-0450 1901-0033	44442	4	LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX DIODE-GEN PRP 180V 200MA DD-7	28480 28480 28480 28480 28480 28480	5082-4484 5082-4484 5082-4484 5082-4484 1901-0033
012CR6 012CR7 012CR9 012CR9 012CR10	1701-0033 1901-0731 1902-0579 1902-0579 1902-0579 1701-0040	2 7 3 3 1	1 2 2	DIODE-GEN PRP 1800 200MA DO-7 DIODE-PWR RECT 4000 1A DIODE-ZNR 5.10 52 PD=10 IR=100A DIODE-ZNR 5.10 52 PD=14 IR=100A DIODE-SWITCHING 300 50KA 2NS DO-35	28480 28480 28480 28480 28480 28480	1901-0033 A 1901-0731 1 1932-0579 1902-0579 1901-0040
12CR11	1901-0040	1		DIODE-SWITCHING 30V SOMA 2NS DO-35	28480	1901-0040
12F1 12F2	2110-0218 2110-0218	9 9	5	FUSE .1A 250V .25X.27 FUSE .1A 250V .25X.27	28480 28480	2110-0218 2110-0218
12K1 12K2	0490-1262 0490-1262	77	5	RELAY 2C 12VDC-COIL 2A 120VAC Relay 2C 12VDC-COIL 2A 120VAC	28480 28480	0490-1262 0490-1262
12L1 12L2 12L3 12L4	7130-1639 9140-0138 9140-3138 9100-1639	5 22 6	2 2	INDUCTOR RF-CH-MLD 150UH 52 .166DX.385LG INDUCTOR RF-CH-MLD 180UH 52 .166DX.385LG INDUCTOR RF-CH-MLD 180UH 52 .166DX.385LG INDUCTOR RF-CH-MLD 150UH 52 .166DX.385LG	28480 28480 28480 28480	9100-1639 9140-0138 9140-0138 9140-0138 9100-1639
11201 11202 11203 11203 11204 11205	1854-0215 1854-0477	2 2 1 7 7	3 4 4	TRANSISTOR PNP SI PD=310MW FT=250MHZ TRANSISTOR PNP SI PD=310MW FT=250MHZ TRANSISTOR NPN SI PD=350MW FT=300MHZ TRANSISTOR NPN 2N2222A SI TO-18 PD=500MW TRANSISTOR NPN 2N2222A SI TO-18 PD=500MW	28480 28480 04713 04713 04713	1853-0036 1853-0036 2N3704 2N2222A 2N2222A 2N2222A
1206 1207 1208 1209 1209	1854-0215	7 R712	1	TRANSISTOR NPN 2N2222A SI TO-18 PD=500MW TRANSISTOR J-FET N-CHAN D-MODE TO-18 SI TRANSISTOR NPN 2N2222A SI TO-18 PD=500MW TRANSISTOR NPN SI PD=350MW FT=250MHZ TRANSISTOR PNP SI PD=310MW FT=250MHZ	04713 28480 04713 04713 28480	2N2222A 1955-0020 2N2222A 2N3704 1853-0036
12011 12012		1 1		TRANSISTOR NPN SI PD=350MW FT=300MHZ Transistor NPN SI PD=350MW FT=300MHZ	94713 04713	2N3904 2N3904
12R1 12R2 12R3 12R4 12R5	0698-3150 0698-3150 0698-3150	36662	1 5 3	NETWORK-RES 6-GIP1.0K 0HM X 5 RESISTOR 2.37K 1% .125W F TC=0+-100 RESISTOR 2.37K 1% .125W F TC=0+-100 RESISTOR 2.37K 1% .125W F TC=0+-100 RESISTOR 121 1% .125W F TC=0+-100	01121 24546 24546 24546 24546	206A102 C4-1/0-T0-2371-F C4-1/0-T0-2371-F C4-1/0-T0-2371-F C4-1/0-T0-2371-F
12R6 12R7 12R8 12R9 12R10	0698-3444 0698-3444 0757-0419	7 1 1 0 0	1 2 2	RESISTOR 1 12 .125W F TC=0+-100 RESISTOR 316 12 .125W F TC=0+-100 RESISTOR 316 12 .125W F TC=0+-100 RESISTOR 681 12 .125W F TC=0+-100 RESISTOR 681 12 .125W F TC=0+-100	28480 24546 24546 24546 24546 24546	0678-8812 C4-1/8-T0-316R-F C4-1/8-T0-316R-F C4-1/8-T0-681R-F C4-1/8-T0-681R-F

-

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
A12R11 A12R12 A12R14 A12R15 A12R15 A12R16	0757-0279 0757-0279 0698-3155 0757-0416 0757-0416	0 0 1 7 7	2 1 7	RESISTOR 3.16K 1Z .125W F TC=0+-100 RESISTOR 3.16K 1Z .125W F TC=0+-100 RESISTOR 4.64K 1Z .125W F TC=0+-100 RESISTOR 511 1Z .125W F TC=0+-100 RESISTOR 511 1Z .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-3161-F C4-1/8-T0-3161-F C4-1/8-T0-4641-F C4-1/8-T0-4641-F C4-1/8-T0-511R-F C4-1/8-T0-511R-F	
A12R17 A12R18 A12R19 A12R21 A12R21 A12R22	0757-0442 0757-0442 0698-0085 0757-0280 0757-0416	99037	4 1 8	RESISTOR 10K 12 .125W F TC=0+-130 RESISTOR 10K 12 .125W F TC=0+-100 RESISTOR 2.61K 12 .125W F TC=0+-100 RESISTOR 1K 12 .125W F TC=0+-100 RESISTOR 511 12 .125W F TC=0+-130	24546 24546 24546 24546 24546 24546	C4 -1/8-T0-1002 F C4-1/8-T0-1002 F C4-1/8-T0-2611 F C4-1/8-T0-1001-F C4-1/8-T0-511R F	
A12R23 A12R24 A12R25 A12R26 A12R26 A12R27	0757-0280 0757-0280 0757-0416 0698-3150 0698-3150	33766		RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 51,11% .125W F TC=0+-100 RESISTOR 2.37K 1% .125W F TC=0+-100 RESISTOR 2.37K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-1001-F C4 1/8-T0-1001-F C4-1/8-T0-511R-F C4-1/8-T0-2371-F C4-1/8-T0-2371-F C4-1/8-T0-2371-5	
A12R2B A12R29 A12R30 A12R31 A12R32 A12R32 A12R32	0698-3446 0698-3446 0757-0420 0757-0420 0757-0420 0757-0280 0757-0416	333337	2 2	RESISTOR 383 1% .125W F TC=0+-100 RESISTOR 383 1% .125W F TC=0+-100 .RESISTOR 750 1% .125W F TC=0+-100 RESISTOR 750 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-100	24546 24546 24546 24546 24546 24546 24546	C4 1/8-T0-3832.F C4 1/8-T0-3832.F C4 1/8-T0-3837.F C4 1/8-T0-751.F C4 1/8-T0-751.F C4 1/8-T0-751.F C4 1/8-T0-511.P C4 1/8-T0-511.P	
A12R33 A12R34 A12R35 A12R35 A12R36 A12R37	0757-0465 0757-0442 0698-0084 0757-0449 0698-0084	69969	2 3 1	RESISTOR 100K 12 .125W F TC=0+-100 RESISTOR 10K 12 .125W F TC=0+-100 RESISTOR 2.15K 12 .125W F TC=0+-100 RESISTOR 20K 12 .125W F TC=0+-100 RESISTOR 2.15K 12 .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-1003 F C4-1/8-T0-1002 F C4-1/8-T0-2151 F C4-1/8-T0-2002-F C4-1/8-T0-2002-F C4-1/8-T0-2151-F	
A12R3B A12R39 A12R40 A12R41 A12R41 A12R42	0698-0084 0757-0723 0757-0403 0757-0403 0757-0403 0757-0416	94227	1	RESISTOR 2.15X 1Z .125W F TC=0+-100 RESISTOR 619 1Z .25W F TC=0+-100 RESISTOR 121 1Z .125W F TC=0+-100 RESISTOR 121 1Z .125W F TC=0+-100 RESISTOR 511 1Z .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-2151-F C5-1/4-T0-619R-F C4-1/8-T0-121P-F C4-1/8-T0-121R-F C4-1/8-T0-121R-F C4-1/8-T0-511P-F	
A12R43 A12R44 A12R45 A12R46 A12R46 A12R47	0757-0402 0757-0276 0757-0416 0757-0280 0757-0280 0757-0280	17733	1 1	RESISTOR 110 12 .125W F TC=0+-130 RESISTOR 61.9 12 .125W F TC=0+-100 RESISTOR 511 12 .125W F TC=0+-100 RESISTOR 1K 12 .125W F TC=0+-100 RESISTOR 1K 12 .125W F TC=0+-100	24546 24546 24546 24546 24546	C4 1/8-T0-111-F C4 1/8-T0-6192-F C4 1/8-T0-511R-F C4 1/8-T0-511R-F C4 1/8-T0-1001-F C4 1/8-T0-1001-F	
A12R48 A12R49 A12R50 A12R51 A12R52	0757-0394 0757-0442 0757-0280 0757-0379 0757-0379	0 931 3	1	RESISTOR 51.1 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 12.1 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100	24546 24546 24546 17731 24546	C4-1/8-TC-51R1-F C4-1/8-T0-1002-F C4-1/8-T0-10C1-F MF4C1/8-T0-12R1-F C4-1/8-T0-10C1-F	A
A12853	0757-0465	6		RESISTOR 100K 12 .125W F TC=0+-100	24546	C4-1/8-T0-1003-F	
A12T1 A12T2	15506-80001 03779-80059	75	1 1	TRANSFORMER ASSEMDLY TRANSFORMER ASSEMDLY	28480 28480	15566-80001 03772-80389	
A12U101 A12U108 A12U111 A12U201 A12U202	1820-1211 1820-0803 1820-0475 1820-1112 1820-1197	8 2 4 9 9	1 1 3 3 2	IC GATE TTL LS EXCL-OR QUAD 2-INP IC GATE ECL UR-NOR TPL IC COMPARATOR HS TO-99 PKG IC FF TTL LS D-TYPE POS-EDGE-TRIG IC GATE TTL LS NAND QUAD 2-INP	01295 04713 27014 01295 01295	SN74LSB6N MC10105P LM306H SN74LS74AN SN74LS06N	
A12U203 A12U203B A12U204 A12U205 A12U206	03776-80030 1200-0639 1820-1208 1820-1201 1820-1201 1820-1300	3 8 3 6 6	1	PROM SOCKET-IC 20-CONT DIP DIP-SLDR IC GATE TIL LS OR RUAD 2-INP IC GATE TIL LS AND QUAD 2-INP IC SHF-RGTR TIL LS R-S PRL-IN PRL-OUT	28480 28480 01295 01295 01295 01295	03776-00030 1200-0639 SN74L932N SN74L908N SN74L9195AN	
A12U207 A12U208 A12U209 A12U209 A12U210 A12U211	1820-1300 1820-1433 1820-1053 1820-1282 1820-0475	6 6 3 4	2 1 2	IC SHF-RGTR TTL LS R-S PRL-IN PRL-OUT IC SHF-RGTR TTL LS R-S SERIAL-IN PRL-GUT IC SCHMITT-TRIG TTL INV HEX IC FF TTL LS J-K DAR POS-CDGE-TRIG IC COMPARATOR HG TO-99 FKG	01293 01295 01295 01295 27014	SN74LS195AN SN74LS164N SN74LS164N SN74LS107AN LM306H	
A12U301 A12U302 A12U303 A12U303 A12U304 A12U305	1820-1282 1820-1199 1820-1112 1820-1112 1820-1112 1820-1432	3 1 8 5	1	IC FF TTL LS J-K DAR POS-EDGE-TRIG IC INV TTL LS HEX 1-JNP IC FF TTL LS D-TYPE POS-EDGE-TRIG IC FF TTL LS D-TYPE POS-EDGE-TRIG IC ENTR TTL LS DIN SYNCHRO POS-EDGE-TRIG	01275 01275 01275 01275 01275 01275	SN74LS1J9AN SN74LS04N SN74LS74AN SN74LS74AN SN74LS74AN SN74LS163AN	
A12U306 A12U307 A12U308 A12U310 A12U310 A12U401	1820-1432 1820-1432 1820-1244 1820-9475 1820-0513	5 5 7 4 1	1	IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG IC MUR/DATA-SEL TTL LS 4-TO-1-LINE DUAL IC COMPARATOR HS TO-99 PKG IC GATE TTL AND QUAD 2-INP	01295 01295 01295 27014 01295	SN741.S163AN SN74LS163AN SN74LS153N LM306H SN7409N	
A12U402 A12U403 A12U404 A12U404 A12U405 A12U406	1820-1197 1820-1216 1820-1858 1820-2384 1820-2384	9 3 9 8 8	1 1 3	IC GATE TTL LS NAND QUAD 2-INP IC DODP TTL LS 3-TO-8-LINE 3-INP IC FF TTL LS D-TYPE COIL IC RGTR TTL LS D-TYPE 2-INP 4-BIT IC RGTR TTL LS D-TYPE 2-INP 4-BIT IC RGTR TTL LS D-TYPE 2-INP 4-BIT	01295 01295 01295 01295 01295 01295	SN74LS00N SN74LS138N SN74LS377N SN74LS399N SN74LS399N SN74LS399N	

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number		A/B/ Option
A12U407 A12U408	1820-2384 1820-1433	8		IC RGTR TTL LS D. TYPE 2-INP 4-BIT IC SHF-RGTR TTL LS R-S SCRIAL-IN PRL-OUT	01295 01295	SN74L5399N SN74L5164N	1	
A120501 A120502	1620-1422 1820-1203	6 3 8	1	IC MV TTL LS MONOSTEL RETRIG IC GATE TTL LS AND TPL 3-INP	01225 01295	SN74LS122N SN74LS11N		Ā
MSC MSC MSC	1430-0116 4040-0749 4040-0750	8 4 7	2 1 1	PIN-GRV .062-IN DIA .25-IN-LG STL Extr-PC BD BRN POLYC .062-BD-THKNS Extr-PC BD RED POLYC .062-BD-THKNS	28480 28480 28480	1480-0116 4048-0749 4040-0750		
MGC		ľ	•	EXINCI O BURED FIELD . JOZ-BD-THINKS	20480	4040-0/50		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
	·							
					ļ			
	İ							
L		1		· · · · · · · · · · · · · · · · · · ·				

Table 6-3. Replaceable Parts

··._

2

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
A13	03776-60013	0	1	PROCESSOR ASSEMBLY	28480	03776-60013	
A13C1 A13C2 A13C3 A13C4 A13C4 A13C5	0121-0036 0160-4472 0180-2818 0160-4031 0180-0197	02458	1112	CAPACITOR-V TRMR-CER 5.5-102F 3500 CAPACITOR-FXD 102F +-5% 2000DC CER 0+-30 CAPACITOR-FXD 2.20F+-20% 350DC TA CAPACITOR-FXD 3302F +-5% 1000DC CER CAPACITOR-FXD 2.20F+-10% 200DC TA	52763 28480 28480 28480 28480 56289	304324 5.5/10PF NPO 9160-4492 0180-2818 0160-4031 150D225X9020A2	
A13C6 A13C7 A13C8 A13C9 A13C10	0180-0197 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	ឲស្លស្ល	15	CAPACITOR-FXD 2.20F+-132 23VCC TA CAPACITOR-FXD .10F +-202 53VDC CER CAPACITOR-FXD .10F +-232 53VDC CER CAPACITOR-FXD .10F +-232 53VDC CER CAPACITOR-FXD .10F +-232 53VDC CER	55257 28480 28480 28480 28480 28480	1500225X9020A2 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	
A13C11 A13C12 A13C13 A13C13 A13C14 A13C15	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	សមសម្ល		CAPACITOR-FXD .10F +-20% 50VDC CER CAPACITOR-FXD .10F +-20% 50VDC CER CAPACITOR-FXD .10F +-20% 50VDC CER CAPACITOR-FXD .10F +-20% 50VDC CER CAPACITOR-FXD .10F +-20% 50VDC CER	28480 28480 28480 28480 28480 28480	0140-0576 3160-0576 0140-0576 3160-0576 0160-0576	
A13C16 A13C17 A13C18 A13C18 A13C19 A13C23	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	លលលលល		CAPACITUR-FXD .1UF +-23Z 53VDC CER CAPACITOR-FXD .1UF +-20Z 53VDC CER CAPACITOR-FXD .1UF +-23Z 53VDC CER CAPACITOR-FXD .1UF +-23Z 53VDC CER CAPACITOR-FXD .1UF +-23Z 53VDC CER	28480 28480 78489 28480 28480 28480	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	
A13C21 A13C22	0160-0576 0160-4385	ธุณ	- 1	CAPACITUR-FXD .10F +-26% 50VDC CER Capacitor-FXD 15PF +-5% 200VDC CER 0+-30	28480 28480	0160-0576 0160-4385	
A13CR1 A13CR2 A13CR3 A13CR3 A13CR4 A13CR5	1990-0485 1970-0485 1970-0485 1970-0485 1970-0485 1990-0485	ຍຍອຍຍ	5	LED-LAMP LUM-INT=800UCD IF=30MA-MAX LED-LAMP LUM-INT=800UCD IF=30MA-MAX LED-LAMP LUM-INT=800UCD IF=30MA-MAX LED-LAMP LUM-INT=800UCD IF=30MA-MAX LED-LAMP LUM-INT=800UCD IF=30MA-MAX	28480 28480 28480 28480 28480 28480	5682-4984 5082-4984 5082-4984 5082-4984 5082-4984 5082-4984	
A13CR6 A13CR7 A13CR8 A13CR9 A13CR9 A13CR10	1990-0450 1990-0450 1990-0450 1990-0450 1990-0450 1990-0450	4444	5	LED-LAMP LUM-INT=8000CD IF=50MA-MAX LED-LAMP LUM-INT=8000CD IF=50MA-MAX LED-LAMP LUM-INT=8000CD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX	28480 28480 28480 28480 28480 28480	5082-4484 5082-4484 5082-4484 5082-4484 5082-4484	
A13R1 A13R2 A13R3 A13R4 A13R5	0698-3429 0698-3429 0757-0462 0757-0462 0757-0462 0757-0280	44488	2 2 1	RESISTOR 19.6 1% .125₩ F TC=6+-100 RESISTOR 19.6 1% .125₩ F TC=0+-100 RESISTOR 75K 1% .125₩ F TC=0+-100 RESISTOR 75K 1% .125₩ F TC=0+-100 RESISTOR 1K 1% .125₩ F TC=0+-100	03088 03868 24546 24546 24546 24546	PMESS-1/8-TC-1986-F PMESS-1/8-T0-1986-F C4-1/8-T0-7502-F C4-1/8-T0-7502-F C4-1/8-T0-7502-F C4-1/8-TC-1861-F	
A13R6 A13R7 A13R9 A13R9 A13R10	1810-0280 1810-0365 1810-0364 1810-0364 1810-0364 1810-0365	8 0 7 9	2 2 2	NETWORK-RES 10-31P10.0K OHM X 7 NETWORK-RES 6-SIP2.2K OHM X 5 NETWORK-RES 6-SIP470.0 OHM X 5 NETWORK-RES 6-SIP470.0 OHM X 5 NETWORK-RES 6-SIP2.2K GHM X 5	31121 61121 31121 61121 31121 31121	21 JA1 J3 206A222 206A471 206A471 2J6A272	
A13R11	1810-0280	8		NETWORK-RES 10-SIP10.0K OHM X 9	61121	2104103	
A1351 A1352	3101-2268 3101-2340	9 4	1 1	SWITCH-PB SPDT NOM .25A 115VAC RED BIN Switch-RKR DIP-RKR-ASSY 5-1A .05A 30VDC	28480 28480	3131-2288 3101-2340	
A13TL1 A13TL2 A13TL3	1258-0177 1200-0607 1258-0124 1258-0124	0 8 7 7	1 1 2	SHUNT-PROGRAM Socket-IC 16-Cont DIP DIP-SLDP PIN-PROGRAMING DUMPER .33 CONTACT PIN-PROGRAMING DUMPER .36 CONTACT	28480 28480 71596 71506	1258-0177 1200-0607 8136-47561 8136-47561	
A13U10 A13U11 A13U12 A13U13 A13U20	1820-2592 1820-1200 1820-1425 1820-1782 1820-1782 1820-2936	0 56 87	1 1 1 1	IC OSC TTL LS IC INV TTL LS HEX IC COMMITITITE ITL LS NAND GUAD 201NP IC MV TTL S MONOSTEL RETRIG/RESET DUAL IC DRVR NKOS CLOCK DRVR	01295 01295 01225 34335 04713	SN74LS323N SN74LS35A SN74LS132N Am24S32PC Am24S825L	
A13U21 A13U22 A13U23 A13U24 A13U24 A13U25	1820-1199 1320-1199 1820-1211 1820-2081 1918-1611	1 1 8 2 7	2 1 1 1	IC INV TTL LS HEX 1-INP IC INV TTL LS HEX 1-INP IC GATE TTL LS EXCL-OR QUAD 2-INP IC MAGS IC CMOS 16384 (16K) STAT RAM 150-NO 3-S	01295 01295 01295 04713 S4013	SN74LS04N SN74LS04N SN74LS06N KC69821P HMC116P-3	
A13U31 A13U31B A13U33 A13U33 A13U34 A13U35	1323-2273 1200-0654 1329-1202 1820-1203 1820-1208	87783	1 1 1 1 1	IC-MPU; CLK FREG=2MHZ SOCKET-IC 46-CONT DIP DIP-SLDP IC GATE TTL LS NAND TPL 3 HNP IC GATE TTL LS AND TPL 3-TNP IC GATE TTL LS OR GUAD 2-INP	28480 28480 01295 01295 01295	1820–2273 1200–0654 SN74L819N SN74L819N SN74L811N SN74L832N	
A13U36 A13U43 A13U44 A13U51	03776-80054 1200-0567 1820-1440 1620-1210 1820-2024	1 1 5 7 3	1 1 1 3	PROM GGENETTIC 28-CONT DIP DIPHSLDR IC LCH TIL LS QUAD IC GATE TIL LS AND-OR-INV CUAL 2-INP IC DRVR TIL LS LINE DPVR OCTL	28480 28480 01295 91275 01295	03776-80054 1230-0567 SN74LS279N SN74LS51N SN74LS24AN	

See introduction to this section for ordering information *Indicates factory selected value

•

ŝ

Referer Designa	nce ation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
A13052 A13054 A13055 A13061 A13062		1020-2075 1820-1273 1020-2748 1820-2024 1820-2024 1820-2075	4 2 8 3 4	3 1 1	IC MISC TTL LS IC BFR TTL LS NOR QUAD 2-INP IC-GPIB TALKER/LISTENER (E-VERSION) IC DRVR TTL LS LINE DPVR OCTL IC MISC TTL LS	01275 01275 28480 01275 01275	SN741.5245H SN74LS28N 1820-2748 SN74LS224AN SN74LS245N	
A13U63 A13U64 A13U65 A13U71 A13U72		1820-1216 1820-1281 1820-2424 1820-2024 1820-2024	32734	1 1 2	IC DCDR TTL LS 3-TO-8-LINE 3-INP IC DCDR TTL LS 2-TO-4-LINE DUAL 2-INP IC MISC TTL OCTL IC DRVR TTL LS LINE DRVR CCTL IC MISC TTL LS	01293 01295 04713 01295 01295	SN74LS138N SN74LS139N MC3447P SN74LS244N SN74LS245N	
A13073 A13075		1820-1207 1820-2424	2	1	IC GATE TTL LS NAND 8-INP IC MISC TTL OCTL	01295 04713	SN74L538N MC3447P	
A13Y1		0410-0555	1	1	CRYSTAL-GUARTZ 8.192 MHZ	26480	0410-0555	
		1230-0950	6	1	SOCKET-XTAL 2-CONT PC	28480	1200-0950	
MSC MSC MSC		1480-0116 4040-0747 4040-0751	8 .4 8	2 1 1	PIN-GRV .062-IN-DIA .25-IN-LG STL Extr-PC &D ERN POLYC .062-BD-THKNS Extr-PC BD ORN POLYC .062-BD-THKNS	28480 28480 28480	1480-0116 4040-0749 4046-0751	
	:							
				Ì				

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
A113	03776-60113	5 1	1				•
A113C1	0121-0036	0	· 1	PROCESSOR ASSEMBLY CAPACITOR-V TRMR-CER 5.5-18PF 350V	28430 52743	03776-60113 304324 5.5/10PF NPD	
A113C2 A113C3 A113C4 A113C5	0160-4492 0180-2818 0160-4031 0180-0197	2 4 5 8	1 1 2	CAPACITOR-FXD 140F + 52 200VCC CER 0+-30 CAPACITOR-FXD 2.2UF+-2CZ 35VDC TA CAPACITOR-FXD 330FF +-52 130VDC CER CAPACITOR-FXD 2.2UF+-1CZ 2GVDC TA	28480 28480 20480 56287	0150 4492 0150-2818 0150-4031 1500225X902042	
A113C6 A113C7 A113C8 A113C9 A113C9 A113C13	0180-0197 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	^B សសសស	15	CAPACITOR-FXD 2.2UF+ 132 23UDC TA CAPACITOR-FXD .1UF +-262 53UDC CER CAPACITOR-FXD .1UF +-232 53UDC CER CAPACITOR-FXD .1UF +-232 50UDC CER CAPACITOR-FXD .1UF +-232 50UDC CER	54267 20480 20480 20480 20480 20480	1500225X9020A2 0120-0576 0130-0576 0140-0576 0160-0576	
A113C11 A113C12 A113C13 A113C14 A113C14	0160-0576 0140-0576 0160-0576 0160-0576 0160-0576 0160-0576	ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ	-	CAPACITOR-FXD .1UF +-25% SOUDC CEP CAPACITOR-FXD .1UF +-20% SOUDC CER CAPACITOR-FXD .1UF +-20% SOUDC CER CAPACITOR-FXD .1UF +-20% SOUDC CER CAPACITOR-FXD .1UF +-20% SOUDC CER	20480 28480 28480 28480 28480 20480	C14C-0576 3140-3576 C146-0576 3150-3576 C146-0576	
A113C16 A113C17 A113C18 A113C19 A113C19 A113C20	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	ទ ទ ទ ទ ទ ទ ទ ទ		CAPACITOR-FXD .10F +-20% SOUDC DER DAPACITOR-FXD .10F +-20% SOUDC DER CAPACITOR-FXD .10F +-20% SOUDC DER DAPACITOR-FXD .10F +-20% SOUDC DER DAPACITOR-FXD .10F +-20% SOUDC DER	28480 28480 28480 28480 28480 28480	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	
A113C21 A113C22	0160-0576 0160-4385	5 2	1	CAPACITOR-FXD .105 +-202 SOVDC CER CAPACITOR-FXD 15PF +-52 200VDC CER 0+-30	28480 28480	C140-0576 0140-4385	
A113CR1 A113CR2 A113CR3 A113CR4 A113CR4 A113CR5	1990-0485 1990-0485 1990-0485 1990-0485 1990-0485 1990-0485	5 5 5 5 5 5	5	LED-LAMP LUM-INT=SCOUCD IF=30HA-HAX LED-LAMP LUM-INT=300UCD IF=30HA-HAX LED-LAMP LUM-INT=800CD IF=30HA-HAX LED-LAMP LUM-INT=800CD IF=30HA-HAX LED-LAMP LUM-INT=800UCD IF=30HA-HAX	28480 28480 28480 20480 28480	5082-4984 5082-4984 5082-4984 5082-4984 5082-4984 5082-4984	
A113CR6 A113CR7 A113CR3 A113CR9 A113CR9 A113CR10	1990-0450 1990-0450 1990-0450 1990-0450 1990-0450 1990-0450	44444	5	LED-LAMP LUM-INT=S00UCD IF=50MA-MAX LED-LAMP LUM-INT=S00UCD IF=50MA-MAX LED-LAMP LUM-INT=S00UCD IF=50MA-MAX LED-LAMP LUM-INT=S00UCD IF=50MA-MAX LED-LAMP LUM-INT=S00UCD IF=50MA-MAX	28480 28480 28480 28480 28480 28480	5032-4484 5082-4484 5082-4484 5082-4484 5082-4484 5082-4484	
A113R1 A113R2 A113R3 A113R4 A113R5	0698-3429 0698-3429 0757-0462 0757-0462 0757-0462 0757-0280	2 2 3 3 3 3	2 2 1	RESISTOR 19.6 12 .125W F TC=0+-100 RESISTOR 19.6 12 .125W F TC=0+-110 RESISTOR 75K 12 .125W F TC=0+-100 RESISTOR 75K 12 .125W F TC=0+-100 RESISTOR 1K 12 .125W F TC=0+-100	03088)3858 24545 24545 24545 24545	PMES5-1/8-TC-1926-F PME55-1/8-TC-1926-F C4-1/8-TC-7502-F C4-1/8-TC-7502-F C4-1/8-TC-10C1-F	B
A113R6 A113R7 A113R8 A113R9 A113R10	1810-0280 1810-0365 1810-0364 1810-0364 1810-0364 1810-0365	3 8 7 9 0	222	NETWORK-RCS 10-CLP10.0K GH X 2 NETWORK-RES 6-SLP2.2K OHM X 5 NETWORK-RES 6-SLP470.0 GH X 5 NETWORK-RES 6-SLP470.0 GH X 5 NETWORK-RES 6-SLP470.C GH X 5	01121 01121 01121 01121 01121 01121	210A103 206A222 206A471 206A471 206A222	
A113R11	1810-0280	8		NETWORK-RES 10-SIP10.0K ONM X 9	61121	2104103	
A113S1 A113S2	3101-2288 3101-2340	9 4	1	SWITCH-PB SPDT NOM .25A 115VAC RED BIN SWITCH-RKR DIP-RKR-ASSY 5-1A .05A 30VDC	28480 28480	3131-2283 3161-2340	
A113TL1 A113TL2 A113TL3	1258-0177 1200-0607 1258-3124 1258-0124	0 0 7 7 7	1 1 2	SHUNT-PREGRAM Socket-ic 16-cont Dip Dip-SLDR Pin-Programing Dumper .30 Contact Pin-Programing Dumper .30 Contact	28480 28480 71536 71536	1253-0177 1200-0607 8136-47501 0136-47501	
A113U10 A113U11 A113U12 A113U13 A113U23 A113U20	1820-2592 1820-1200 1820-1425 1820-1782 1820-2936	n 5 6 8 7	1 1 1 1 1	IC OSC TIL LS IC INV TTL LS HEX IC SCHMITT-TRIG TTL LS NAND GUAD 2-1NP IC MV TTL S MANDOSTEL RETRIG/RESET DUAL IC DRVR NMOS CLOCK DRVR	01225 01295 01295 34335 04713	SN74L5320H SN74L505N SN74L5132N AM26502PC MC6875L	
A113U21 A113U22 A113U23 A113U23 A113U24 A113U25	1323-2081	1 1 8 2 7	2 1 1 1	IC INU TTL LS HEX 1-INP IC INU TTL LS HEX 1-INP IC GATE TTL LS EXCL-OR QUAD 2-INP IC MADS 16384 (16K) STAT RAM 150-NS 3-S	01295 01295 01295 04713 54013	SN74LS04N SN74LS04N SN74LS86N MC68A21P HMG116P-3	
N113U31 N113U33 N113U34 N113U35	1200-0654 1820-1202 1820-1203	3 7 7 8 3	1 1 1 1	IC-M2U; CLK FREG=2MHZ SOCKET-IC 4C-CONT DIP DIP-SLDR IC GATE TTL LS NAND TPL 3-INP IC GATE TTL LS AND TPL 3-INP IC GATE TTL LS GR GUAD 2-INP	23480 28480 01295 01295 01295 01295	1820-2293 1206-0854 SN74LS10N SN74LS11N SN74LS32N	
113036 113043 113044 113051	1200-0567 1820-1440 1320-1210	1 1 5 7 3	1 1 1	PROM Socket-IC 20-cont DIP DIP-SLOR IC LCH TTL LS QUAD IC GATE TTL LS AND-OR-INV CUAL 2-INP IC DRVR TTL LS LINE DRVR GOTL	28480 29480 01295 01295 01295 01295	03776-80054 1200-0567 SN741.5279N SN741.551N SN741.5244N	

		<u> </u>					
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
A113U52 A113U54 A113U55 A113U55 A113U61 A113U62	1020-2075 1820-1273 1820-2748 1820-2024 1820-2024 1820-2075	4 N 0 M 4	3 1 1	IC MISC TTL LS IC BFR TTL LS NOR QUAD 2-INP IC-GPJB TALKER/LISTENER (E-VERSION) IC DRVR TTL LS LINE DRVR OCTL IC MISC TTL LS	01295 01295 28480 01295 01295 01295	SN74LS245N SN74LS28N 1620-2748 SN74LS244N SN74LS245N	
A113063 A113064 A113065 A113071 A113072	1820-1216 1820-1281 1820-2424 1820-2024 1820-2075	32734	1 1 2	IC DCDR TTL LS 3-TO-8-LINE 3-INP IC DCDR TTL LS 2-TO-4-LINE DUAL 2-INP IC MISC TTL OCTL IC DRVR TTL LS LINE DRVR CCTL IC MISC TTL LS	01293 01295 04713 01295 01295	SN74LS138N SN74LS139N MC3447P SN74L5244N SN74L5245N	B
A113U73 . A113U75	1820-1207 1820-2424	2 7	1	IC GATE TTL LS NAND 8-INP IC Misc Ttl Octl	01295 04713	SN74LS33N MC3447P	
A113Y1	0410-1406 1200-0950	3		CRYSTAL QUARTZ 9.2640MHz SOCKET-XTAL 2-CONT PC	28480 2848 0	0410-1406 1200-8950	
MSC MSC MSC	1430-0116 4040-0749 4040-0751	8 4 8	2 1 1	PIN-GRV .062-IN DIA .25-IN-LG STL Extr-PC BD BEN FOLYC .062-BD-THKNS Extr-PC 3D GRN POLYC .062-BD-THKNS	28480 28480 28480 28480	1480-0116 4040-0749 4040-0751	

-

Table 6-3. Replaceable Parts

Table 6-3. Replaceable Parts											
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option				
A14	03776-60014	1	1	MEMORY ASSEMBLY	28480	03776-60014					
A148T1		4	1	BATTERY 2.8V .85A-HR LI/S-DIOX PIN	28480	1420-0275					
A14C1 A14C2 A14C3 A14C4 A14C5	0130-0197 0180-0291 0160-3878 0160-0576 0160-0576	8 3 6 5 5	1 1 13	CAPACITOR-FXD 2.2UF+-102 200C TA CAPACITOR-FXD 1UF+-102 350DC TA CAPACITOR-FXD 1000PF +-202 1000DC CER CAPACITOR-FXD 1UF +-202 500DC CER CAPACITOR-FXD 1UF +-202 500DC CER	56289 56289 28433 28480 28480 28480	150D225X902CA2 150D105X9035A2 0160-3378 0160-0576 0160-0576					
A1405 A1407 A1408 A1409 A1409 A14010	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	សមមម		CAPACITOR-FXD .1UF +-20Z 50VDC CER. CAPACITOR-FXD .1UF +-20Z 50VDC CER CAPACITOR-FXD .1UF +-20Z 50VDC CER CAPACITOR-FXD .1UF +-20Z 50VDC CER CAPACITOR-FXD .1UF +-26Z 50VDC CER	28480 28480 28480 28480 28480 28480	C160-0576 C160-0576 O160-0576 O160-0576 C160-0576					
A14C11 A14C12 A14C13 A14C13 A14C14 A14C15	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	ភ ឆ ឆ ឆ ឆ ឆ ឆ ឆ		CAPACITUR-FXD .1UF +-20% 53UDC CER CAPACITOR-FXD .1UF +-20% 50UDC CER CAPACITOR-FXD .1UF +-20% 50UDC CER CAPACITOR-FXD .1UF +-20% 50UDC CER CAPACITOR-FXD .1UF +-20% 50UDC CER	20480 28480 28480 28480 28480 28480	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576					
A14C16	0160-0576	5		CAPACITOR-FXD .1UF +-20% 50VDC CER	28480	0160-0576					
A14CR1 A14CR2	1902-0948 1901-0518	0 8	1 1	DIODE-ZNR 3.90 52 DO-35 PD=.4W TC=012% DIODE-SM SIG SCHOTTKY	28480 28480	1902-0948 1901-0518					
A1401 A1402	1054-0215 1853-0036	1 2	1 1	TRANSISTOR NPN SI PD=350MW FT=300MHZ TRANSISTOR PNP SI PD=310MW FT=250MHZ	04713 28480	2N3934 1853~1036					
A14R1 A14R2 A14R3 A14R4 A14R5	0757-0401 0757-0442 0757-0442 0757-0442 0757-0280 0698-3970	0 9 9 3 8	1 2 1 1	RESISTOR 100 12 .125W F TC=0+-100 RESISTOR 10K 12 .125W F TC=0+-100 RESISTOR 10K 12 .125W F TC=0+-100 RESISTOR 1K 12 .125W F TC=0+-100 RESISTOR 2.61M 12 .125W F TC=0+-100	24546 24546 24546 24546 28480	C4-1/8-T0-101-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-1001-F 0678-3970					
A14TL1	1258-0124	7	1	PIN-PROGRAMING DUMPER .30 CONTACT	91506	8136-475G1	A				
A14U12	03776-80056 1200-0567	3 1	1 10	PROM Socket-ic 20-cont dip dip-sldr	28430 28480	03776-80056 1200-0567					
A14U13 A14U21	03776-80955 1200-0567 03776-80062	2	1	PROM SOCKET-IC 20-CONT DIP DIP-SLDR PROM	28480 28480 28480	03776-80055 1200-0567 03776-80062					
A14U22 A14U23 A14U31	1200-0567 93776-80058 1200-0567 93776-80067 1200-0567 93776-80063 1200-0567	1 5 1 6 1 2 1	1 1 1	SOCKET-IC 28-CONT DIP DIP-SLDR PROM SOCKET-IC 28-CONT DIP DIP-SLDR PROM SOCKET-IC 28-CONT DIP DIP-SLDR PROM SOCKET-IC 28-CONT DIP DIP-SLDR	28480 28480 28480 28480 28480 28480 28430 28490	1200-0567 03776-80058 1200-0567 03776-80067 1200-0567 03776-80063 1200-0567					
A1 41132 A1 41133 A1 41134 A1 41135	03776-80059 1200-0567 1018-1611 1820-1197 1820-1216	6 1 7 9 3	1 1 1 3	PROM SOCKET-IC 28-CONT DIP DIP-SLDR IC CMOS 16334 (16K) STAT RAM 15D-NS 3-S IC GATE TTL LS NAND QUAD 2-INP IC DCDR TTL LS 3-TO-8-LINE 3-INP	28480 28480 34013 01275 01275	03776-80059 1200-0567 HM6116P-3 SN74L500N SN74LS138N					
A1 4041 A1 4042 A1 4043	03776-80064 1230-0567 03776-80060 1200-0567 1918-1981	3 1 9 1 4	1 1 1	PROM SOCKET-IC 28-CONT DIP DIP-SLDR PROM SOCKET-IC 28-CONT DIP DIP-SLDR IC-RAM 5516 APL	28480 28480 28480 28480 28480 28480	03776-80064 1200-0557 03776-80060 1200-0567 1818-1981					
A14045 A14054 A14055	1820-1195 1820-1216 1820-1216	7 3 3	1	IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC DCDR TTL LS 3-TO-8-LINE 3-INP IC DCDR TTL LS 3-TO-8-LINE 3-INP	01295 01295 01295 01295	SN74LS175N SN74LS138N SN74LS138N					
MSC MSC MSC MSC	1200~0567 1430-0116 4040-0749 4040-0752	1 8 4 9	2 1 1	SOCKET-IC 28-CONT DIP DIP-SLDR PIN-GRV .062-IN-DIA .25-IN-LG STL EXTR-PC BD BRN POLYC .062-BD-THKNS EXTR-PC BD YEL POLYC .062-BD-THKNS	28480 28480 28480 28480 28480	12000567 1480-0116 4040-0749 4040-0752					

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
						N7777/ / 011 A	_
A114 A1148T1	03776-60114	2	1	MEMORY ASSEMBLY BATTERY 2.8V .85A-HR LI/S-DIOX PIN	28480 28480	33776-60114 14200275	
A114C1 A114C2 A114C3 A114C3 A114C4 A114C5	03776-60014 0180-0197 01800291 0160-3378 0160-0576 0160-0576	។ ឲាភកាស	1 1 1 13	CAPACITUR-FXD 2.0UF+-13Z 23VDC TA CAPACITOR-FXD 10F+-10Z 35VDC TA CAPACITOR-FXD 100PF +-20Z 133VDC CER CAPACITOR-FXD 10F +-20Z 50VDC CER CAPACITOR-FXD 10F +-23Z 53VDC CER	56267 55287 28433 28480 28480 28480	153D225X9020A2 156D105X9035A2 3160-3878 6166-3576 3160-0576	
A114C6 A114C7 A114C8 A114C8 A114C9 A114C9	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	លលលលល		CAPACITOR-FXD .1UF +-20% 5CVDC CER CAPACITOR-FXD .1UF +-20% 53VDC CER CAPACITOR-FXD .1UF +-20% 53VDC CER CAPACITOR-FXD .1UF +-20% 53VDC CER CAPACITOR-FXD .1UF +-20% 53VDC CER	28480 28480 28490 28480 28480 28480	0140-0574 0140-0574 0140-0574 0140-0574 0140-0574 0140-0574	
A114C11 A114C12 A114C13 A114C13 A114C14 A114C15	0150-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	លលលល		CAPACITOR-FXD .1UF +-23% SOVDC C&R CAPACITOR-FXD .1UF +-23% SOVDC C&R CAPACITOR-FXD .1UF +-23% SOVDC C&R - CAPACITOR-FXD .1UF +-26% SOVDC C&R CAPACITOR-FXD .1UF +-23% SOVDC C&R	23480 28486 28480 28480 28480 28480	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	
A114C16	0160-0576	5		CAPACITOR-FXD .1UF +-20% SOVDC CER	28480	0160-0576	
A114CR1 A114CR2	1932-8948 1981-8518	0 8	1 1	DICDE-ZNR 3.90 52 DO-35 PD=.4W TC=8122 DICDE-SM SIG SCHOTTKY	28480 28480	1902-8948 1901-0518	
A114Q1 A114Q2	1854-0215 1853-0036	1	1	TRANSISTOR NPN SI PD=350MW FT=300MHZ TRANSISTOR PNP SI PD=310MW FT=250MHZ	04713 28480	2N3904 1853-0036	
A114R1 A114R2 A114R3 A114R3 A114R4 A114R5	0757-0401 0757-0442 0757-0442 0757-0442 0757-0280 0498-3970	3 9 7 3 8	1 2 1 1	RESISTOR 130 12 .125W F TC=0+-130 RESISTOR 10K 12 .125W F TC=0+-100 RESISTOR 10K 12 .125W F TC=0+-130 RESISTOR 1K 12 .125W F TC=0+-100 RESISTOR 2.61H 12 .125W F TC=3+-100	24546 24546 24546 24546 28480	C4·1/8·T0-101·F C4·1/8·T0-1062-F C4·1/8-T0-1032-F C4·1/8-T0-1031-F 9658-3770	
A114TL1	1258-0124	7	1	PIN-PROGRAMING DUMPER .36 CONTACT	51506	8136-47501	В
A114U12	03776-80057 1200-0567	4	1 10	PROM SOCKET-IC 28-CONT DIP DIP-SLDP	28480 28460	03776-80057 1206-0567	
A114U13 A114U21	03776-80055 1200-0567 03776-80062 1200-0567	2111	1	SOCKET-IC 28-CONT DIP DIP-SUDR PRCM SOCKET-IC 28-CONT DIP DIP-SUDR SOCKET-IC 28-CONT DIP DIP-SUDP	28480 28480 28480 28480 28480	13776-80155 1206-0567 13776-80162 1200-0567	
A114U22 A114U23 A114U31	03776-80053 1200-0567 03776-80067 1200-0567 03776-80063 1200-0567	516121	1 1 1	PROM SOCKET-IC 28-CONT DIP DIP-SLDR PROM SOCKET-IC 28-CONT DIP DIP-SLDR PROM SOCKET-IC 28-CONT DIP DIP-SLDR	28480 28480 28480 28480 28480 28480 28480	03776-80058 1200-0567 03776-80067 1200-0567 03776-80063 1200-0567	
A114U32 A114U33 A114U34 A114U35	03776-80059 1200-0567 1818-1611 1820-1197 1820-1216	6 1 7 9 3	1 1 1 3	PROM SDCKET-IC 28-CONT DIP DIP-SLDR IC CMOS 16384 (16K) STAT RAM 150-NS 3 S IC GATE TTL LS NAND QUAD 2-INP IC DCDR TTL LS 3-TO-8-LINE 3-INP	28480 28480 54013 01295 01295	03776-80059 1200-0567 FM6116P-3 SN74LS00N SN74LS138N	
A114U41 A114U42 A114U43	03776-80064 1200-0567 03776-80060 1200-0567 1818-1981	3 1 9 1 4	1 1 1	PROM Socket-IC 20-CONT DIP DIP-SLDR PROM Socket-IC 20-CONT DIP DIP SLDR IC-RAM 5516 APL	28490 28480 28480 28480 28480 28480	0377680064 1230-0557 0377680060 1290-0557 18191981	
A114045 A114054 A114055	1820-1195 1820-1216 1820-1216	7 3 3	1	IC FF TTL US D-TYPE POS-EDGE-TRIG COM IC DCDR TTL LS 3-TO-8-LINE 3-INP IC DCDR TTL LS 3-TO-8-LINE 3-INP	01295 01295 01295	SN74LS175N SN74LS138N SN74LS138N	
MSC MSC MSC MSC	1200-0567 1480-0116 4040-0749 4040-0752	1 8 4 9	2 1 1	SOCKET-IC 28-CONT DJP DJP-SLDR PIN-GRV .362-IN·DIA .25-IN·LG STL EXTR-PC BD BRN POLYC .062-ED-THKNS EXTR-PC BD YEL POLYC .062-BD-THKNS	28480 28480 28480 28480 28480	1260-0567 1480-0116 4646-0749 4040-0752	

-1

Table 6-3. Replaceable Parts

A214 13776-66214 3 1 REKERT ACCEPTING 28490 13776-66214 A214811 00776-6014 1 DATTERY 9.0% (DTA-HS L/5-DIOX PIN 20480 1478-6275 A31421 0108-0177 0 1 DATTERY 9.0% (DTA-HS L/5-DIOX PIN 20480 1478-6275 A31422 0108-0177 0 1 DATTERY 9.0% (DTA-HS L/5-DIOX PIN 20480 1478-6275 A31423 0108-0377 0 1 DATTERY 9.0% (DTA-HS L/5-DIOX PIN 20480 1168-0376 A31424 0108-0376 1 DATTERY 9.0% (DTA-HS L/107-FS L	Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
Alterin Order South I Description Description <thdescription< th=""> <thdescription< th=""> Descripti</thdescription<></thdescription<>	A.D.A.A.							
Action Interval Link Link Link Link Link Link Link Link							03776-60214	
A214C7 1135-0576 5 CAPACITIO-FX0 1UT - 232 2000 1016 101	A214C1 A214C2 A214C3 A214C3 A214C4	0180-0197 0180-0291 0160-3878 0160-0576	83 5 5	1 1 1	CAPACITOR-FXD 2.2UF+-10% 20V0C TA CAPACITOR-FXD 1UF+-10% 35VDC TA CAPACITOR-FXD 1000PF +-20% 100VDC CER CAPACITOR-FXD 1UF +-20% 50VDC CER	56269 56289 28490 28480	150D225X902DA2 150D105X9035A2 0160 -3378 0160 -0576	
N214012 0130-0576 5 CAPACITOR-RD. 1107 -222 SUDE CER CD4480 0130-0576 N214013 0160-0576 5 CAPACITOR-RD. 1107 +222 SUDE CER C04480 110-0576 N214014 0160-0576 5 CAPACITOR-RD. 1107 +222 SUDE CER C04480 110-0576 N214014 0160-0576 5 CAPACITOR-RD. 1107 +222 SUDE CER C04480 110-0576 N214012 1902-0540 1 DIDDE-RN 3.7V St D0-35 (DE-AN TOR-ND. 1127 20480 1912-0540 N21402 1853-0236 1 1 DIDDE-RN 3.7V St D0-35 (DE-AN TOR-ND. 1127 20480 1912-0540 N21402 1853-0236 2 1 TRANSISTOR NP SI PD=335ML FT=30MIZ 20480 1972-0540 1972-011.7 N21402 1055-0237 2 2 RCSISTOR 10 XI X. 125W F TC=01-100 24546 C4-1/A-TO-TIC2-F N21403 1055-0237 2 1 RCSISTOR 10 XI X. 125W F TC=01-100 24546 C4-1/A-TO-TIC2-F N21403 10777-02680 3 1 RCSISTOR 10 X	A214C7 A214C8 A214C9	0160-0576 0160-0576 0160-0576	មមមមម		CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER	28480 28480 28480	0160-0576 0160-0576 0163-0576	
100 100 <td>A214C12 A214C13 A214C14</td> <td>0160-0576 0160-0576 0160-0576</td> <td>5 5 5</td> <td></td> <td>CAPACITOR-FXD .1UF +-202 SOUDC CER CAPACITOR-FXD .1UF +-202 SOUDC CER CAPACITOR-FXD .1UF +-202 SOUDC CER</td> <td>28480 28480 28480</td> <td>0160-0576 0160-0576 0160-0576</td> <td></td>	A214C12 A214C13 A214C14	0160-0576 0160-0576 0160-0576	5 5 5		CAPACITOR-FXD .1UF +-202 SOUDC CER CAPACITOR-FXD .1UF +-202 SOUDC CER CAPACITOR-FXD .1UF +-202 SOUDC CER	28480 28480 28480	0160-0576 0160-0576 0160-0576	
1214CR2 1901-0518 a i DIODE-SM SIG COUNTRY 28480 1921-0518 1921-0518 121402 1853-0136 i i DIODE-SM SIG COUNTRY 20480 1921-0518 20480 1921-0518 121402 1853-0136 i i TAANGISTOR PNP SI PD=330NW FT=350HW 20480 1653-0136 12141 1277-0401 i i TAANGISTOR NPN SI PD=330NW FT=350HW 20490 1653-0136 12142 1277-0401 i i RESISTOR NPN SI PD=310NW FT=350HW 20490 1653-0036 12142 1277-0401 i I RESISTOR NPN SI PD=310NW FT=350HW 20490 1653-0036 1653-0036 12142 1277-0402 i RESISTOR NN IN 2128 FT=04-100 24546 C4-1/0-T0-101-F 24546 C4-1/0-T0-102-F 26476 26476 <td< td=""><td></td><td></td><td>5</td><td></td><td>CAPACITOR-FXD .1UF +-20% 50VDC CER</td><td>28480</td><td>8160-0576</td><td></td></td<>			5		CAPACITOR-FXD .1UF +-20% 50VDC CER	28480	8160-0576	
21402 1853-0036 2 1 TRANSIGTOR PARS 1 PD-3016 F1 P2301612 204713								
12181: 12182: 12182: 12184:					TRANSISTOR NPN SI PD=353MW FT=300MHZ TRANSISTOR PNP SI PD=310MW FT=250MHZ			
A21411 1282-0124 7 1 PIN-PROGRAMING DUMPER .30 CONTACT 91506 B136-47561 (B) A214U12 33776-80068 7 1 PROM 26400 33776-80069 106 6567 A214U13 1200-0567 1 1 PROM 26400 33776-80059 2 1 A214U13 1200-0567 1 1 PROM 26400 33776-80059 1 26400 33776-80059 1 26400 33776-80059 1 26400 33776-80052 26400 33776-80052 28400 1206-0567 28400 1206-0567 1 28400 1206-0567 28400 33776-80059 1206-0567 1 SOCKET-IC 28-CONT DIP DIP-SLDR 28400 13076-80050 28400 13076-80057 1 SOCKET-IC 28-CONT DIP DIP-SLDR 28400 13076-80057 28400 33776-80067 28400 13076-80057 1 SOCKET-IC 28-CONT DIP DIP-SLDR 28400 1306-4357 28400 1206-0567 1 SOCKET-IC 28-CONT DIP DIP-SLDR 28400 13076-80057 1206-0567 1 1006-057 28400 1206-0567 1 SOCKE	A214R2 A214R3 A214R4	0757-0442 0757-0442 0757-0280	9 9 3	2	RESISTOR 100 17 .125₩ F TC=0+-100 RESISTOR 10K 17 .125₩ F TC=0+-100 RESISTOR 10K 17 .125₩ F TC=0+-100 RESISTOR 1K 17 .125₩ F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-101-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-1001-F	002
1201-0567 1 10 SOCKET-IC 28-CONT DIP DIP-GLDR 20430 3376-800.65 214U13 1200-0567 1 PROM 20430 3376-800.65 2 214U21 1200-0567 1 PROM 20430 3376-800.65 2 214U21 1200-0567 1 PROM SOCKET-IC 28-CONT DIP DIP-SLDR 23480 1206-0567 214U22 13776-800.55 5 1 PROM SOCKET-IC 28-CONT DIP DIP-SLDR 23480 1206-0567 214U23 13776-800.56 5 1 PROM SOCKET-IC 28-CONT DIP DIP-SLDR 23480 1206-0567 214U23 13776-800.57 1 SOCKET-IC 28-CONT DIP DIP-SLDR 28480 1206-0567 214U31 13276-800.57 1 PROM SOCKET-IC 28-CONT DIP DIP-SLDR 28480 13276-800.57 214U32 13376-800.59 6 1 PROM SOCKET-IC 28-CONT DIP DIP-SLDR 28480 13276-800.57 214U32 13376-800.59 6 1 PROM SOCKET-IC 28-CONT DIP DIP-SLDR 28480 13276-800.57 214U32 1320-0567 1 IC	214TL1	1258-0124	7	1	PIN-PROGRAMING DUMPER .30 CONTACT	91506	8136-47561	
214U22 03776-80058 5 1 PRCM 28480 03776-80058 214U23 03776-80067 1 SOCKET-IC 28-CONT DIP DIP-SLDR 28480 1200-0567 214U31 03776-80057 1 SOCKET-IC 28-CONT DIP DIP-SLDR 28480 1200-0567 214U31 03776-80057 2 1 SOCKET-IC 28-CONT DIP DIP-SLDR 28480 1200-0567 214U32 03776-80057 1 SOCKET-IC 28-CONT DIP DIP-SLDR 28480 1200-0567 214U32 03776-80057 1 SOCKET-IC 28-CONT DIP DIP-SLDR 28480 1200-0567 214U33 1818-1611 7 1 IC CATE TL LS ANANG QUAD 2-INP 28430 03776-80059 214U33 1820-1197 1 IC CATE TL LS ANANG QUAD 2-INP 28490 1200-0567 214U35 1920-1267 1 IC DCDR TTL LS 3-TO-8-LINC 3-INP 01275 SN741560N 214U43 03776-80064 3 1 PROH SOCKET-IC 28-CONT DIP DIP SLDR 28480 03776-80064 214U43 1820-1197 1 IC CATE TL LS ANANG QUAD 2-INP 01275 SN7415150N 214U4	214013	1200-0567 03776-80055 1200-0567 03776-80062	1 2 1 1	10 1	SOCKET-IC 28-CONT DIP DIP-SLDR PRCM Socket-IC 28-CONT DIP DIP-SLDR PRCM	28480 28480 28480 28480 28480	03/78-80058 1200-0567 03776-80055 1200-0567 03776-80062	
214U32 03776-80055 6 1 PROM 28400 03776-80055 214U33 1818-1611 7 1 1C CMOS 16384 (16K) STAT RAM 150-NS 3 5 28400 03776-80055 214U34 1820-1197 7 1 1C CMOS 16384 (16K) STAT RAM 150-NS 3 5 28430 33776-80057 214U35 1820-1197 7 1 1C CMOS 16384 (16K) STAT RAM 150-NS 3 5 54313 KM6116P-3 214U35 1820-1197 3 3 IC GATE TTL LS ANAN QUAD 2-INP 1275 SN74150N 214U41 03776-80064 3 1 PROM SOCKET-IC 28-CONT DIP DIP SLDR 28480 03776-80064 214U42 03776-80066 9 1 PROM SOCKET-IC 28-CONT DIP DIP SLDR 28480 03776-80064 214U43 1230-0567 1 SOCKET-IC 28-CONT DIP DIP SLDR 28480 03776-80064 214U43 1818-1981 4 1 IC-RAM 5516 APL 28480 1230-0567 214U43 1820-1175 7 1 IC FDT TL LS D-1YPE PGS-EDGE TRIG CCM 01275 SN74LS175N 214U54 1820-1216 3 <t< td=""><td>214U23</td><td>1200-0567 03776-80067 1200-0567 03776-80063</td><td>1 6 1 2</td><td>1</td><td>PRCM SOCKET-IC 28-CONT DIP DIP-SLDR PRCM SOCKET-IC 28-CONT DIP DIP-SLDR PRCM</td><td>28480 28480 28480 28480 28480 28480</td><td>03776-80058 1200-0567 03776-80067 1200-0567 03776-80063</td><td></td></t<>	214U23	1200-0567 03776-80067 1200-0567 03776-80063	1 6 1 2	1	PRCM SOCKET-IC 28-CONT DIP DIP-SLDR PRCM SOCKET-IC 28-CONT DIP DIP-SLDR PRCM	28480 28480 28480 28480 28480 28480	03776-80058 1200-0567 03776-80067 1200-0567 03776-80063	
214U42 1200-0567 1 SCCKT-IC 28-CONT DIP DIP SLDR 28480 03775-80064 214U42 03776-80060 9 1 PROM 28480 03776-80060 214U43 1200-0567 1 SCCKT-IC 28-CONT DIP DIP SLDR 28480 03776-80060 214U43 1818-1981 4 1 IC-RAM 5516 APL 28480 03776-80060 214U45 1820-1175 7 1 IC FF TIL LS D-TYPE POS-EDGE-TRIG COM 01275 SN74LS175H 214U54 1820-1216 3 IC DCDP TTL LS 3-TO-8-LINE 3-INP 01295 SN74LS136N 214U55 1820-1216 3 IC DCDR TTL LS 3-TO-8-LINE 3-INP 01295 SN74LS136N 214U55 1820-1216 3 IC DCDR TTL LS 3-TO-8-LINE 3-INP 01295 SN74LS136N SC 1206-0567 1 SOCKET-IC 28-CONT DIP DIP-SLDP 28480 1266-056.7 SC 1206-0567 1 SOCKET-IC 28-CONT DIP DIP-SLDP 28480 1483-0116 SC 4040-0749 4 1 EXTR-PC ED BEN POLYY .062-IN-INC Z8400 1483-0116 SC 4040-0749 1 EX	214133 214134 214135	1200-0557 1318-1611 1820-1197	1 7 9	1	PROM SOCKET-IC 28-CONT DIP DIP-SLDR IC CMOS 16304 (16K) STAT RAM 150-NS 3 5 IC GATE TTL LS NAND QUAD 2-INP	28490 28490 54013 01295	03776-80059 1266-0567 886116P-3 SN74LS60N	
214U45 1820-1175 7 1 IC FF TIL LS D-TYPE PGS-EDGE-TRIG CCM 01275 SN74LS175N 214U54 1820-1216 3 IC DCDR TIL LS 3-TO-8-LINE 3-INP 01275 SN74LS175N 214U55 1820-1216 3 IC DCDR TIL LS 3-TO-8-LINE 3-INP 01275 SN74LS138N SC 1200-8567 1 SOCKET-IC 28-CONT DIP DIP-5LDP 28490 1266-0567 SC 1480-0116 2 2 IN	214042	1200-0567 03776-80060 1200-0567	1 9 1	1	SCCKET-IC 28-CONT DIP DIP SLDR PROM SCCKET-IC 28-CONT DIP DIP SLDR	28480 28480 28480	1200-0567 03776-80060 1200-0567	
SC 1480-0116 2 SUCKI-LL 22-UNI DIP DIP-SLDP 28480 1266-0557 SC 4440-0749 4 1 EXTR-PC BD BRN POLYD.062-IN-DIA.25-IN-LG STL 29480 1480-0116 SC 4440-0749 4 1 EXTR-PC BD BRN POLYD.062-BD-THKNG 28480 4646-0749	214054	1820-1216		1	IC DCDR TTL LS 3-TO-8-LINE 3-INP	01275 01295	SN74LS175N SN74LS138N	
	sc sc	1480-0116 4040-0749	8	1	PIN-GRV .362-IN-DIA .25-IN-LG STL EXTR-PC BD BRN POLYC .062-BD-THKNS	23480 28480	1480-0116 4646-0749	

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part A/B/ Number Option
A15	03776-60015	2	1	POWER SUPPLY CONTROLLER ASSEMBLY	23430	0377660015
A15C1 A15C2 A15C3 A15C4 A15C5	0180-2698 0180-2500 0180-2500 0180-2500 0180-2500 0180-2662	8 1 1 1 6	23	CAPACITOR-FXD 4.7UF+-102 35VDC TA CAPACITOR-FXD 1500UF+50-102 16VDC AL CAPACITOR-FXD 1500UF+50-102 16VDC AL CAPACITOR-FXD 1500UF+50-102 16VDC AL CAPACITOR-FXD 10UF+-102 10VDC TA	28480 37942 37942 37942 25068	0180-2678 TT152U016G1C3P TT152U016G1C3P TT152U016G1C3P D4R7CS1A10K
A15C6 A15C7 A15C3 A15C9 A15C7 A15C10	0150-0574 0160-3740 0150-0576 0180-0474 0160-0576	31545	1 2 13 1	CAPACITOR-FXD .022UF +-20Z 100VDC CER CAPACITOR-FXD .22UF +-5Z 63VDC MET-POLYC CAPACITOR-FXD .1UF +-20Z 50VDC CER CAPACITOR-FXD .1UF +-20Z 50VDC CER CAPACITOR-FXD .1UF +-20Z 50VDC CER	23480 28480 28480 28480 28480 28480	0150-0574 0160-3740 0160-0576 0180-0474 0180-0474 0160-0576
A15C11 A15C12 A15C13 A15C14 A15C15	0160-0576 0160-0571 0160-0207 0160-0207 0160-0576 0160-3508	50959	2 1 1	CAPACITOR-FXD .1UF +-20% SOVDC CER CAPACITOR-FXD 470PF +-20% 100VDC CER CAPACITOR-FXD .01UF +-5% 200VDC POLYE CAPACITOR-FXD .1UF +-20% SOVDC CER CAPACITOR-FXD 1UF +80-20% SOVDC CER	28480 28480 28480 28480 28480 28480	0140-0576 0150-0571 0160-0207 0160-0576 0160-0576
A15C16 A15C17 A15C18 A15C19 A15C20	0160-0576 0160-0576 0160-3740 0180-2662 0160-0576	5 5 1 6 5		CAPACITOR-FXD .1UF +-20% SOVDC CER CAPACITOR-FXD .1UF +-20% SOVDC CER CAPACITOR-FXD .22UF +-5% 63VDC MET-POLYC CAPACITOR-FXD 10UF+-10% 10VDC TA CAPACITOR-FXD .1UF +-20% SOVDC CER	28480 28480 28480 25088 23480	0160-0576 0160-0576 0160-3740 D4R7651A10K 0163-0576
A15C21 A15C22 A15C23 A15C24 A15C24 A15C25	0160-0576 0160-0571 0160-3877 0180-2698 0160-0576	ນວນແນ	1	CAPACITOR-FXD .1UF +-20% SOVDC CER CAPACITOR-FXD 470PF +-20% 1030DC CER CAPACITOR-FXD 100PF +-20% 2000DC CER CAPACITOR-FXD 4.7UF+-10% 350DC TA CAPACITOR-FXD 4.1UF +-20% 500DC CER	28480 23480 28480 28480 28480 28480	0160-0576 0160-0571 0160-3877 0180-2698 0160-0576
A15C26 A15C27 A15C28 A15C29	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	ទ ទ ទ ទ ទ ទ ទ ទ ទ		CAPACITOR-FXD .1UF +-20% SOUDC CER CAPACITOR-FXD .1UF +-20% SOUDC CER CAPACITOR-FXD .1UF +-20% SOUDC CER CAPACITOR-FXD .1UF +-20% SOUDC CER	28480 28480 28480 28480	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576
A15CR1 A15CR2 A15CR3 A15CR4 A15CR5	1970-0450 1990-0450 1990-0450 1990-0450 1906-0096 1905-0096	4 4 4 7 7	3 2	LED-LAMP LUM-INT≕800UCD IF=50MA-MAX LED-LAMP LUM-INT≕800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX DIODE-FW BRDG 200V 2A DIODE-FW BRDG 200V 2A	28480 28480 28480 04713 04713	5082-4484 5082-4484 5082-4484 MDA202 MDA202
A15CR6 A15CR7 A15CR8 A15CR9 A15CR9 A15CR10	1902-0957 1931-0040 1901-0040 1901-0040 1901-0040 1901-0040	1 1 1 1 1	1 7	DIODE-ZNR 9.1V 52 DO-35 PD=.4W TC=+.0692 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28480 28480 28480 28480	1902-0957 1901-0040 1901-0040 1901-0040 1901-0040 1901-0040
A15CR11 A15CR12 A15CR13 A15CR13 A15CR14 A15CR15	1701-0040 1701-0040 1701-0040 1701-0040 1902-0750 1902-0970	1 1 4 8	1 1	DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DD-35 DIODE-ZNR 4.7V 5% DO-35 PD=.4W TC=+.025% DICDE-ZNR 33V 5% DO-35 PD=.4W TC=+.027%	23480 28480 28480 28480 28480 28480	1901-0040 1901-0040 1901-0040 1902-0950 1902-0950
A15CR16 A15CR17	1902-0963 1902-0964	9	1 1	DIODE-ZNR 16V 5% DO-35 PD=.4₩ TC=+.088% DIODE-ZNR 18V 5% DO-35 PD=.4₩ TC=+.07%	28480 28480	1902-0963 190 2-0964
A15F1	2110-0007 9100-3560	4	1 2	FUSE 1A 250V TD 1.25X.25 UL INDUCTOR RF-CH-MLD 5.6UH 5% .166DX.385LG	7591 5 28480	313001 9100-3560
A15L2 A15Q1 A15Q2 A15Q3	1354-0634 1854-0477	6 877	1 2	INDUCTOR RF-CH-MLD 5.60H 5% .166DX.383LG TRANSISTOR NPN SI PD=1W FT=53MHZ TRANSISTOR NPN 2N2222A SI TO-18 PD=500MW TRANSISTOR NPN 2N2222A SI TO-18 PD=530MW	28480 04713 04713 04713	91003550 MpS-U01 2N2222A 2N2222A
A15R2 A15R3 A15R4 A15R5 A15R5	0757-0280 0698-3441 0698-3441 0698-3441 0698-3444	3 8 8 1 9	15 2 2 11	RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 215 1% .125W F TC=0+-100 RESISTOR 215 1% .125W F TC=0+-100 RESISTOR 316 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-215R-F C4-1/8-T0-215R-F C4-1/8-T0-316R-F C4-1/8-T0-316R-F C4-1/8-T0-1002-F
A15R7 A15R8 A15R9 A15R10 A15R11	0757-0442 0757-0438	0 09 35	2 2 1	RESISTOR 4.22K 1% .125W F TC=0+-100 RESISTOR 4.22K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 5.11K 1% .125W F TC=3+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T3-4221-F C4-1/8-T3-4221-F C4-1/8-T3-1302-F C4-1/8-T3-511-F C4-1/8-T3-511-F C4-1/8-T3-2612-F
A15R12 A15R13 A15R14 A15R15 A15R16	0757-0280 0757-0280 0698-3155	3 3 3 1 3	14 1	RESISTOR 1K 12 .125W F TC=0+-100 RESISTOR 1K 12 .125W F TC=0+-100 RESISTOR 1K 12 .125W F TC=0+-100 RESISTOR 4.64K 12 .125W F TC=0+-100 RESISTOR 75K 12 .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-1001-F C4-1/8-T0-1001-F C4-1/8-T0-4641-F C4-1/8-T0-7502-F
A15R17 A15R18 A15R19 A15R20 A15R21	0757-0280 0698-3155 0757-0461	9 3 1 2 9	2 1	RESISTOR 464K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 4.64K 1% .125W F TC=0+-100 RESISTOR 68.1K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100	28480 24546 24546 24546 24546 24546	0698-3260 C4-1/8-T0-10C1-F C4-1/8-T0-4641-F C4-1/8-T0-6812-F C4-1/8-T0-6812-F

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
A15R22 A15R23 A15R24 A15R25 A15R25 A15R26	0757-0438 0757-0428 0698-3444 0757-0280 0757-0280	31133	3	PESISTOR 5.11K 12 .125W F TC=0+-100 RESISTOR 1.62K 12 .125W F TC=0+-100 RESISTOR 316 12 .125W F TC=0+-100 RESISTOR 1K 12 .125W F TC=0+-100 RESISTOR 1K 12 .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-5111-F C4-1/8-T0-1621-F C4-1/8-T0-316R-F C4-1/8-T0-316R-F C4-1/8-T0-1061-F C4-1/3-T0-1001-F	
A15R27 A15R23 A15R29 A15R30 A15R31	8757-0428 0757-0428 0698-3155 0698-3155 0698-3155	1 1 1 1 1		RESISTOR 1.62K 12 .125W F TC=0+-100 RESISTOR 1.62K 12 .125W F TC=0+-100 RESISTOR 4.64K 12 .125W F TC=0+-100 RESISTOR 4.64K 12 .125W F TC=0+-100 RESISTOR 4.64K 12 .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-1621-F C4-1/8-T0-1621-F C4-1/8-T0-4641-F C4-1/8-T0-4641-F C4-1/8-T0-4641-F C4-1/8-T0-4641-F	
A18R32 A19R33 A19R34 A19R34 A19R35 A19R36	0698-3155 0698-3155 0698-3150 0757-0442 0757-0465	1 1 6 9 6	1 3	RESISTOR 4.64K 12 .125W F TC=0+-100 RESISTOR 4.64K 12 .125W F TC=0+-100 RESISTOR 2.37K 12 .125W F TC=0+-100 RESISTOR 10K 12 .125W F TC=0+-100 RESISTOR 100K 12 .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-4641-F C4-1/8-T0-4641-F C4-1/8-T0-2371-F C4-1/8-T0-1002-F C4-1/8-T0-1003-F	
A15837 A15838 A15839 A15840 A15841	0678-3155 0698-3155 0757-0465 0698-8827 0757-8442	1 1 6 4 9	1	RESISTOR 4.64K 1% .125W F TC=0+-100 RESISTOR 4.64K 1% .125W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100	24546 24546 24546 28480 24546	C4-1/8-T0-4641-F C4-1/8-T0-4641-F C4-1/8-T0-1003-F 0678-8827 C4-1/8-T0-1002-F	
A15843 A15844 A15845 A15845 A15846 A15847	0498-3155 0698-3155 0757-0442 0757-0280 0757-0280	1 1 9 3 3		RESISTOR 4.64K 12 .125W F TC=0+-100 RESISTOR 4.64K 12 .125W F TC=0+-100 RESISTOR 10K 12 .125W F TC=0+-100 RESISTOR 1K 12 .125W F TC=0+-100 RESISTOR 1K 12 .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-4641-F C4-1/8-T0-4641-F C4-1/8-T0-1002-F C4-1/8-T0-1001-F C4-1/8-T0-1001-F	
A15848 A15849 A15850 A15851 A15852	0757-0280 0757-0442 0698-3155 0698-3155 0698-3155 0757-0442	3 9 1 9		RESISTOR 1K 12 .125W F TC=0+-100 RESISTOR 10K 12 .125W F TC=0+-100 RESISTOR 4.64K 12 .125W F TC=0+-100 RESISTOR 4.64K 12 .125W F TC=0+-100 RESISTOR 10K 12 .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-1002-F C4-1/8-T0-4641-F C4-1/8-T0-4641-F C4-1/8-T0-1002-F	
A15853 A15854 A15855 A15856 A15857	0757-0394 0698-0084 0757-0442 0757-0280 0757-0442	0 9 9 3 9	1	RESISTOR 51.1 12 .125W F TC=0+-100 RESISTOR 2.15K 12 .125W F TC=0+-100 RESISTOR 10K 12 .125W F TC=0+-100 RESISTOR 1K 12 .125W F TC=0+-100 RESISTOR 10K 12 .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-51R1-F C4-1/8-T0-2151-F C4-1/8-T0-1032-F C4-1/8-T0-1001-F C4-1/8-T0-1002-F	
A15858 A15859 A15860 A15861 A15862	0757-0442 0757-0317 0698-3136 0337-0121 0698-3446	9 7 8 1 3	1 1 1 1	RESISTOR 10K 12 .125W F TC=0+-100 RESISTOR 1.33K 12 .125W F TC=0+-100 RESISTOR 17.8K 12 .125W F TC=0+-100 THERMISTOR BEAD 10K-OHM TC=-4.272/C-DEG RESISTOR 383 12 .125W F TC=0+-100	24546 24546 24546 23480 24546	C4-1/8-T0-10C2-F C4-1/8-T0-1331-F C4-1/8-T0-1702-F 0837-0121 C4-1/8-T0-383R-F	
A15863 A15864 A15865 A15866 A15867	0698-3492 0757-0280 0757-0280 0757-0280 0757-0280 0757-0465	9 3 3 3 6	1	RESISTOR 2.67K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-2671-F C4-1/8-T0-1001-F C4-1/8-T0-1001-F C4-1/8-T0-1001-F C4-1/8-T0-1003-F	
A15R68 A15R69 A15R70 A15R71 A15RV1	0698-3260 0698-3155 0757-0280 0698-3266 2100-3351	9 1 3 5 6	1	RESISTOR 464K 12 .125W F TC=0+-100 RESISTOR 4.64K 12 .125W F TC=0+-100 RESISTOR 1K 12 .125W F TC=0+-100 RESISTOR 237K 12 .125W F TC=0+-100	28480 24546 24546 24546	0698-3260 C4-1/8-T0-4641-F C4-1/8-T0-1001-F C4-1/8-T0-2373-F	
A15U1 A15U13 A15U33 A15U35 A15U36	1251-4352 1326-0122 1826-0428 1820-1112 1826-0180	7 8 9	1 1 1 1 1	RESISTOR-TRHR 500 102 C SIDE-ADJ 1-TRN CONNECTOR 4-PIN H POST TYPE IC 7805 V RGLTR TO-220 IC 3524 HODULATOR 16-DIP-C IC FF TTL LS D-TYPE POS-EDGE-TRIG IC TIMER TTL HONO/ASTEL	28480 28480 07263 01275 01275 01295 01295	2100-3351 1251-4352 7865UC SG3524J SN74LS74AN NC55SP	
A15U37 A15U53 A15U54 A15U55 A15U55 A15U56	1026-0139 1826-0138 1820-1198 1820-1416 1820-1416 1826-0138	830 05 8	3 1 1	IC COMPARATOR GP QUAD 14-DIP-P PKG IC COMPARATUR GP QUAD 14-DIP-P PKG IC GATE TTL LS NAND QUAD 2-INP IC SCHNITT-TRIG TTL LS INV MEX 1-INP IC COMPARATOR GP QUAD 14 DIP-P PKG	01295 31295 01295 01295 01295 01295	LM339N LM339N SN74LS03N SN74LS14N LM339N	
A15053	1826-0393 1205-0331	777	1 1	IC V RGLTR TO-228 Heat Sink SGL TO-220-CS	27814 28480	LH317T 1265-0331	
MSC MSC MSC MSC	1430-0116 2110-0269 4940-3749 4040-0753	8 0 4 0	2 4 1 1	PIN-GRV .062-IN-DIA .25-IN-LG STL FUSEHOLDER-CLIP TYPE.25D-FUSE EXTR-PC BD BRN POLYC .062-BD-THKNS EXTR-PC BD GRN POLYC .062-BD-THKNS	22480 28480 28480 28480 28480	1480-0116 2110-0269 4040-0749 4040-0753	

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
A16 A16C1	03776-60016	3	1	POWER SUPPLY CONVERTER ASSEMBLY	28430	03776-60016	
A16C2 A16C3 A16C4 A16C5	0160-5051 0160-2142 0160-2142 0160-2144	1 5 4 7	1 1 2	CAPACITOR-FXD 2.2UF +-102 250VDC CAPACITOR-FXD 2.2UF +-102 250VDC CAPACITOR-FXD 1500PF +100-02 500VDC CER CAPACITOR-FXD 500PF +-202 3KVDC CER CAPACITOR-FXD 3300PF +-202 1KVDC CER	28480 28480 26480 28480 28480 28480	C160-5051 0160-5051 C160-2142 0160-2800 C160-2144	
A1606 A1607 A1608 A1609 A1609 A16010	0150-2144 0160-0160 0160-0160 0160-0160 0160-3486 0160-3486	73322	2 2	CAPACITUR-FXD 3300PF +30-20% 1KVDC LER CAPACITUR-FXD 8200PF +-10% 200VDC POLYE CAPACITOR-FXD 8200PF +-10% 200VDC POLYE CAPACITOR-FXD .47UF +80-20% 20VDC CER CAPACITOR-FXD .47UF +80-20% 20VDC CER	28480 28480 28480 28480 28480 28480	0160-2144 C160-0160 0160-0160 0160-3485 0160-3485	
A16C11 A16C12 A16C13 A16C14 A16C15	0160-0576 0160-0576 0180-2662 0180-2662 0180-2662 0160-0576	5 5 6 6 5	4 2	CAPACITOR-FXD .1UF +-202 SOUDC CER CAPACITOR-FXD .1UF +-202 SOUDC CER CAPACITOR-FXD 10UF+-102 10UDC TA CAPACITOR-FXD 10UF+-102 10UDC TA CAPACITOR-FXD 10UF+-202 SOUDC CER	28480 28480 25088 25088 25088 28480	0160-0576 0160-0576 D487651A10# D487651A10# C160-0576	
A16C16 A16C17 A16C18 A16C18 A16C19 A16C20	0130-0413 0160-0576 0130-2208 0180-0643 0180-0643	65699	1 1 2	CAPACITOR-FXD 1UF+-202 35VDC TA CAPACITOR-FXD .1UF +-202 50VDC CER CAPACITOR-FXD 220UF+-102 10VDC TA CAPACITOR-FXD 220UF+50-102 10VDC AL CAPACITOR-FXD 220DUF+50-102 10VDC AL	28480 28480 56259 80795 80795	0180-0418 0140-0576 1500227X901052 EN12.12 EN12.12	
A16C21 A16C22 A16C23 A16C24 A16C25	0180-2698 0180-2698 0180-2811 0180-2811 0180-2097	8 8 7 7 7 7	22	CAPACITOR-FXD 4.7UF+-102 35UDC TA CAPACITOR-FXD 4.7UF+-102 35UDC TA CAPACITOR-FXD 10UF+-202 35UDC TA CAPACITOR-FXD 10UF+-202 35UDC TA CAPACITOR-FXD 47UF+-102 35UDC TA	28480 52480 28480 58480 55287	C1C0-2696 0180-2698 C1C0-2811 0180-2811 150D476X9C35S2	
A16C26	0180-0077	7		CAPACITOR-FXD 470F+-10% 35VDC TA	56269	1500476X983552	
A16CR1 A16CR2 A16CR3 A16CR3B A16CR3C	1901-0732 1901-0732 1901-1095 1200-0080 2190-0860	88835	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	DIODE-PWR RECT 1KV 1A DIODE-PWR RECT 1KV 1A DIODE-PWR RECT 1KV 1A INGULATOR-DIO ALUMINUM HD-ANDZ WASHER-FL NM NO. 10 .138-IN-ID	28480 28480 04713 28480 28480	1901-0732 1901-0732 MBR1540 1200-0080 2190-0860	
A16CR4 A16CR4B A16CR4C A16CR5 A16CR5	1901-1095 1200-0080 2190-0860 1901-0692 1901-0692	8 3 5 9 7	4	DIODE-PWR RECT 43V 15A CO-4 Insulator-Dio Aluminum MD-Andz Washer-Fl NM NO. 10 .183 IN-ID Diode-PWR Rect 200V 3A 200NS Diode-PWR Rect 203V 3A 200NS	04713 28480 28489 04713 04713	MBR1540 1266-0080 2179-0860 MRB32 MRB32	
A16CR7 A16CR3 A16CR9 A16CR10 A16CR11	1901-0692 1902-0943 1902-0943	9 9 5 5 3	2	DIODE-PHR RECT 2000 3A 2000S DIODE-PHR RECT 2000 3A 2000S DIODE-ZNR 2.40 5% DO-35 PDE.44 TC=037% DIODE-ZNR 2.40 5% DO-35 PDE.44 TC=037% DIODE-SWITCHING 800 200MA 205 DO-35	04713 04713 28400 28480 28480	M2832 M2852 1902-0943 1902-0943 1902-0943 1901-0050	
A16CR12 A16CR13 A16CR14 A16CR15 A16CR15 A16CR16	1901-0050 1931-0350 1901-0347	3 3 3 1 5	2	DIODE-SWITCHING 83V 200MA 2NS CO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SN SIG SCHOTTKY DIODE-ZNR 5.1V 52 DO-35 PD=.4W TC=+.0352	28480 28480 28480 28480 28480 28480	1701-0050 1701-0050 1701-0350 1701-0347 1702-0751	
A16CR17 A16CR18 A16CR19 A16CR20 A16CR20 A16CR21	1901-0347 1902-0951 1901-0050	31537	2	DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SM SIG SCHOTTKY DIODE-ZNR 5.1V 52 DO-35 PD=.4W TC=+.0352 DIODE-SWITCHING 83V 203MA 2NS DO-35 DIODE-PWR RECT 400V 1A	28480 28480 20480 20480 28480 28480	1901-0050 1901-0347 1902-0951 1901-0050 1901-0731	
A16CR22	1931-3731	7		DIDDE-PWR RECT 4000 1A	28480	1701-0731	
A16F1 A16F2		5	2	FUSE 1A 1259 .281X.093 FUSE 1A 1259 .281X.093	2848.0 2348.0	2110-0321 2110-0321	
41631	1251-4352	7	1	CONNECTOR 4-PIN M POST TYPE	28490	1251-4352	
A16L1 A16L2 A16L3	03763-80101	4	1 1 1	INDUCTOR Coil Toroid Toroid Assembly	23430 28480 28430	0377070388 0376380101 03763 -80100	
A16MP1 A16MP2 A16MP3 A16MP4	03763-00041 03762-00036 03762-00035 03760-20012	5	1 1 1 1	CLAMP BRACKET HEATSINK PCB BLANK	28490 23480 28480 23480	03763-00041 03762-00036 03762-00035 03760-20012	
A16Q1 A16Q2 A16Q2C	1054-0624 & & 0340-0503 & 1054-0624 & & 0340-0503 & 0 0340-0782 & 7		2 2 1	TRANSISTOR NON 2N6308 SI TO-3 PD=125W INSULATOR-XSTR POLYE TRANSISTOR NON 2N6308 SI TO-3 PD=125W INSULATOR-XSTR POLYE INSULATOR-XSTR KAPTON	04713 28480 04713 28480 28480	2N4308 0340-0503 2N4308 0340-0503 6340-0782	
							2

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part A/B/ Number Option
A16Q3 A16Q4 A16Q5 A16Q6 A16Q6 A16Q7	1853-0020 1853-0020 1854-0477 1854-0477 1854-0477 1854-0477	4 4 7 7 7	2	TRANSISTOR PNP SI PD=300MW FT=150MHZ Transistor PNP SI PD=300MW FT=150MHZ Transistor NPN 2N2222A SI TO-18 PD=500MW Transistor NPN 2N2222A SI TO-18 PD=500MW Transistor NPN 2N2222A SI TO-18 PD=500MW	28480 28480 94713 04713 04713	1853-0020 1853-0020 282222A 282222A 282222A 282222A
A16Q8	1854-0477	7		TRANSISTOR NPN 2N2222A SI TO-18 PD=500MW	04713	2N2022A
A16R1 A16R2 A16R3 A16R4 A16R5	9757-0367 0757-0367 0911-3382 0811-1204 0812-0915	7 7 8 9 0	2 1 1 2	RESISTOR 100K 1% .5W F TC=0+-100 RESISTOR 100K 1% .5W F TC=0+-100 RESISTOR .5 5% 3W PW TC=0+-20 RESISTOR 200 5% 5W PW TC=0+-20 RESISTOR 8 3% 3W PW TC=0+-50	28480 28480 28480 28480 28480 28480	0757-0367 0757-0367 0811-3382 0811-1204 0812-0015
A16R6 A16R7 A16R8 A16R9 A16R9	0683-0275 0693-0275 0812-0015 0813-0950 0913-0050	99055	4	RESISTOR 2.7 5% .25W FC TC≕~400/+500 RESISTOR 2.7 5% .25W FC TC=~400/+500 RESISTOR 8 3% 3W PW TC=0+~50 RESISTOR 100 5% 3W PW TC=0+~20 RESISTOR 100 5% 3W PW TC=0+~20	01121 01121 28480 71637 91637	CB2765 CB2765 0012-0015 CW281-3W-T2-101-J CW201-3W-T2-101-J
A16R11 A16R12 A16R13 A16R14 A16R15	2100-0552 2100-0552 9757-0280 0757-0410 0698-3152	3 3 3 1 8	8 NN 8	RESISTOR-TRMR 50 10% C SIDE-ADJ 1-TRN RESISTOR-TRMR 50 10% C SIDE-ADJ 1-TRN RESISTOR 1K 1% 1255W F TC=0+-100 RESISTOR 301 1% ,125W F TC=0+-100 RESISTOR 3,40K 1% ,125W F TC=0+-100	28480 28480 24546 24546 24546 24546	2130-0552 2100-0552 C4-1/8-T0-1001-F C4-1/8-T0-301F-F C4-1/8-T0-3481-F
A16R16 A16R17 A16R18 A16R19 A16R20	0698-3152 0757-0410 0757-0200 0757-0401 0683-0275	8 1 3 0 9	3	RESISTOR 3.48K 1% .125W F TC=0+-100 RESISTOR 301 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 2.7 5% .25W FC TC=-400/+500	24546 24546 24546 24546 01121	C4…1/8-T0…3481-F C4…1/8-T0-301R-F C4-1/8-T0-1001-F C4…1/8-T0-101-F C8=1/8-T0-101-F CB2765
A16R21 A16R22 A16R23 A16R23 A16R24 A16R25	0683-0475 0698-3446 0757-0420 0757-0401 0683-0275	1 3 3 9	202	RESISTOR 4.7 5% .25W FC TC=-400/+500 RESISTOR 383 1% .125W F TC=0+-100 RESISTOR 755 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 10.7% .25W FC TC=-400/+500	01121 24546 24546 24546 01121	CB4765 C4-1/8-T0-383R-F C4-1/8-T0-751-F C4-1/8-T0-101-F C82765
A16R26 A16R27 A16R28 A16R29 A16R29 A16R30	0683-0475 0698-3446 0757-0420 0690-3155 0698-3155	1 3 3 1 1	5	RESISTOR 4.7 5%,25W FC TC=-400/+500 RESISTOR 363 1%,125W F TC=0+-100 RESISTOR 750 1%,125W F TC=0+-100 RESISTOR 4.64K 1%,125W F TC=0+-100 RESISTOR 4.64K 1%,125W F TC=0+-100	01121 24546 24546 24546 24546	CB47C5 C4…1/8~T0~303R-F C4…1/8~T0~751~F C4…1/8~T0~4641~F C4…1/8~T0~4641~F
A16R31 A16R32 A16R33	0757-0401 0757-0346 0757-0280	0 2 3	1	RESISTOR 100 1% .125W F TC≃0+-100 RESISTOR 10 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100	24546 24546 24546	C4~1/8-T0-101~F C4~1/8-T0-10R0~F C4~1/8-T0-1001~F
A16T1 A16T2 A16T3 A16T4	03776-80002 03780-60047 03776-80003 03776-80003	9 8 0 0	1 1 2	SWITCHING XFMR TRANSFORMER ASSEMBLY TRANSFORMER ASSEMBLY TRANSFORMER ASSEMBLY	28480 28480 28480 28480 28480	03776-80002 03780-60049 03726-80003 03776-80003
A16U1 A16U2	1826-0393 1205-0331 1826-0527 1250-0331	7 7 9 2	1 1 1 1	IC V RGLTR TO-220 Heat Sink SGL TO-220-CS IC 337 V RGLTR TO-220 Heat Sink	27014 28480 27014 28480	LM317T 1205-0331 LM337T 1250-0331
MSC MSC MSC MSC	0360-0007 1480-0116 4040-0749 4040-0754	1 8 4 1	2 1 1 1	TERMINAL-SLDR LUG PL-MTG FOR-010-SCR PIN-GRV .062-IN-DIA .25-IN-LG STL EXTR-PC BD BRN POLYC .062-BD-THKNS EXTR-PC BD BLU POLYC .062-BD-THKNS	28480 28480 28480 28480 28480	0360-0007 1480-0116 4046-0749 4040-0754

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
A20	03776-60020	2	1	KOTHERBOARD ASSEMENT	28480	0377660020	
A20C1	0160-4371	6	1	CAPACITOR-FXD 680PF +-5% 106VDC CER CAPACITOR-FXD ,10F 190-20% 100VDC CER	28480 26654	0166-4371 213075V100R104Z	
A23C2 A20J1 A20J2 A20J3 A20J3 A20J3 A20J5	0160~3622 1251~5722 1251~6080 1251~5722 1251~0600 1251~0600 1251~0600	8 7 2 7 0 0	1 2 1 1 15	CONNECTOR 50-PIN M POST TYPE CONNECTOR 50-PIN M METRIC POST TYPE CONNECTOR 50-PIN M POST TYPE CONNECTOR 50, CONT PIN 1.14-MM-BSC-SZ 50 CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ 50	20480 28480 28480 28480 28480 28480	1251-5722 1251-6080 1251-5722 1251-0600 1231-0600	
A20J6 A20J7 A20J8 A20J9 A20J10	1251-0600 1251-0600 1251-0600 1251-0600 1251-0600 1251-0600	0 0 0 0 0		CONNECTOR-SGL CONT PIN 1.14-HM-BSC-SZ SQ CONNECTOR-SGL CONT PIN 1.14-HM-BSC-SZ SQ CONNECTOR-SGL CONT PIN 1.14-HM ESC SZ SQ CONNECTOR-SGL CONT PIN 1.14-HM-BSC-SZ SQ CONNECTOR-SGL CONT PIN 1.14-HM-BSC-SZ SQ	20400 20400 20400 20400 20400 20400 20400	1251-0600 1251-0600 1251-0600 1251-0600 1251-0600 1251-0600	
A20J11 A20J12 A20J13 A20J13 A20J14 A20J15	1251-0600 1251-0600 1251-0600 1251-0600 1251-0600 1251-0600	0 0 0 0		CONNECTOR-SGL CONT PIN 1.14 MM-BSC-SZ SQ CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ	28480 28480 28480 28480 28480 28480	1751-0608 1251-0600 1251-0600 1251-0600 1251-0600 1251-0608	
A20J16 A20J17 A20J18	1251-0600 1251-0600 1251-0600	0 0 0		CONNECTOR-SGL CONT PIN 1.14-HM-BSC-SZ SQ CONNECTOR-SGL CONT PIN 1.14-HM-BSC-SZ SQ CONNECTOR-SGL CONT PIN 1.14-HM-BSC-SZ SQ	28480 28480 28480 28480	1251~0690 1251~0600 1251~0600	
A20L1	9100-3913 -	3	1	INDUCTOR RE-CH-MUD 3.30H 5% .166DX.385LG	28480	9106-3913	
A20R1 A20R2 A20R3	0757-0710 0698-3441 8757-0399	4 8 5	1 1 1	RESISTOR 75 1% .25W F TC=0+-100 RESISTOR 215 1% .125W F TC=0+-100 RESISTOR 82.5 1% .125W F TC=0+-100	24546 24546 24546	C5-1/4-T0-75R0-F C4-1/8-T0-215R-F C4-1/8-T0-82R5-F	
A2011 A2012 A2013 A2014	03779-86089 03779-80069 03779-86089 03779-80069	លលល	4	TRANSFORMER ASSEMBLY TRANSFORMER ASSEMBLY TRANSFORMER ASSEMBLY TRANSFORMER ASSEMBLY	28480 28480 28480 28480 28480	C 3777-80689 33777-80389 63779-80889 33779-80889 33779-80889	
A20XA1 A20XA2 A20XA3 A20XA3 A20XA4 A20XA5	1251-5408 1251-5408 1251-5408 1251-5408 1251-5408 1251-5408	66666	16	CONNECTOR-PC EDGE 48-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 48-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 48-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 48-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 48-CONT/ROW 2-ROWS	20488 28480 28480 28480 28480 28480	1251-5408 1251-5408 1251-5408 1251-5408 1251-5438 1251-5468	
A20XA6 A20XA7 A20XA8 A20XA9 A20XA9 A20XA10	1251-5408 1251-5408 1251-5498 1251-5498 1251-5408 1251-5408	66566		CONNECTOR-PC EDGE 48-CONT/RGW 2-RGWS CONNECTOR-PC EDGE 48-CONT/RGW 2-RGWS CONNECTOR-PC EDGE 48-CONT/RGW 2-RGWS CONNECTOR-PC EDGE 48-CONT/RGW 2-RGWS CONNECTOR-PC EDGE 48-CONT/RGW 2-RGWS	28480 28480 28480 28480 28480 28480	1%51-5438 1251-5438 1251-5438 1251-5438 1251-5438	
A20XA11 A20XA12 A20XA13 A20XA13 A20XA14 A20XA15	1251-5408 1251-5408 1251-5408 1251-5408 1251-5408 1251-5408	66666		CONNECTOR-PC EDGE 40-CONT/ROW 2-ROWC CONNECTOR-PC EDGE 40-CONT/ROW 2-ROWG CONNECTOR-PC EDGE 40-CONT/ROW 2-ROWG CONNECTOR-PC EDGE 40-CONT/ROW 2-ROWG CONNECTOR-PC EDGE 40-CONT/ROW 2-ROWG	28480 28480 28480 28480 28480 28480	1251-5408 1251-5408 1251-5408 1251-5408 1251-5408	
A20XA16	1251-5408	6		CONNECTOR-PC EDGE 48-CONT/RGW 2-RCVS	28480	12515438	
L	l		L	l		1	

Table 6-3 Replaceable Parts (continued)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Optio
A21	03776-60021	5	1	KEYBOARD ASSEMBLY	28480	03776-60021	
A2101 A2102 A2103	0180-2214 0160-0576 0160-0576	455	1 2	CAPACITOR-FXD 98UF+75-182 16VDC AL CAPACITOR-FXD 1UF +-202 53VDC CER CAPACITOR-FXD 1UF +-262 58VDC CER	56289 28430 28480	30D7066016002 0160-0576 0160-0576	
A21CR1 A21CR2 A21CR3 A21CR3 A21CR4 A21CR4	1990-0487 1990-0487 1990-0487 1990-0487 1990-0487 1990-0487	77774	4 31	LED-LAMP LUM-INT=1MCD IF=20MA-MAX SVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=800LCD \F=50MA-MAX	22480 28480 28480 28480 28480 23480	5052-4584 5082-4584 5382-4584 5082-4584 5082-4584 5082-4484	
A21CR7 A21CR3 A21CR9 A21CR10 A21CR11	1990-0450 1990-0450 1990-0665 1990-0450 1990-0450	4 4 3 4	27	LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX	28480 23480 28480 28480 28480 28480	50824484 50824484 19708665 50824484 50824484	
A21CR12 A21CR13 A21CR14 A21CR15 A21CR15 A21CR16	1970-0450 1978-0665 1970-0450 1970-0450 1970-0450 1970-0450	4 3 4 4 4		LED-LAMP LUM-INT=8000CD IF=50MA-MAX LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=8000CD IF=50MA-MAX LED-LAMP LUM-INT=8000CD IF=50MA-MAX LED-LAMP LUM-INT=8000CD IF=50MA-MAX	28480 22480 28480 28480 28480 28480	5082-4484 1970-0665 5382-4484 5082-4484 5082-4484	
A21CR17 A21CR18 A21CR19 A21CR20 A21CR21	1990-0450 1990-0450 1990-0450 1990-0450 1990-0450	44434		LED-LAMP LUM-INT=80CUCD IF=50MA-MAX LED-LAMP LUM-INT=80DUCD IF=50MA-MAX LED-LAMP LUM-INT=80DUCD IF=50MA-MAX LED-LAMP LUM-INT=80CD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=80CUCD IF=50MA-MAX	28480 28480 28480 28480 28480 28480 20480	5082-4484 5082-4484 5082-4484 1570-8665 5082-4484	
A21CR22 A21CR23 A21CR24 A21CR25 A21CR25 A21CR26	1970-0450 1970-0450 1970-0450 1970-0450 1990-0455 1970-0450	4 4 4 3 4		LED-LAMP LUM-INT=800UCD 1F=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=NCD IF=20MA-MAX EVR=5V LED-LAMP LUM-INT=800UCD IF=50MA-MAX	28480 28480 28480 28480 28480 28480	5082-4484 5082-4484 5082-4484 1990-0665 5082-4484	
A21CR27 A21CR28 A21CR29 A21CR30 A21CR31	1970-0450 1970-0450 1970-0450 1970-0455 1970-0665	44433		LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V	28480 28480 28480 28480 28480 28480	5082-4484 5082-4484 5082-4484 1990-0665 1990-0665	
A21CR32 A21CR33 A21CR34 A21CR35 A21CR35 A21CR38	1990-0665 1990-0665 1990-0665 1990-0665 1990-0665 1990-0450	33334		LED-LAMP LUM-INT=1MCD LF=20MA-MAX DVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=800UCD 1F=53MA-MAX	28480 28490 28480 28480 28480 28480	1970-0665 1970-0665 1970-0665 1970-0665 5002-4484	A
A21CR39 A21CR43 A21CR41 A21CR42 A21CR42 A21CR43	1990-0450 1970-0450 1990-0450 1990-0450 1990-0665 1990-0665	44433		LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=1MCD IF=20MA-MAX DVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX DVR=5V	28480 26480 26480 28480 28480 28480	50824484 53324484 50824484 1570-0665 17700665	
A21CR44 A21CR45 A21CR46 A21CR46 A21CR47 A21CR48	1770-0665 1990-0665 1990-0665 1990-0665 1990-0665 1990-0665	88888 88888		LED-LAMP LUM-INT=1MCD IF=20MA-MAX XVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX XVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX XVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX XVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX XVR=5V	28480 28480 28480 28480 28480 28480	1770-0665 1770-0665 1770-0665 1770-0665 1770-0665	
A21CR49 A21CR50 A21CR51 A21CR52 A21CR53	1990-0665 1990-0665 1990-0450 1990-0450 1990-0450 1990-0450	3 3 4 4 4	1	LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVF=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVF=5V LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCO IF=50MA-MAX	28480 28480 29490 29480 28480	1970-0665 1970-0665 5082-4484 5082-4484 5082-4484 5082-4484	
A21CR54 A21CR55 A21CR56 A21CR56 A21CR57 A21CR58	1970-0665 1970-0665 1770-0665 1770-0665 1970-0665 1970-0665	S S S S S S S S S S S S S S S S S S S		LED-LAMP LUM-INT=1MCD 1F=20MA-MAX DVR=50 LED-LAMP LUM-INT=1MCD IF=20MA-MAX DVR=50 LED-LAMP LUM-INT=1KCD IF=20MA-MAX DVR=50 LED-LAMP LUM-INT=1MCD 1F=20HA-MAX DVR=50 LED-LAMP LUM-INT=1MCD 1F=20HA-MAX DVR=50	20480 28480 28480 28480 28480 28480	1770-0665 1970-0665 1970-0665 1970-0665 1970-0665 1970-0665	
A21CR59 A21CR60 A21CR61 A21CR61 A21CR62 A21CR63	1990-0665 1990-0665 1990-0665 1990-0665 1990-0450 1990-0450	33344		LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVP=5V LED-LAMP LUM-INT=300CD IF=50MA-MAX LED-LAMP LUM-INT=300CCD IF=50MA-MAX	28480 28480 28480 28480 28480 28480	1770~0665 1570-0665 1770-0665 5032-4484 5882-4484	
A21CR64 A21CR65	1770-0450 1990-0450	4		LED-LAMP LUM-INT=300UCD IF=50MA-MAX LED-LAMP LUM-INT=300UCD IF=50MA-MAX	28480 28480	5082-4484 5082-4484	
A21DS1 A21DS2 A21DS3 A21DS3 A21DS4 A21DS5	1590-0619 1990-0619 1990-0619 1990-0619 1990-0619 1990-0619	77777	15	DISPLAY-NUM-SES 1-CHAR .3-H DISPLAY-NUM-SEG 1-CHAR .3-H DISPLAY-NUM-SEG 1-CHAR .3-H DISPLAY-NUM-SEG 1-CHAR .3-H DISPLAY-NUM-SEG 1-CHAR .3-H	29480 28480 28480 28480 28480 28480	5082-7613 5082-7613 5082-7613 5082-7613 5082-7613 5082-7613	

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
A21DS6 A21DS7 A21DS8 A21DS8 A21DS9 A21DS10	1970-3617 1990-0617 1990-0617 1990-0619 1990-0619 1790-0619	77777		DISPLAY-NUM-SEG 1-CHAR .3-H DISPLAY-NUM-SEG 1-CHAR .3-H DISPLAY-NUM-SEG 1-CHAR .3-H DISPLAY-NUM-SEG 1-CHAR .3-H DISPLAY-NUM-SEG 1-CHAR .3-H	28480 28480 28480 26480 26480 28480	5082-7613 5082-7613 5082-7613 5082-7613 5082-7613 5082-7613	
A21DS11 A21DS12 A21DS13 A21DS14 A21DS15	1990-0619 1990-0619 1990-0619 1990-0619 1990-0619	7 7 7 7 7 7		DISPLAY-NUM-SEG 1-CHAR .3-H DISPLAY-NUM-SEG 1-CHAR .3-H DISPLAY-NUM-SEG 1-CHAR .3-H DISPLAY-NUM-SEG 1-CHAR .3-H DISPLAY-NUM-SEG 1-CHAR .3-H	28480 28480 28480 28480 28480 28480	5082-7613 5082-7613 5082-7613 5082-7613 5082-7613 5082-7613	
A21D516 A21D517 A21D518 A21D519 A21D520	1990-0568 1990-0598 1990-0759 1990-0759 1990-0759	9 9 6 6 6	2	DISPLAY-NUM-SEG 4-CHAR .11-H DISPLAY-NUM-SEG 4-CHAR .11-H LED-LIGHT BAR KODULE LUM-INT=3MCD LED-LIGHT BAR MODULE LUM-INT=3MCD LED-LIGHT BAR MODULE LUM-INT=3MCD	28480 28480 28480 28480 28480 28480	5082-7414 5082-7414 HLMP-2620 HLMP-2620 HLMP-2620	
A210521	1990-0759	6		LED-LIGHT BAR HODULE LUM-INT=3MCD	28480	HLMP-2620	
A21J1	1251-3090	ß	1	CONNECTOR 50-PIN H RECTANGULAR	28480	1251-3090	
A2101 A2102 A2103 A2104 A2104 A2105	1853-0036 1953-0036 1853-0036 1853-0036 1853-0036 1853-0036	2000	16	TRANSISTOR PNP SI PD=310MW FT=250MXZ TRANSISTOR PNP SI PD=310MW FT=250MXZ TRANSISTOR PNP SI PD=310MW FT=250MXZ TRANSISTOR PNP SI PD=310MW FT=250MXZ TRANSISTOR PNP SI PD=310MW FT=250MXZ	28480 28480 28480 28480 28480 28480	1853-0036 1853-0036 1853-0036 1853-0036 1853-0036	
A21Q6 A21Q7 A21Q8 A21Q9 A21Q9 A21Q10	1853-0036 1853-0036 1853-0036 1853-0036 1853-0036 1853-0036	20200	İ	TRANSISTOR PNP SI PD=310MW FT=250MHZ TRANSISTOR PNP SI PD=310MW FT=250MHZ TRANSISTOR PNP SI PD=310MW FT=250MHZ TRANSISTOR PNP SI PD=310MW FT=250MHZ TRANSISTOR PNP SI PD=310MW FT=250MHZ	28480 28480 28480 28480 28480 28480	1853-0036 1853-0036 1853-0036 1853-0036 1853-0036 1853-0036	
A21Q11 A21Q12 A21Q13 A21Q14 A21Q14 A21Q15	1853-0036 1853-0036 1853-0036 1853-0036 1853-0036 1853-0036	2020		TRANSISTOR PNP SI PD=310MW FT=250MHZ TRANSISTOR PNP SI PD=310MW FT=250MHZ TRANSISTOR PNP SI PD=310MW FT=250MHZ TRANSISTOR PNP SI PD=310MW FT=250MHZ TRANSISTOR PNP SI PD=310MW FT=250MHZ	28480 20480 28480 28480 28480 28480	1853-0036 1853-0036 1853-0036 1853-0036 1853-0036 1853-0036	
A21016	1853-0036	5		TRANSISTOR PNP SI PD=310MW FT=250MHZ	28480	1353-0036	
A21R1 A21R2 A21R3 A21R4 A21R5	0698-3132 0698-3132 0698-3132 0698-3132 0698-3132 0698-3132	4 4 4 4	8	RESISTOR 261 12 .125W F TC=0+-100 RESISTOR 261 12 .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C41/8-T0-2610-F C41/8-T0-2610-F C41/8-T0-2610-F C4-1/8-T0-2610-F C4-1/8-T0-2610-F	A
A21R6 A2187 A21R9 A2189 A21813	0678-3132 0698-3132 0698-3132 0757-0274 0757-0274	4 4 4 5 5	16	RESISTOR 261 1% .125W F TC=0+-100 RESISTOR 261 1% .125W F TC=0+-100 RESISTOR 261 1% .125W F TC=0+-100 RESISTOR 1.21K 1% .125W F TC=0+-100 RESISTOR 1.21K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-2610 ·F C4-1/8-T0-2610-F C4-1/8-T0-2610-F C4-1/8-T0-2610-F C4-1/8-T0-1211-F C4-1/8-T0-1211-F	
A21R11 A21R12 A21R13 A21R14 A21R15	0757-0274 0757-0274 0757-0274 0757-0274 0757-0274 0757-0274	ភភភភភភ		RESISTOR 1.21K 1% .125W F TC=0+-100 RESISTOR 1.21K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-1211-F C4-1/8-T0-1211-F C4-1/8-T0-1211-F C4-1/8-T0-1211-F C4-1/8-T0-1211-F C4-1/8-T0-1211-F	
A21R16 A21R17 A21R18 A21R18 A21R19 A21R20	0757-0416 0757-0416 0757-0416 0757-0416 0757-0416	7 7 7 7 7	16	RESISTOR 511 12 .125W F TC=0+-100 RESISTOR 511 12 .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-5112-F C4-1/8-T0-511R-F C4-1/8-T0-511R-F C4-1/8-T0-511R-F C4-1/8-T0-511R-F C4-1/8-T0-511R-F	
A21R21 A21R22 A21R23 A21R24 A21R31	0757-0416 0757-0416 0757-0416 0757-0274 0757-0274 0757-8274	7 7 7 5 5		RESISTOR 511 12 .125₩ F TC=0+-100 RESISTOR 511 12 .125₩ F TC=0+-100 RESISTOR 511 12 .125₩ F TC=0+-100 RESISTOR 1.21K 12 .125₩ F TC=0+-100 RESISTOR 1.21K 12 .125₩ F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-511R-F C4-1/8-T0-511R-F C4-1/8-T0-511R-F C4-1/8-T0-1211-F C4-1/8-T0-1211-F C4-1/8-T0-1211-F	
A21R32 A21R33 A21R34 A21R35 A21R35 A21R36	0757-0274 0757-0274 0757-0274 0757-0274 0757-0274 0757-0274	55555		RESISTOR 1.21K 1% .125W F TC=0+-100 RESISTOR 1.21K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-1211-F C4-1/8-T0-1211-F C4-1/8-T0-1211-F C4-1/8-T0-1211-F C4-1/8-T0-1211-F C4-1/8-T0-1211-F	
A21837 A21838 A21839 A21839 A21840 A21841	0757-0274 0757-0274 0757-0416 0757-0416 0757-0416 0757-0416	5 5 7 7 7		RESISTOR 1.21K 1% .125W F TC=0+-100 RESISTOR 1.21K 1% .125W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-12)1-F C4-1/8-T0-1211-F C4-1/8-T0-511R-F C4-1/8-T0-511R-F C4-1/8-T0-511R-F C4-1/8-T0-511R-F	
A21R42 A21R43 A21R44 A21R44 A21R45 A21R46	0757-0416 0757-0416 0757-0416 0698-3438 0698-3438	7 7 7 3 3	2	RESISTOR 511 1% .125W F TC=0+-130 RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-103 RESISTOR 147 1% .125W F TC=0+-100 RESISTOR 147 1% .125W F TC=0+-103	24546 24546 24546 24546 24546 24546	C4-1/8-T0-511R-F C4-1/8-T0-511R-F C4-1/8-T0-511R-F C4-1/8-T0-511R-F C4-1/8-T0-147R-F C4-1/8-T0-147R-F	
					-		

-,

~

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part A/B/ Number Option
A21R47 A21R48 A21R49 A21R49 A21R50	0757-0416 0757-0416 0559-0984 0698-0984	7779	2	RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 2.15K 1% .125W F TC=0+-100 RESISTOR 2.15K 1% .125W F TC=0+-100	24546 24546 24546 24546	C4-1/3-T0-511R-F C4-1/8-T0-511R-F C4-1/3-T0-2151-F C4-1/8-T0-2151-F
A21RN1 A21RN2 A21RN3 A21RN4 A21RN5	1010-0325 1010-0203 1010-0338 1010-0277 1010-0277	21733	1 1 3	NETWORK-RES 16 DIP150.0 GHM X 8 NETWORK-RES 16-DIP270.0 GHM X 8 NETWORK-RES 16-DIP100.0 GHM X 8 NETWORK-RES 10-SIP2.2K GHM X 9 NETWORK-RES 10-SIP2.2K GHM X 9	01121 28480 11236 01121 01121	3168151 1810-0283 761-3-R100 210A222 210A222
A21RN6	1810-0277	3		NETWORK-RES 10-SIP2.2K DHM X 9	01121	2104222
A21U1 A21U2 A21U3 A21U3 A21U4 A21U5	1520-1216 1820-1917 1820-1740 1820-1216 1820-1917	3 1 8 3 1	0 N N	IC DODR TIL LS 3-TO-8-LINE 3-INP IC RER TIL LS LINE DRVR OCTL IC DRVR TIL DEPL DRVR IC DODR TIL LS 3-TO-8-LINE 3-INP IC DER TIL LS LINE DRVR CCTL	01275 01295 27014 01275 01275	SN74LS138H SN74LS240N DS8863N SN74LS138N SN74LS240N
A2106	1820-1740	8		IC DRVR TTL DSPL DRVR	27614	D28963N
MSC MSC MSC MSC MSC	1200-0607 1200-0638 1200-0768 5041-0276 5041-0275	07456	4 15 2 12 25	SOCKET-IC 16-CONT DIP DIP-SLDR SOCKET-IC 14-CONT DIP DIP-SLDR SOCKET-IC 14-CONT DIP-SLDR KEY CAP-PRL GRAY KEY CAP-QUARTER, LT PIPE	28480 28480 28480 28480 28480 28480	1230-0607 1200-0638 1230-0768 5041-0276 5041-0285
MSC MSC MSC MSC	5041-0286 5041-0474 5041-0922 5060-9436	7 5 8 7	2 1 4 44	KEY CAP LT PIPE QTR-BSC Key Cap Quarter-Eby-Prl Pusmoutton Switch P.C. Mount	28480 28480 28480 28480 28480	5041-0286 5041-0474 5041-0922 5060-9436

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
	1						
A121	93776-69121	1	1	KEYDOARD ASSEMBLY	29480	03776-60121	
A121C1 A121C2 A121C3	0180-2214 0160-0576 0160-0576	4 10 10	12	CAPACITOR-FXD 90UF+75-102 16VDC AL CAPACITOR-FXD .1UF +-202 50VDC CER CAPACITOR-FXD .1UF +-202 50VDC CER	56289 28430 28480	30D7066016002 0160-0576 0160-0576	
A121CR1 A121CR2 A121CR3 A121CR3 A121CR4 A121CR6	1770-0487 1770-0487 1770-0487 1770-0487 1770-0487 1770-0487	7 7 7 7 4	-4 -30	LED-LAMP LUM-INT=1MCD 1F=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD 1F=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD 1F=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD 1F=20MA-MAX BVR=5V LED-LAMP LUM-INT=800UCD 1F=50MA-MAX	23480 28480 20480 28480 28480 28480	5032-4584 5082-4584 5032-4584 5082-4584 5082-4584 5082-4484	
A121CR7 A121CR3 A121CR9 A121CR9 A121CR10 A121CR11	1990-0450 1990-0450 1990-0665 1990-0450 1990-0450 1990-0450	4 4 3 4 4 4	27	LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=30DUCD IF=50MA-MAX LED-LAMP LUM-INT=1MCD IF=20MA-MAX RVR=5V LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX	20480 28480 28480 20480 28480 28480	50824484 50324484 19900665 50824484 50824484	
A121CR13 A121CR14 A121CR15 A121CR15 A121CR16 A121CR17	1990-0665 1990-0450 1990-0450 1990-0450 1990-0450 1990-0450	3 4 4 4 4		LED-LAMP LUM-INT=1MCD IF=20MA-MAX DVR=5V LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX	28480 28480 28480 28480 28480 28480	1990-0665 5082-4484 5082-4484 5082-4484 5082-4484 5082-4484	
A121CR18 A121CR19 A121CR28 A121CR28 A121CR21 A121CR22	1990-0450 1790-0450 1990-0665 1990-0450 1990-0450	4 4 3 4 .4		LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V L5D-LAMP LUM-INT=800UCD IF=38MA-MAX LED-LAMP LUM-INT=800UCD IF=30MA-MAX	28488 28489 28489 28489 28489 28489	5082-4484 5032-4484 1790-0645 5082-4484 5082-4484	
A121CR23 A121CR24 A121CR25 A121CR25 A121CR26 A121CR27	1770-0450 1770-0450 1970-0665 1970-0450 1970-0450 1970-0450	4 4 3 4 4		LED-LAMP LUM-INT=333UCD 1F=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=1MCD IF=53MA-MAX GVR=5V LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX	28480 28480 28480 28480 28480 28480	5382-4484 5082-4484 1590-0665 5082-4484 5082-4484	
A121CR28 A121CR29 A121CR30 A121CR31 A121CR32	1990-0450 1990-0450 1990-0665 1990-0665 1990-0665	4 4 3 3 3 3		LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX LED-LAMP LUM-INT=INCD IF=20MA-MAX BVR=50 LED-LAMP LUM-INT=IMCD IF=20MA-MAX BVR=50 LED-LAMP LUM-INT=IMCD IF=20MA-MAX BVR=50	28480 28480 28480 28480 28480 28480	5082-4484 5082-4484 1998-0665 1990-0665 1990-0665	
A121CR33 A121CR34 A121CR35 A121CR35 A121CR38 A121CR39	1990-0665 1990-0665 1990-0665 1990-0650 1990-0450 1990-0450	3 3 3 4 4		LED-LAMP LUM-INT=IMCD IF=20MA-MAX SVR=SV LED-LAMP LUM-INT=IMCD IF=20MA-MAX SVR=SV LED-LAMP LUM-INT=1MCD IF=20MA-MAX SVR=SV LED-LAMP LUM-INT=80GUCD IF=50MA-MAX LED-LAMP LUM-INT=3J3UCD IF=50MA-MAX	78480 28480 28480 28480 28480 88480	1790-0665 1990-0665 1770-0665 5882-4484 5082-4484	B
A121CR40 A121CR40 A121CR41 A121CR42 A121CR43 A121CR44	1990-0450 1990-0450 1990-0665 1990-0665 1990-0665	4 4 3 3 3 3		LED-LAMP LUM-INT=860UCD IF=50HA-MAX LED LAMP LUM-INT=850UCD IF=50HA-MAX LED-LAMP LUM-INT=1MCD IF=20HA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20HA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20HA-MAX BVR=5V	28480 28480 28480 28480 28480	50824484 5082-4484 1970-0665 1770-0665 1770-0665 17950-0665	
A121CR45 A121CR46 A121CR47 A121CR47 A121CR48 A121CR49	1990-0665 1990-0665 1990-0665 1990-0665 1990-0665	333333		LED-LAMP LUM-INT=1MCD TF=23KA-MAX SVR=SV LED-LAMP LUM-INT=1MCD IF=20MA-MAX SVR=SV LED-LAMP LUM-INT=1MCD IF=20MA-MAX SVR=SV LED-LAMP LUM-INT=1MCD IF=20MA-MAX FVR=SV LED-LAMP LUM-INT=1MCD IF=28KA-MAX SVR=SV	20480 28480 28480 28480 28480 28480	1790-0665 1990-0665 1990-0665 1990-0665 1990-0665 1990-0665	
A121CR50 A121CR51 A121CR52 A121CR53 A121CR53 A121CR54	1990-0665 1990-0450 1990-0450 1990-0450 1990-0450 1990-0665	3 4 4 7 3		LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVP=5V LED-LAMP LUM-INT=830UCD IF=53MA-MAX LED-LAMP LUM-INT=830UCD IF=50MA-MAX LED-LAMP LUM-INT=830UCD IF=50MA-MAX LED-LAMP LUM-INT=1MCD IF=20MA-MAX EVF=5V	28480 28480 28480 28480 28480 28480	17900665 5082-4484 5082-4404 5082-4404 19700665	
A121CR55 A121CR56 A121CR57 A121CR58 A121CR58 A121CR59	1770-0665 1778-0665 1770-0665 1770-0665 1770-0665 1770-0665	3 3 3 3 3 3 3 3 3		LED-LAMP LUM-INT=IMCD IF=23HA-MAX BVR=5V LED-LAMP LUM-INT=IMCD IF=20HA-MAX BVR=5V LED-LAMP LUM-INT=IMCD IF=20HA-MAX BVR=5V LED-LAMP LUM-INT=IMCD IF=20HA-MAX BVR=5V LED-LAMP LUM-INT=IMCD IF=23HA-MAX BVR=5V	28480 23480 28480 28480 28480 28480	1770-0665 1770-0665 1770-0665 1770-0665 1770-0665 1770-0665	
A121CR60 A121CR61 A121CR62 A121CR63 A121CR63 A121CR64	1990-0665 1990-0665 1990-0450 1990-0450 1990-0450	3 3 4 4 4		LED-LAMP LUM-INT=1MCD IF=20MA-MAX BUR=5V LED-LAMP LUM-INT=1MCD 1F=20MA-MAX BUR=5U LED-LAMP LUM-INT=000UCD IF=50MA-MAX LED-LAMP LUM-INT=000UCD IF=50MA-MAX LED-LAMP LUM-INT=800UCD IF=50MA-MAX	28480 28480 28480 28480 28480 28480	1999-0665 1999-0665 5082-4684 5982-4684 5982-4484	
A121CR65	1990-0450	4		LED-LAMP LUM-INT=300UCD IF=50MA-MAX	23480	5082-4484	
A121DS1 A121DS2 A121DS3 A121DS4 A121DS5	1790-0619 1790-0619 1990-0619 1990-0619 1990-0619 1990-0619	7 7 7 7 7 7	15	DISPLAY-NUM-SEG 1-CHAR .3-H DISPLAY-NUM-SEG 1-CHAR .3-H DISPLAY-NUM-SEG 1-CHAR .3-H DISPLAY-NUM-SEG 1-CHAR .3-H DISPLAY-NUM-SEG 1-CHAR .3-H	28480 28480 28480 28480 28480 28480	5082-7613 5932-7613 5082-7613 5982-7613 5982-7613 5982-7613	

-.

--

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
A121D56 A121D57 A121D53 A121D53 A121D59 A121D510	1970-0619 1990-0619 1990-0619 1990-0619 1990-0619 1990-0619	77777		DISPLAY-NUM-SEG 1-CHAR .3-H DISPLAY-NUM-SEG 1-CHAR .3-H DISPLAY-NUM-SEG 1-CHAR .3-H DISPLAY-NUM-SEG 1-CHAR .3-H DISPLAY-NUM-SEG 1-CHAR .3-H	28480 23490 28480 28480 28480 28480	5382-7613 5882-7613 5882-7613 5882-7613 5882-7613 5382-7613	
A121DS11 A121DS12 A121DS13 A121DS14 A121DS15	1990-0619 1990-0619 1990-0619 1990-0619 1990-0619	7 7 7 7 7 7		DISPLAY-NUM-SEG 1-CHAR .3-H DISPLAY-NUM-SEG 1-CHAR .3-H DISPLAY-NUM-SEG 1-CHAR .3-H DISPLAY-NUM-SEG 1-CHAR .3-H DISPLAY-NUM-SEG 1-CHAR .3-H	20496 28480 20486 28480 28480 28480	5082-7613 5982-7613 5082-7613 5982-7613 5082-7613	
A121D516 A121D517 A121D518 A121D519 A121D520	1770-3588 1970-0588 1970-0759 1990-0759 1990-0759 1790-0759	9 96 83	2	DISPLAY-NUM-SEG 4-CHAR .11-H DISPLAY-NUM-SEG 4-CHAR .11-H LED-LIGHT DAR KODULE LUM-INT=3MCD LED-LIGHT BAR MODULE LUM-INT=3MCD LED-LIGHT BAR MODULE LUM-INT=3MCD	28480 20498 28480 28480 28480 28480	5032-7414 5082-7414 HL HP-2620 HL HP-2620 HL HP-2620 HL HP-2620	
A121DS21	1990-0759	6		LED-LIGHT BAR MODULE LUM-INT=3MCD	28480	HL MP-2620	
A121J1	1251-3090	3	1	CONNECTOR 53-PIN M RECTANGULAR	28480	1251-3090	
A121Q1 A121Q2 A121Q3 A121Q3 A121Q4 A121Q5	1853-0036 1853-0036 1853-0036 1853-0036 1853-0036 1853-0036	N N N N N	16	TRANSISTOR PNP ST PD=310MW FT=2%0MH// TRANSISTOR PNP SI PD=310MW FT=2%0MH// TRANSISTOR PNP SI PD=310MW FT=2%0MH// TRANSISTOR PNP SI PD=310MW FT=2%0MH// TRANSISTOR PNP SI PD=310MW FT=2%0MH//	28480 28480 28480 28480 28480 28480	1073-0036 1053-0036 1053-0036 1053-0036 1053-0036 1053-0036	
A121Q6 A121Q7 A121Q8 A121Q8 A121Q9 A121Q10	1853-0036 1853-0036 1853-0036 1853-0036 1853-0036 1853-0036	งห่งหง		TRANSISTOR PNP ST PD=310KW FT=253MHZ TRANSISTOR PNP ST PD=310KW FT=250MHZ TRANSISTOR PNP ST PD=310KW FT=250MHZ TRANSISTOR PNP SI PD=310KW FT=250MHZ TRANSISTOR PNP SI PD=310KW FT=250MHZ	28480 28480 28480 28480 28480 23480	1653-0036 1073-0036 1053-0036 1053-0036 1053-0036 1053-0036	
A121Q11 A121Q12 A121Q13 A121Q13 A121Q14 A121Q15	1853-0036 1853-0036 1853-0036 1853-0036 1853-0036 1853-0036	N N N N N		TRANSISTOR PNP SI PD=316MW FT=250MHZ TRANSISTOR PNP SI PD=310MW FT=250MHZ TRANSISTOR PNP SI PD=316MW FT=250MHZ TRANSISTOR PNP SI PD=316MW FT=250MHZ TRANSISTOR PNP SI PD=316MW FT=250MHZ	28480 28480 28480 28480 28480 28480	1833-0036 1853-0036 1853-0036 1853-0036 1853-0036 1853-0036	
A121Q15	1853-0036	s		TRANSISTOR PNP OI PD=319KW FT=250KHZ	28480	1953-0036	
A121R1 A121R2 A121R3 A121R3 A121R4 A121R5	0698-3132 0698-3132 0698-3132 0690-3132 0690-3132	4 4 4 4	8	RESISTOR 261 12 .125W F TC=0+-100 RESISTOR 261 12 .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-2410-F C4-1/8-T0-2610-F C4-1/8-T0-2610-F C4-1/8-T0-2610-F C4-1/8-T0-2610-F C4-1/8-T0-2610-F	B
A121R6 A121R7 A121R8 A121R8 A121R9 A121R9	0698-3132 0698-3132 0698-3132 0757-0274 0757-0274	44455	16	RESISTOR 261 12 .125W F TC=3+-133 RESISTOR 261 12 .125W F TC=0+-100 RESISTOR 261 12 .125W F TC=0+-133 RESISTOR 1.21K 12 .125W F TC=0+-100 RESISTOR 1.21K 12 .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-2610-F C4-1/8-T0-2616-F C4-1/8-T0-2610-F C4-1/8-T0-2610-F C4-1/8-T0-1211-F C4-1/8-TC-1211-F	
A121R11 A121R12 A121R13 A121R13 A121R14 A121R15	0757-0274 0757-0274 0757-0274 0757-0274 0757-0274 0757-0274	មមមម		RESISTOR 1.21% 1Z .125% F TC=0+-100 RESISTCR 1.21% 1Z .125% F TC=0+-100 RESISTOR 1.21% 1Z .125% F TC=0+-100 RESISTOR 1.21% 1Z .125% F TC=0+-100 RESISTOR 1.21% 1Z .125% F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-1211-F C4-1/8-T0-1211-F C4-1/8-T0-1211-F C4-1/8-TC-1211-F C4-1/8-TC-1211-F C4-1/8-TC-1211-F	
A121R16 A121R17 A121R18 A121R18 A121R19 A121R20	0757-0416 0757-0416 0757-0416 0757-0416 0757-0416 0757-0416	7 7 7 7 7 7	15	RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-5112-F C4-1/8-T0-511E-F C4-1/8-T0-511E-F C4-1/8-T0-511E-F C4-1/8-T0-511E-F C4-1/8-T0-511E-F	
A121R21 A121R22 A121R23 A121R23 A121R24 A121R31	0757-0416 0757-0416 0757-0416 0757-0274 0757-0274	7 7 7 5 5		RESISTOR 511 12 .1250 F TC=0+-100 RESISTOR 511 12 .1250 F TC=9+-130 RESISTOR 511 12 .1250 F TC=04-100 RESISTOR 1.214 12 .1250 F TC=04-133 RESISTOR 1.21K 12 .1250 F TC=0+-130	24546 24546 24546 24546 24546 24546	C4-1/8-TC-511R-F C4-1/8-T0-511R-F C4-1/8-TC-511R-F C4-1/8-TC-1211-F C4-1/8-TC-1211-F C4-1/8-TC-1211-F	
A121R32 A121R33 A121R34 A121R34 A121R35 A121R36	0757-0274 0757-0274 0757-0274 0757-0274 0757-0274 0757-0274	សមាមមាល		RESISTOR 1.21K 1Z .125W F TC=3+-100 RESISTOR 1.21K 1Z .125W F TC=3+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-1211-F C4-1/8-T0-1211-F C4-1/8-T0-1211-F C4-1/8-T0-1211-F C4-1/8-T0-1211-F C4-1/8-T0-1211-F	
A121R37 A121R33 A121R39 A121R39 A121R40 A121R41	0757-0274 0757-0274 0757-0416 0757-0416 0757-0416	5 5 7 7 7		RESISTOR 1.21% 12 .125% F TC=0+-100 RESISTOR 1.21% 12 .125% F TC=0+-100 RESISTOR 511 12 .125% F TC=0+-100 RESISTOR 511 12 .125% F TC=0+-100 RESISTOR 511 12 .125% F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-1211-F C4-1/8-T0-1211-F C4-1/8-T0-511F-F C4-1/8-T3-511F-F C4-1/8-T3-511F-F C4-1/8-T0-511F-F	
A121R42 A121R43 A121R44 A121R44 A121R45 A121R46	0757-0416 0757-0416 0757-0416 0698-3438 0698-3438	7 7 7 3 3	2	RESISTOR 511 12 .125W F TC=0+-100 RESISTOR 511 12 .125W F TC=0+-100 RESISTOR 511 12 .125W F TC=0+-100 RESISTOR 147 12 .125W F TC=0+-100 RESISTOR 147 12 .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-5112-F C4-1/8-T0-511R-F C4-1/8-T0-511R-F C4-1/8-T0-147R-F C4-1/8-T0-147R-F C4-1/8-T0-147R-F	

		-	
Table	6-3.	Replaceable	Parts

	Table 0.5. Replaceable Fails									
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option			
A121R47 A121R48 A121R49 A121R49 A121R50	0757-0416 0757-0416 0678-0084 0678-0084	7 7 9 9	Q	RESISTOR 511 1% ,125W F TC=0+-100 RESISTOR 511 1% ,125W F TC=0+-100 RESISTOR 2,15K 1% ,125W F TC=0+-100 RESISTOR 2,15K 1% ,125W F TC=0+-100	24546 24546 24546 24546	C4-1/0-T3-511R-F C4-1/8-T0-511R-F C4-1/8-T0-2151-F C4-1/8-T0-2151-F				
A121RN1 A121RN2 A121RN3 A121RN3 A121RN4 A121RN5	1010-0325 1910-0283 1810-0338 1810-0377 1810-0277 1310-0277	2 1 7 3 3	1 1 3	NETWORK-RES 16-DIP150.0 DHM X 0 NETWORK-RES 16-DIP270.0 DHM X 0 NETWORK-RES 16-DIP180.0 DHM X 0 NETWORK-RES 16-SIP2.2K DHM X 7 NETWORK-RES 10-SIP2.2K DHM X 7	01121 28488 11236 81121 01121	3148151 18100283 7613-R100 2104222 2104222				
A121846	1810-0277	3		NETWORK-RES 10-SIP2.2K DHM X 9	01121	2104222				
A121U1 A121U2 A121U3 A121U3 A121U4 A121U5	1020-1216 1020-1917 1020-1740 1020-1740 1020-1216 1020-1217	3 1 8 3 1	2 2 2	IC DCDR TTL LS 3-TD-8-LINE 3-INP IC BFR TTL LS LINE DPVR OCTL IC DRVR TTL DSPL DRVR IC DCDR TTL LS 3-TO-8-LINF 3-INP IC BFR TTL LS LINE DRVR CCTL	01275 01295 27014 01295 01295	SN74LS138H SN74LS240N D58863N SN74LS138N SN74LS138N SN74LS240N	B			
A121U6	1820-1740	8		IC DRUR TTL DSPL DRUR	27614	D58863N				
MSC MSC MSC MSC MSC	1200-0607 1200-0638 1200-0763 5041-0276 5041-0285	0 7 4 5 6	4 15 2 12 25	SCCKET-IC 16-CONT DIP DIP-SLDR SOCKET-IC 14-CONT DIP DIP-SLDR SOCKET-IC 14-CONT DIP-SLDR KEY CAP FRL GRAY KEY CAP-QUARTER, LT PIPE	28480 28480 28480 28480 28480 28480	1230-0637 1280-0638 1233-3768 5041-0276 5341-3285				
MSC MSC MSC MSC	5041-0286 5041-0474 5041-0922 5060-9436	7 5 8 7	2 1 4 44	KEY CAP LT PIPE QTR-BSC KEY CAP QUARTER-EBY-PRL PUSHEUTION SWITCH P.C. MOUNT	28480 28480 28480 28480 28480	5041-0286 5041-0474 5041-0922 5060-9436				

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part A/B/ Number Opti	
A22	0377660022	1	1	KEYBOARD CONTROLLER ASSEMBLY	28430	03776-60 022	
A2201 A2202 A2203 A2204 A2205	0190-0197 9160-0570 0180-1735 0169-0570 0169-0570 0169-0576	307275	1 5 2 23	CAPACITOR-FXD 2.2UF+-10% 26VDC TA CAPACITOR-FXD 220PF +-20% 100VDC CER CAPACITOR-FXD 220PF +-20% 100VDC CER CAPACITOR-FXD 220PF +-20% 100VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER	56289 20932 56289 20932 20932 28480	1507225X9028A2 5024EM130RD221M 150724X9035A2 5324EM100RD221M 0160-0576	
A2206 A2207 A2208 A2209 A2209 A22019	0160-0576 0160-0576 0160-0570 0186-0228 0160-0576	55765	3	CAPACITOR-FXD .1UF +-232 50VDC CER CAPACITOR-FXD .1UF +-262 50VDC CER CAPACITOR-FXD 220PF +-202 133VDC CER CAPACITOR-FXD 22UF+-1CX 15VDC TA CAPACITOR-FXD .1UF +-202 50VCC CER	28480 28480 20932 56289 28480	0160-0576 0160-0576 5024EM100RD221M 150D226X901582 0160-0576	
A22011 A22012 A22013 A22014 A22014 A22015	0160-0576 0180-1735 0160-0576 0180-0228 0160-0576	50000		CAPACITOR-FXD .1UF +-20X SOVDC CER CAPACITOR-FXD .22UF+-10X 35VDC TA CAPACITOR-FXD .1UF +-20X SOVDC CER CAPACITOR-FXD 22UF+-10X 15VDC TA CAPACITOR-FXD 220FF +-20X 160VDC CER	28480 56269 28480 56269 26932	8160-0 57 6 1500224X9035A2 8160-0576 1500226X901582 5824EM100RD221M	
A22016 A22017 A22018 A22019 A22029	0160-0576 0160-0576 0160-0570 0180-0228 0160-0276	559965		CAPACITOR-FXD .1UF +-202 50VDC CER CAPACITOR-FXD .1UF +-202 50VDC CER CAPACITOR-FXD .20PF +-202 130VDC CER CAPACITOR-FXD .20PF +-102 15VDC TA CAPACITOR-FXD .1UF +-202 50VDC CER	28480 28480 20932 56289 28480	01603576 0160-0576 5324EM100RD221H 150D226X9015B2 31609576	
A22021 A20222 A22023 A22024 A22024 A22025	0160-0576 0140-0197 0140-0197 0160-0576 0160-0576	54455	2	CAPACITOR-FXD .1UF +-202 SOVDC CER CAPACITOR-FXD 180PF +-52 300VDC MICA CAPACITOR-FXD 180PF +-52 300VDC MICA CAPACITOR-FXD .1UF +-202 SOVDC CER CAPACITOR-FXD .1UF +-202 SOVDC CER	28480 72136 72136 28480 28480	0160-0576 DM15F181J0300WV1CR DM15F18IJ0300WV1CR 0160-3576 0160-0576	
A22026 A22027 A22028 A22029 A22030	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	មាមមាល		CAPACITOR-FXD .1UF +-20% SOVDC CER CAPACITOR-FXD .1UF +-20% SOVDC CER CAPACITOR-FXD .1UF +-20% SOVDC CER CAPACITOR-FXD .1UF +-20% SOVDC CER CAPACITOR-FXD .1UF +-20% SOVDC CER	28480 20480 23480 28480 28480 28480	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	
A22C31 A22C32 A22C33 A22C33 A22C34 A22C35	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	សលលល		CAPACITOR-FXD .1UF +-202 SOVDC CER CAPACITOR-FXD .1UF +-202 SOVDC CER CAPACITOR-FXD .1UF +-202 SOVDC CER CAPACITOR-FXD .1UF +-202 SOVDC CER CAPACITOR-FXD .1UF +-202 SOVDC CER	28480 28480 28480 28480 28480 28480	0160~0576 0160~0576 0160~0576 0160~0576 0160~0576 0160~0576	
A22036	0160-0576	5		CAPACITOR-FXD .1UF +-20% SOVDC CER	28480	0160-0576	
AR2CR1	1901-0040	1	1	DIODE-SWITCHING 30V 50MA 2NS DO-35	28480	1901-0040	
A22D51	1990-0450	4	1	LED-LAMP LUM-INT=800UCD IF=50MA-MAX	28480	5082-4484	
A22J1 A22J2	1251-3090 1251-3090	8 8	2	CONNECTOR 50-PIN M RECTANGULAR Connector 50-PIN M Rectangular	28480 28480	1251-3090 1251-3090	
A22LS1	9160-0242	1	1	LOUDSPEAKER	28480	9160-0242	
A22R1 A22R2 A22R3 A22R4 A22R4 A22R5	1810-0277 0757-0462 0698-3159 0757-0458 0757-0458	33573	1 1 1 2	NETWORK-RES 10-SIP2.2K OHM X 9 RESISTOR 75K 1% .125W F TC=0+-100 RESISTOR 26.1K 1% .125W F TC=0+-100 RESISTOR 51.1K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100	01121 24546 24546 24546 24546 24546	210A222 C41/B-T07502-F C4-1/B-T0-2612-F C4-1/B-T0-5112-F C4-1/B-T0-1001-F	
A22R6 A22R7 A22R8 A22R9 A22R9 A22R10	0757-0445 0498-3162 0498-3162 0757-0280 0757-0438	6 0 0 3 3	1 2 2	RESISTOR 100K 12 .125₩ F TC=0+-100 RESISTOR 46.4K 12 .125₩ F TC=0+-100 RESISTOR 46.4K 12 .125₩ F TC=0+-100 RESISTOR 1K 12 .125₩ F TC=0+-100 RESISTOR 5.11K 12 .125₩ F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-10C3-F C4-1/8-T0-4642-F C4-1/8-T0-4642-F C4-1/8-T0-1001-F C4-1/8-T0-5111-F	
A22R11 A22R12 A22R13	0757-0438 0698-0084 0698-0084	3 9 9	2	RESISTOR 5.11K 12 .125W F TC=9+-100 RESISTOR 2.15K 12 .125W F TC=0+-100 RESISTOR 2.15K 12 .125W F TC=0+-100	24546 24546 24546	C4-1/8-T9-5111+F C4-1/8-T0-2151-F C4-1/8-T9-2151-F	
A22010 A22011 A22012 A22013 A22013 A22014	18201423 18201422 18201112 18200668 18200668	43 87 7	3 1 3 3	IC HV TTL LS MONOSTBL RETRIG DUAL IC MV TTL LS KONOSTBL RETRIG IC FF TTL LS D-TYPE POB-EDGE-TRIG IC GFR TTL NON-INV HEX 1-INP IC BFR TTL NON-INV HEX 1-INP	01295 01295 01295 01295 01295 01295	SN74LS123N SN74LS122N SN74LS74AN SN74LS74AN SN74L7N SN74L7N	
A22U15 A22U16 A22U17 A22U18 A22U18 A22U19	1820-0668 1916-1089 1816-1089 1820-1208 1820-1208 1820-1112	7 99 3 3	4 5	IC EFR TTL NON-INV HEX 1-INP IC TTL LS 64-BIT STAT RAM 80-NS 3-S IC TTL LS 64-BIT STAT RAM 30-NS 3-S IC GATE TTL LS OR QUAD 2-INP IC FF TTL LS D-TYPE POS-EDGE-TRIG	01275 27014 27014 01295 01295	SN7407N DM74L5189N DM74L5189N SN74L532N SN74L532N SN74L5746N	
A22U20 A22U21 A22U22 A22U26 A22U26 A22U27	1820-1430 1820-1216 1820-1216 1816-1087 1816-1087	33379		IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG IC DCDR TTL LS 3-TO-8-LJNE 3-INP IC DCDR TTL LS 3-TO-8-LINE 3-INP IC TTL LS 64-BIT STAT RAM 30-NS 3-S IC TTL LS 64-BIT STAT RAM 80-NS 3-S	01293 01295 01295 27014 27014	SN74LS161AN SN74LS13BN SN74LS13BN DH74LS189N DH74LS189N DM74LS189N	

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
A22U28 A22U29 A22U30 A22U31 A22U32	1820-1208 1820-1423 1820-1201 1820-1201 1820-1195 1820-1197	34679	2 · 2 1	IC GATE TTL LS OR GUAD 2-INP IC MY TTL LS MONOSTBL RETRIG DUAL IC GATE TTL LS AND GUAD 2-INP IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC GATE TTL LS NAND QUAD 2-INP	01295 01295 01295 01295 01295 01295	SN74LS32N SN74LS123N SN74LS100N SN74LS175N SN74LS175N SN74LS130N	
A221/33 A221/34 A221/36 A221/37 A221/38	1820-1270 1820-1851 1820-1917 1820-1917 1820-1917 1820-1208	7 2 1 1 3	1 1 2	IC CNTR TTL LS BIN UP/DOWN SYNCHRO IC ENCDR TTL LS IC BFR TTL LS LINE DRVR OCTL IC EFR TTL LS LINE DRVR OCTL IC GATE TTL LS OR QUAD 2-INP	01293 31295 01295 31295 01295 01295	SN74LS191N SN74LS14BN SN74LS246N SN74LS240N SN74LS240N SN74LS32N	
A22U39 A22U40 A22U41 A22U42 A22U42 A22U43	1820-1144 1820-1423 1820-1201 1820-2696 1820-1208	6 4 6 9 3	2	IC GATE TTL LS NOR QUAD 2-INP IC MV TTL LS MONOSTEL RETRIE DUAL IC GATE TTL LS AND QUAD 2-INP IC CNTR TTL LS BIN DUAL 4-RIT IC GATE TTL LS OR QUAD 2-INP	01295 01295 01295 01295 01295 01295	SN74LS J2H SN74LS 123N SN74LS 123N SN74LS J3N SN74LS 32N SN74LS 32N	
A22U46 A22U47 A22U50 A22U51 A22U52	1820-1997 1820-1208 1920-1297 1820-1739 1820-1112	7 3 6 8	1 1 1	IC FF TTL LS D'TYPE POC-EDGC-TRIG PRL-IN IC GATE TTL LS CR QUAD 2-JNP I CGATE TTL LS EXCL-NOR QUAD 2-INP IC FF TTL LS D'TYPE POS-EDGE TRIG COM IC FF TTL LS D'TYPE POS-EDGE-TRIG	61295 31295 61293 31595 61295 61295	SN74LS374N SN74LS32N SN74LS266N SN74LS273N SN74LS74AN	
A22U54 A22U55 A22U56 A22U57	1820-1216 1820-1144 1820-1175 1820-1200	3675	1	IC DODR TIL IS 3-TO-8-LINE 3-INP IC GATE TIL LG NUR QUAD 2-INP IC FF TIL LS D-TYPE POS-EDGE-TRIG COM IC INV TIL LS HEX	01295 01295 01295 01295 01295	SN74LS138N SN74LS02N SN74LS175N SN74LS175N SN74LS05N	
MSC MSC	0380-0958 03745-27 03 1	3 5	11 2	SPACER-RVT-GN 1-IN-LG .15-IN-ID CLIP (LOUDSPEAKER)	00000 28480	ORDER BY DESCRIPTION 03745-27031	

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
A23	03776-60023	s	τ	REAR PANEL CONTROL ASSEMBLY	28490	03776-60023	
A23C1 A23C2 A23C3 A23C4 A23C5	0180-0418 0130-0197 0160-0576 0160-0576 0160-0576 0160-4389	68556	1 1 2 1	CAPACITOR-FXD 1UF+-20X 35VDC TA CAPACITOR-FXD 2.2UF+10X 23VDC TA CAPACITOR-FXD 1UF +-20X 53VDC CER CAPACITOR-FXD 1UF +-25X 53VDC CER CAPACITOR-FXD 10CFF +-5FF 20CVDC CER	28480 56682 28490 28480 28480 28480	01800418 1530225X9020A2 0160-0576 0160-0576 016-0576	
A23C6 A23C7 A23C8 A23C9	0150-3458 0160-3458 0160-3458 0160-3458 0160-3458	888	4	CAPACITOR-FXD 5030PF +-102 253VDC CER CAPACITOR-FXD 5000PF +-102 250VDC CER CAPACITOR-FXD 5030PF +-102 253VCC CER CAPACITOR-FXD 5030PF +-102 250VDC CER	20480 28480 23480 28480 28480	0160-3458 0160-3458 0160-3458 0160-3458	
A23CR1 A23CR2 A23CR3 A23CR4 A23CR5	1990-0450 0837-0257 0837-0257 0837-0257 0837-0257 0837-9257	4 4 4 4 4	1 4	LED-LAMP LUM-INT=308UCD IF=S0MA-MAX VOLTAGE SUPPRESSOR AXIAL LEAD VOLTAGE SUPPRESSOR AXIAL LEAD VOLTAGE SUPPRESSOR AXIAL LEAD VOLTAGE SUPPRESCOR AXIAL LEAD	28480 28480 28480 28480 28480 28480	5032-4484 0837-0257 0837-0257 0837-0257 0837-0257	
A23J1 A23J2 A23J3	1251-5722 1251-4040 1251-5583	7 0 2	1 1 1	CONNECTOR 50-PIN M POST TYPE CONNECTOR 24-PIN F MICRO RIBBON CONNECTOR 15-PIN M D SUDMINIATURE	28480 28480 28480	1251-5722 1251-4040 1251-5503	
A23R1 A23R2 A23R3 A23R4 A23R5	1810-0277 0757-0280 0757-0465 0757-0280 0757-0280 0757-0199	N N S N N N N S N N	2 2 1 1	NETWORK-RES 10-SIP2.2K OHM X 7 RESISTOR 1K 1Z .125W F TC=0+-100 RESISTOR 100K 1Z .125W F TC=0+-100 RESISTOR 1K 1Z .125W F TC=0+-100 RESISTOR 21.5K 1Z .125W F TC=0+-100	J1121 24546 24546 24546 24546 24546	213A222 C4-1/8-T0-1861-F C4-1/8-T0-1003-F C4-1/8-T0-1001-F C4-1/8-T0-2152-F	
A2386	1810-0277	3		NETWORK-RES 10-SIP2.2K DEM X 9	01121	210A222	
A2351 A2352 A2353 A2354 A2355	3101-1356 3101-2631 3101-2631 3101-2631 3101-2631 3101-2631	56666	1 4	SWITCH-SL 8-1A DIP-SLIDE-ASSY .1A 53VCC SWITCH-SL DPDT SUBMIN .3A 125VAC PC SWITCH-SL DPDT SUBMIN .3A 125VAC PC SWITCH-SL DPDT SUBMIN .3A 125VAC PC SWITCH-SL DPDT SUBMIN .3A 125VAC PC	28480 26480 28480 28480 28480 28480	3101-1656 3101-2631 3101-2631 3101-2631 3101-2631 3101-2631	
A23TP1	1251-0600	0	1	CONNECTOR-SCL CONT PIN 1.14-MM-BSC-SZ SQ	28480	1251-0600	
A23U1 A23U2 A23U3 A23U4 A23U5	1820-1859 1820-1112 1820-1423 1820-1917 1820-1917 1820-1917	0 8 4 1 1	2 1 1 2	IC GEN TTL LS PAR GEN 2-BIT IC FF TTL LS D-TYPE POS-EDGE-TRIG IC MV TTL LS KONOSTBL RETRIG EUAL IC BER TTL LS LINE DRVR OCTH IC BER TTL LS LINE DRVR OCTH	01275 01275 01275 01275 01275 01275	SN74LS28]N SN74LS74AN SN74LS173N SN74LS240N SN74LS240N SN74LS240N	
A23U6 A23U7 A23U8 A23U9	1820-1859 1820-1216 1820-1144 1820-1144 1829-1215	0362	1 1 1	IC GEN TTL LS PAR GEN 9-BIT IC DCDR TTL LS 3-TO-3-LINE 3-INP IC GATE TTL LS NOR QUAD 2-INP IC GATE ITL LS EXCL-OR GUAD 2-INP	01273 01275 01275 01275 01275	SN74LS280N SN74LS138N SN74LS02N SN74LS136N	

Table 6-3 Replaceable Parts (continued)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part A/B/ Number Option
A24	03776-60024	3	1	MAINS INPUT ASSEMBLY	28480	03776-60024
A24C1 A24C2 A24C3 A24C3 A24C4 A24C5	0180-0488 0180-0488 0180-0488 0180-0488 0180-0488 0180-4355	9 NN NN	4	CAPACITOR-FXD 200UF+50-10% 250VDC AL CAPACITOR-FXD 200UF+50-10% 250VDC AL CAPACITOR-FXD 200UF+50-10% 250VDC AL CAPACITOR-FXD 200UF+50-10% 250VDC AL CAPACITOR-FXD .01UF +-10% 250VAC(RMS)	28480 28480 28480 28480 28480 28480	0120-0683 0130-0688 0180-0688 0180-0688 0160-4335
A2406 A2407	0160-4355 0180-0116	6 1	1	CAPACITUR-FXD .01UF +-132 253VAC(RMS) CAPACITOR-FXD 6.8UF+-102 35VDC TA	28480 56289	0160-4355 150D685X903582
A24CR1 A24CR2 A24CR3 A24CR3 A24CR4 A24CR5	1701-0757 1901-0759 1701-0759 1901-0759 1901-0759 1902-0468	9 9 9 9	4	DICDE-PWR RECT 1N5405 600V 3A DO-27 DICDE-PWR RECT 1N5406 600V 3A DO-27 DICDE-PWR RECT 1N5406 600V 3A DO-27 DICDE-PWR RECT 1N5406 600V 3A DO-27 DICDE-PWR RECT 1N5406 600V 3A DO-27 DICDE-ZNR 200V 5% DO-15 PD=1W TC=+.066%	14736 14736 14736 14736 28480	1N5406 1N5406 1N5406 1N5406 1N5406 1902-9668
A24CR6 A24CR7	1901-0732 1884-0258	8 7	1 1	DIODE-PWR RECT 1KV 1A Thyristor-Scr 206508 to-220AB vrrm=600	28480 04713	1901-0732 2N6508
A24F2 A24F3	2110-0044 2110-0320	9	1 1	FUSE .3A 250V TD 1.25X.25 UL FUSE .15A 253V TD 1.25X.25 UL	75915 75915	313.300 313.150
A24R1 A24R2 A24R3	0812-0037 0812-0037 0837-0178	6 6 8	2 1	RESISTOR 20K 3% 5W PW TC=0+-20 Resistor 20K 3% 5W PW TC=0+-20 Thermistor Disc 15-0Hm	28480 28480 KC004	0812-0037 0812-0037 2322 644 90005 TYPE VA1104
A24T1 .	03779-30017	9	1	TRANSFORMER ASSEMBLY	28430	03779-B0017
A24XB1 A24XB2 A24XB3	1251-4348 1251-4350 1251-4348	1 5 1	2 1	CONNECTOR 6-PIN M POST TYPE Connector 7-PIN M Post Type Connector 6-PIN M Post Type	28480 28480 28480	1251-4348 1251-4350 1251-4348
MSC	2110-0269	D	4	FUSEHOLDER-CLIP TYPE.25D-FUSE	28480	2110-0269

See introduction to this section for ordering information *Indicates factory selected value

~

Table 6-3 Replaceable Parts (continued)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
				3776A MAIN LIST			
B1	3160-0380 03763-60040	2	1	FAN-TDAX 74-CFM 100/125V 50/60-HZ Fan Cover Assembly	28480 28480	3160-0380 03763~60040	
C1 C3 C4 C5 C6	0160-4616 0160-4307 0160-4307 0160-4307 0160-4040 0160-4040	26666	1 2 2	CAPACITOR-FXD 560PF +-5% 200VDC CER CAPACITOR-FXD 100PF +-5PF 200VDC CER CAPACITOR-FXD 100PF +-5PF 200VDC CER CAPACITOR-FXD 100PF +-5% 100VDC CER CAPACITOR-FXD 1000PF +-5% 100VDC CER	28480 20489 28480 29489 29489 20480	0160-4616 3160-4389 0166-4389 0160-4940 0160-4940	
E1 E2	9100~3910 03776~60050 9135~0042 1251-2505	១ 5 6 8	1 1 1	FILTER-LINE LEE-22-TERMS MAINS FILTER ASSEMBLY FILTER-LINE WIRE LEAD-TERMS CONNECTOR 2-PIN F UTILITY	28480 28486 28480 28480	9130-3910 03724-60050 9135-0042 1231-2505	
F 1	2110-0303 2110-0564 2110-0565 2110-0565 2110-0569	3 8 9 3	1 1 1 1	FUGE 2A 253V TD 1.25X.25 U. FUSEHOLDER BODY 12A MAX FOR UL FUSEHOLDER CAP 12A MAX FOR UL FUSEHOLDER CAPPONENT NUT; THREAD M12.7	28480 H9027 28480 23480	2110-0303 037.1657 2110-0865 2110-0865	
NP 1 MP 2 MP 3 MP 4 MP 5	5060-9834 5060-9846 5060-9941 5040-7202 5040-7201	9 39 9 6	1 1 2 1 1	TGP COVER Buttom Cover Cover Perf Side TRIM, Top Key Cap White	28480 28480 28480 28480 28480 28480	5060-9834 5360-9046 5860-9941 5846-9202 5041-0291	
NP6 MP7 NP8 MP9 MP10	5040-9803 5040-9220 5040-7219 5004-0440 5020-8805	2 1 8 7 8	2 2 2 1	STRAP HANDLE Strap, Handle, Cap-Rear Strap, Handle, Cap-Front Trim Stde Front Frame	28480 28480 28490 28490 28480 28480	5866-9803 5040-7220 5040-7219 5004-0440 5026 8865	
MP11 MP12 MP13 MP14 MP15	5020-8806 50 20-8881 1460-1345 5040-7201 03776-00001	9 0 5 8 0	1 4 2 4 1	REAR FRAME CRNR STRT TAPPED Tilt Stand SST FOOT(STANDARD) Main Deck	28480 28480 28480 28480 28480 28480	5020-8806 5626 8081 1460-1345 5640-7261 03776-00001	
MP 1 6 MP 1 7 MP 1 8 MP 1 9 MP 2 0	03776-00002 03776-00011 03776-00016 03776-00014 03776-00014 0403-0187	1 2 7 5 0	3 1 3 1 5	SCPEEN COVER (A1 TO A14) INSULATOR COVER P.S.U. (A15/A16) BUMPER FOOT-SCR	28480 28480 28480 28480 28480 28480	03776-06002 03776-00011 03776-00016 03776-00014 03776-00014 0403-0187	
MP21 MP22 MP23 MP24 MP24	03776-00010 03776-00009 1510-0087 0340-0732 03776-00003	18772	1 1 5 10 1	REAR PANEL Cover (A24 Assemily) Binding Post Sal Thd Stud Jgk Blk Insulator-Bdg Post Polyc Front Panel (Dress)	28480 28480 28480 28480 28480 28480	03776-00010 03776-00000 1510-0057 0340-0732 03776-000003	A
MP 25 MP 26 MP 27	03776-00004 03776-20032 03776-00006 03776-20031 03776-20031 03776-00005	3 9 5 8 4	1 1 2 2	DUMMY PANCE Window (Freq, Level, Results) Clamp Window (Digital Tx/RX) Clamp	28480 28480 28480 28480 28480 28480	03776~00004 03776~20032 03776~00066 03776~20031 03776~00005	
MP 28 MP 29 MP 30 MP 31 MP 32	03776-60000 03776-00025 03776-00017 03776-00019 03776-00019 03776-00019	5 8 8 0 7	1 1 2 1	EXTENDER BOARD ASSEMBLY Panel (423) Conn Panel (bress) Conn Panel Dummy Blanking Plaie (rear Panel)	28430 20480 28480 28480 28480 28480	03776-60000 03776-00025 03776-00017 63776-00017 03776-00019 03776-00074	
S1 S2	3101-2216 03776-00027 03776-60040 3101-2614 1251-4358	RGROG	1 1 1 1	SWITCH-PB DPDT ALTNG 4A 250VAC TRACKET VOLTZECL (230/115V) ASSEMILY SWITCH-SL DPDT SID 5A 250VAC SLDR-ULG CONNECTOR 7-PIN F POST TYPE	20481 20481 23486 23480 20480 20461	3101-2216 03776-00027 03776-60040 3101-2614 1251-4358	
T1	03776-80001 5001-0256	8 7	1	TRANSFORMER XFMR END BELL	28480 28480	93776-80991 5691-8256	
MSC MSC MSC MSC MSC	0340-0243 0360-1857 1400-0611 5040-3070 5040-3071	7 1 0 1 2	4 1 12 7	TERMINAL-CLOR LUG PL-MTG FOR-M2-CCR BARRIER BLOCK 6-TERM SINGLE SCREW CLAMP-FL-CA 1-WD PCB GUIDE PCB GUIDE	29480 28480 06215 28480 28480	0340-0243 0340-1857 CFCC-8 5040-3070 5040-3071	
MSC MSC MSC MSC MSC	5040-3072 5040-3073 5040-3074 5040-3075 5040-3075 5040-3076	34567	<mark>ห</mark> มุ พ.ศ. พ.ศ. พ.ศ. พ.ศ.	PCB GUIDF PCB GUIDE PCB GUIDE PCB GUIDE PCB GUIDE	28490 23480 28480 28480 28480 28480	5046-3072 5040-3073 5040-3074 5040-3075 5040-3075 5040-3076	
MSC MSC MSC MSC MSC	5040-3077 5040-3078 5040-3079 5040-7221 03776-40003	89026	1 1 4 2	PCB GUIDE PCB GUIDE PCB GUIDE FODT, REAR GUIDE	28480 28480 28480 28480 28480 28480	5040-3077 5040-3078 5040-3079 5040-7221 33776-40003	

Table 6-3	Replaceable	Parts	(continued)
	1 topidoodalo		(0011011000)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
MSC MSC MSC MSC	0360-0042 0360-1859 0360-0042 0360-1158	4345	6 2 1	TERMINAL-SLDR LUG PL-HTG FOR-#6-SCR TERMINAL-SLDR LUG PL-HTG FOR-#6-SCR TERMINAL-SLDR LUG PL-HTG FOR-#5-SCR TERMINAL-SLDR LUG PL-HTG FOR-#1/2-SCR Front Panel Connectors	28480 28480 28480 86928	0360-0042 0360-1859 0360-0042 5413-21	
				J3 J2 J5 J1			
J1 J2 J3	1251~5586 1251~5586 1251~5586	1 1 1	4	JACK-BNA TRIPLE BLK SLDR-LUG-TERM JACK-BNA TRIPLE BLK SLDR-LUG-TERM JACK-BNA TRIPLE BLK SLDP-LUG-TERM	28480 28480 28480	1251-5586 1251-5586 1251-5586	
J4 J5 J6	1251~5586 1250-0610 1250-0610	1 8 0	2	JACK-BNA TRIPLE BLK SLDR-LUG-TERM COMPONENT-RF CONNECTOR BULKHEAD JACK-BNC Component-RF Connector Bulkhead Jack-BNC	20480 28480 28480	1251-5586 1250-0610 1250-0610	
J9	1250-1253	9	1	Rear Panel Connector CONNECTOR-RF BNC FEM SGL-HOLE-RR 50-0HM Cable Assemblies	28480	1250-1253	
W1 W2 W3	03776-60046 1251-2510 1251-2973 03776-60045 03776-60049	9 15 18 12 19 18 12	1 1 2 1	POWER CABLE ASSEMBLY Connector 2-Pin M Utility Connector 6-Pin F Post Type Ribbon Cable Assembly (A20/A22) Ribbon Cable Assembly (A21/A22)	28480 28480 28480 28480 28480 28480	03776-60046 1251-2510 1251-2993 03776-60045 03776-60049	
ພ4 ພຣ ພຣ ພຣ	03776-60075 03776-60073 03776-60073 1250-9610 03776-60077	45206	1 1 1 1	DIGITAL TX 1200 BAL CABLE ASSEMBLY ANALGG TX CABLE ASSEMBLY DIGITAL TX 750 UNBAL CABLE ASSEMBLY COMPONENT-RF CONNECTOR BUILKHEAD JACK-BNC ANALDG RX CABLE ASSEMBLY	28480 28480 28480 28480 28480 28480	03776-60075 03776-60076 03776-60073 1250-0610 03776-60077	
ຟາ ຟາ ຟາ ພາ ນາ	03776-60074 1250-0610 03776-60078 03776-60045 03776-60079 1251-3167	3 07 8 0	1 1 1 1	DIGITAL RX 75Ω UNBAL CABLE ASSEMBLY COMPONENT-RF CONNECTOR BULKHEAD JACK-BNC DIGITAL RX 12ΩΩ BAL CABLE ASSEMBLY RIBBON CABLE (A20/A23) CABLE ASSEMBLY (A16/A24) CONNECTOR 4-PIN F POST TYPE	28460 28460 28460 28460 28460 28460 28460	03776-60074 1250-0610 03776-60078 03776-60045 03776-60079 1251-3167	A
W12	03776-60041 1251-5859	4	1	REAR PANEL CABLE ASSEMBLY CONNECTOR 6-PIN F METRIC POST TYPE	28480 28480	0377660041 1251-5859	
3776A OPTIONS	03776-60004 03776-60204 03776-60005 03776-60008	9 1 3	1	Option 001 As standard 3776A, except:- DELETE: ANALOG MONITOR ASSEMBLY ADD: ANALOG MONITOR ASSEMBLY 'TRANSIENTS ASSEMBLY 'GD, TIMING IMP, NOISE & FREQ DETECT ASSEMBLY	28480 28480 28480 28480 28480	03776-80004 03776-80204 03778-80005 03776-80008	
MP 30 MP 31	03776-00017 03776-00019 1250-0610	9 0 0	1 2	Option 002 As standard 3776A, except: DELETE: CONNECTOR PANEL DRESS DUMHY PANEL COMPONENT-RF CONNECTOR BULKHEAD JACK-BNC (P/O W6, W8)	28480 28430 28480	03776-00017 03776-00019 1250-0610	
W6 WB	03776-60073 03776-60074	23	1 1	DIGITAL TX 75Ω UNBAL CABLE ASSEMBLY DIGITAL RX 75Ω UNBAL CABLE ASSEMBLY ADD:	28480 28480	03776-60073 03776-60074	
MP30 MP31	03776-00018 03776-00020	9 3	1 1	CONNECTOR PANEL (DRESS) DUMMY PANEL FRONT PANEL CONNECTOR	28480 28480	03776-00018 03776-00020	
W6	1250-1077 03776-60072	5	1	COMPONENT∵RF CONNECTOR CONN-RF, REAR (P/O ⊌6, ⊎8) DIGITAL TX 75Ω UNBAL CABLE ASSEMBLY	28480 29480 29480	1250-1077 03776-60072 1250-1077	
WB	1250-1077 03776-60071 1250-1077	5 0 5	1	COMPONENT-RF CONNECTOR CONN-RF, REAR Digital RX 75Ω UNBAL CABLE ASSEMBLY Component-RF connector conn-RF, rear	28480 28480 28480	03776-60071 1250-1077	
MP32 MSC	5001-4980 5040-3802 5001-4981	273	1 2 1	Option 801 (Front Cover) ADD FRONT COVER SUPPORT LID	28480 28480 28480	5001-4980 5040-3802 5001-4981	

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	A/B/ Option
F1	2110-0381	7	. 1	3776B MAIN LIST The 3776B Main List is the same as the 3776A Main List except for the following amendments, additions and deletions. AMEND: FUSE 3A 250V TD 1.25X.25	28480	2110~0381	
MP 24 MP 26 MP 29 MP 30 MP 31	03776-00007 03776-20033 03776-00026 03776-00021 03776-00023	6 0 9 4 6	1 1 1 1 1 1	FRONT PANEL (DRESS) WINDOW (FREQ, LEVEL, RESULTS) PANEL (A23) CONNECTOR PANEL (DRESS) DUMMY PANEL Front Panel Connectors	28430 28490 28480 28480 28480 28480	03776-00007 03776-20033 03776-00026 03776-00021 03776-00023	
				J4 J6 J3 J7 J8 J2 J5 J1			
J1-2 J3 J4 J5 J6	1251-3059 1251-3059 1251-3059 1251-3059 1251-3677 1251-3677 -	99977	4	CONNECTOR-TEL JACK 3-CKT .173-SHK-DIA CONNECTOR-TEL JACK 3-CKT .173-SHK-DIA CONNECTOR-TEL JACK 3-CKT .173-SHK-DIA CONNECTOR-TEL JACK 2-CKT .25-SHK-DIA CONNECTOR-TEL JACK 2-CKT .25-SHK-DIA	28480 - 28480 28480 28480 - 28480 - 28480	1251-3059 1251-3059 1251-3059 1251-3677 1251-3677	
J7 J8	1251-3677 1251-3677	777		CONNECTOR-TEL JACK 2-CKT .25-SHK-DIA Connector-tel Jack 2-CKT .25-SHK-DIA Cable Assemblies	28480 23480 7	1251- 3677 1251- 3677	
W13 W14 W15 W16	8377660075 0377660076 9377660077 0377660078	4.5567	1 1 1 1	ADD: DIGITAL TX 120Ω BAL CABLE ASSEMBLY ANALOG TX CABLE ASSEMBLY ANALOG TX CABLE ASSEMBLY DIGITAL TX 120Ω BAL CABLE ASSEMBLY DELETE:	28480 28480 28430 28430 28480	33776-60075 03776-60076 03776-60077 03776-60078	
₩6 ₩8	03776-60073 03776-60074	23	1 1	DIGITAL TX 75Ω UNBAL CABLE ASSEMBLY DIGITAL RX 75Ω UNBAL CABLE ASSEMBLY	28480 28490	03776-60073 03776-60074	B
3776B OPTIONS				Option 001 As standard 37768, except:- DELETE:			
A4	03776-60004	9	1	ANALOG MONITOR ASSEMBLY	28480	03776-60004	
A204 A5 A8	03776-60204 03776-60005 03776-60008	1 0 3	1 1 1	ADD: ANALOG MONITOR ASSEMBLY TRANSIENTS ASSEMBLY GD, TIMING IMP, NOISE & FREQ DETECT ASSEMBLY	28480 28480 28480	03776-60204 03776-60005 03776-60008	
MP26	03776-20032	9	1	Option 002 (Japanese) As standard 3776B, except:- AMEND: WINDOW (FREQ, LEVEL, RESULTS) CONNECTOR PANEL (DRESG)	28480 28480	03776-60032 03776-00372	
MP30 MP31	03776-00072 03776-00073		1	FRONT PANEL CONNECTORS	28480	03776-00073	
J1 J2 J3 J4	1251-8589 1251-8589 1251-8589 1251-8589	0 0 0 0	12	CONNECTOR 4MM CONNECTOR 4MM CONNECTOR 4MM CONNECTOR 4MM DELETE:	28480 28480 28480 28480 28480	1251-8589 1251-8589 1251-8589 1251-8589 1251-8589	
	0.777 (0.0775		1 1	DIGITAL TX 1200 BAL CABLE ASSEMBLY ANALOG TX CABLE ASSEMBLY	28480 26480	03776-60075 03776-60076	
W13 W14 W15 W16 J5,6,7,8 A114	03776~60075 03776~60076 03776~60077 03776~60078 1251-3677 03776~60114	6 7 7	1 1 4 1	ANALDE RX CABLE ASSEMBLY DIGITAL RX 1200 BAL CABLE ASSEMBLY CONNECTOR.TEL JACK (BANTAM) MEMORY ASSEMDLY ADD:	28480 28480 28480 28480	03776-60077 03776-60078 1251-3677 03776-60114	

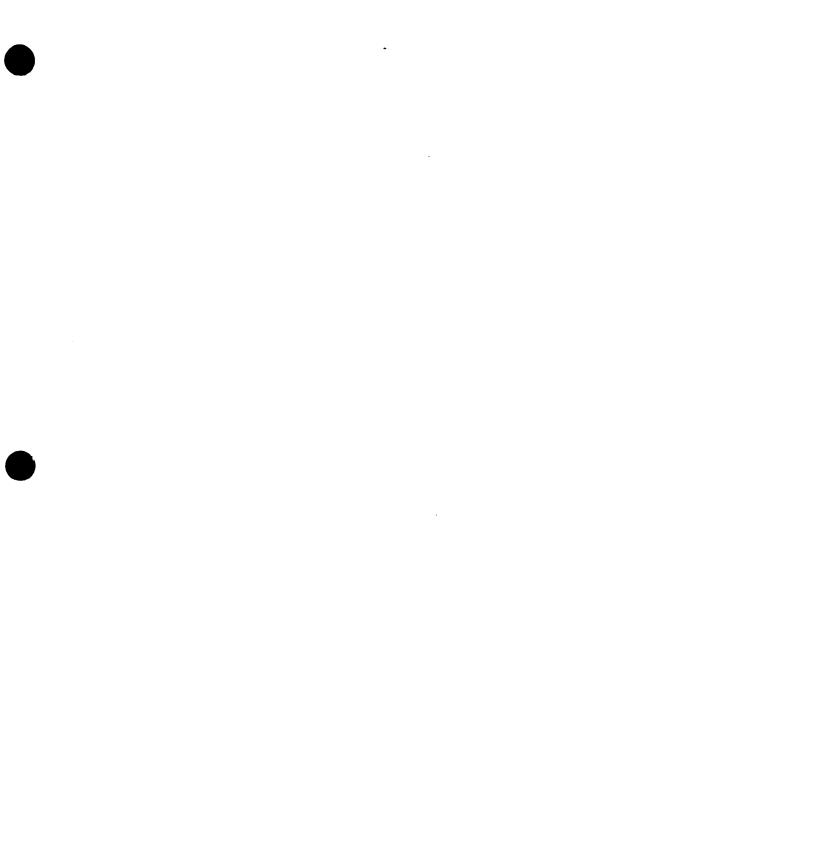
Table 6-3 Replaceable Parts (continued)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part A/B/ Number Option
MP 30 MP 32 J1, 2, 3, 4 W4 W5 W7 W9 W1 3 W1 4	03776-00075 03776-00075 1250-1639 03776-60075 03776-60076 03776-60076 03776-60078 03776-60078	895 45674 5	1 1 4 2 2 2 2 2	• Option 004 As standard 3776B, except:- AMEND: BLANKING PANEL REAR CONNECTOR PANEL CONNECTOR-TEL JACK (TROMPETER) DELETE: DIGITAL TX 1200 BAL CABLE ASSEMBLY ANALOG TX CABLE ASSEMBLY ANALOG RX CABLE ASSEMBLY DIGITAL TX 1200 BAL CABLE ASSEMBLY DIGITAL TX 1200 BAL CABLE ASSEMBLY ANALOG TX CABLE ASSEMBLY ANALOG TX CABLE ASSEMBLY	28480 28480 28480 28480 28480 28480 28480 28480 28480 28480	03776-00075 03776-00076 1250-1639 03776-60075 03776-60076 03776-60076 03776-60078 03776-60075 03776-60075
W15 W16 J5, 6, 7, 8	03776-60077 03776-60078 1251-3677	6 7 7	4	ANALOG RX CABLE ASSEMBLY DIGITAL RX 1200 BAL CABLE ASSEMBLY CONNECTOR TEL JACK (BANTAM) ADD:	28480 28480 28480	03776-60077 03776-60178 1251-3677
W17 W18 W19 W20	03776-60080 03776-60081 03776-60082 03776-60983	1 2 3 4	1 1 1	REAR PANEL DIG TX 120Ω BAL CABLE ASSEMBLY REAR PANEL ANALOG TX CABLE ASSEMBLY REAR PANEL ANALOG RX CABLE ASSEMBLY REAR PANEL DIG RX 120Ω BAL CABLE ASSEMBLY	28480 28490 28490 28480 28480	03776-60080 03776-60081 03776-60082 03776-60083
MP 33 MSC MSC	5001-4980 5040-3802 5001-4981	273	1 2 1	Image: Display state in the image: Display state in the	28480 28480 28480	5001-4980 5040-3012 5001-4981

Table 6-3 Replaceable Parts (continued)

Table 6-4 Manufacturers Code List

MFR ND.	MANUFACTURER NAME	ADDRESS	<u></u>	ZIP CODE
H9027	SCHURTER A G H	LUZERN	SW	
K0004	HULLARD LTD		EG	
K7723	MFD CAPACITORS LTD	WRERHAM CLWYD	WL_	
S0545	NIPPON ELECTRIC CO	TOKYÖ	ĴP	
54813	HITACHI	TOKYO	JP	
00000	ANY SATISFACTORY SUPPLIER			
01121	ALLEN-BRADLEY CO		μI	53204
01295	TEXAS INSTR INC SEMICOND CMPNT DIV		rx	75222
03508	GE CO SEMICONDUCTOR PROD DEPT		1Y	13201
03888	K D I PYROFILM CORP		4J	07981
04713	MOTOROLA SEMICONDUCTOR PRODUCTS		AZ.	85008
06665	PRECISION MONOLITHICS INC		CA	95050
06915	RICHCO PLASTIC CO		L	60646
07263	FAIRCHILD SEMICONDUCTOR DIV		CA	94042
11236	CTS OF BERNE INC Sprague elect co semiconductor DIV		EN NH	46711
13606 14936				03301
17856	GENERAL INSTR CORP SEMICON PROD GP Siliconix inc		NY CA	11802 95054
19701	MEPCO/ELECTRA CORP		LH TX	
20932	EMCON DIV ITW		CA	76067
24355	ANALOG DEVICES INC		-n 1A	02062
24546	CORNING GLASS WORKS (BRADFORD)		24	16701
25088	SIENENS CORP		13	08830
26654	VARADYNE INC		CA	90404
27014	NATIONAL SEMICONDUCTOR CORP		а СА	95051
28480	HEWLETT-PACKARD CO CORPORATE HO		CA	94304
31.585	RCA CORP SOLID STATE DIV		11	74004
34335	ADVANCED MICRO DEVICES INC		CA	94036
34371	HARRIS SEMICON DIV HARRIS-INTERTYPE		Г <u>.</u>	32901
37942	MALLORY P R AND CO INC		ÎN	46206
50088	MUSTEK CORP		ĨX	75006
51642	CENTRE ENGINEERING INC		Ϋ́Α	16801
52763	STETTNER ELECTRONICS INC	CHATTANOOGA 1	'N	13035
56289	SPRAGUE ELECTRIC CO	NORTH ADAMS	1A	01247
72136	ELECTRO MOTIVE CORP		sc	06226
74970	JOHNSON E F CO		IN	56093
75915	LITTELFUSE INC		ί μ .	60016
80795	ITT CORP COMPONENTS DIV		IY	10022
86928	SEASTROM MEG CO		CA .	91201
9N171	UNITRODE COMPUTER PRODUCTS CORP		1A	
91506	AUGAT INC		1A	02703
91637	DALE ELECTRONICS INC	COLUMBUS	Æ	68601


•

7

SECTION VII MANUAL CHANGES

7-1 INTRODUCTION

7-2 This section normally contains information for adapting this manual to instruments for which the content does not apply directly. Since this manual does apply directly to instruments having the serial number listed on the title page, no change information is given here. Refer to INSTRUMENTS COVERED BY MANUAL in Section I for additional important information about serial number coverage.

Service

SECTION VIII SERVICE

8-1 INTRODUCTION

8-2 This section assists technicians in the troubleshooting and repair of the Hewlett-Packard Models 3776A and 3776B PCM Terminal Test Sets. The main items contained in this section are listed below.

- 1 A list of the main assemblies and their location within the instrument (see Figure 8-1).
- 2 Theory of operation of the instrument accompanied by an overall block diagram (located in envelope at the rear of the manual) and simplified block diagram Figure 8-4 on page 8-15.
- 3 Troubleshooting Section (General Service Sheets G1 to G9).
- 4 Assembly Service Sheets covering each of the assemblies illustrated in Figure 8-1.

8-3 SAFETY CONSIDERATIONS

8-4 Before applying power to the instrument or removing any of the covers, review the following warnings and cautions.

WARNING

THESE SERVICING INSTRUCTIONS ARE FOR USE BY TRAINED SERVICE PERSONNEL ONLY. TO AVOID ELECTRICAL SHOCK, DO NOT PERFORM ANY SERVICING OTHER THAN THAT CONTAINED IN THE OPERATING INSTRUCTIONS UNLESS YOU ARE QUALIFIED TO DO SO.

WARNING

TO PROTECT OPERATING PERSONNEL, THE INSTRUMENT CHASSIS AND CABINET MUST BE GROUNDED. THE **INSTRUMENT IS EQUIPPED WITH A THREE-WIRE POWER** CORD WHICH, WHEN PLUGGED INTO AN APPROPRIATE RECEPTACLE, GROUNDS THE INSTRUMENT. THE OFFSET PIN ON THE POWER PLUG IS THE GROUND CONNECTION. TO PRESERVE THIS PROTECTION FEATURE, THE POWER PLUG SHALL ONLY BE INSERTED IN A THREE-TERMINAL **RECEPTACLE HAVING A PROTECTIVE EARTH GROUND** CONTACT. THE PROTECTIVE ACTION MUST NOT BE NEGATED BY THE USE OF AN EXTENSION CORD OR ADAPTER THAT DOES NOT HAVE THE REQUIRED EARTH GROUND CONNECTION. GROUNDING ONE CONDUCTOR OF Α TWO-CONDUCTOR OUTLET IS NOT SUFFICIENT PROTECTION.

CAUTION

- 1 To prevent damage to the instrument power supply circuits, verify that the line voltage select switch located on the instrument rear panel is set to the correct line voltage. (Refer to Table 2-1 in Section II for correct line fuse sizes).
- 2 The HP 3776A and 3776B contain static sensitive devices which may be damaged as a result of static discharge.
- 3 To prevent equipment damage, do not remove circuit boards when the POWER switch is ON.

8-5 ASSEMBLY SERVICE SHEETS

8-6 These service sheets enable fault finding to component level. They contain general and detailed circuit descriptions (where applicable), together with troubleshooting information, component layouts, circuit schematics and block diagrams. The location of each assembly covered by a Service Sheet is illustrated in Figure 8-1. Table 8-1 highlights the differences between the 3776A and 3776B instruments.

Table 8-1 3776A and 3776B Assembly Identification

3776A	A1	82 8					A7			A11	A12	A13	A14			A21		•	
3776B	A101	A102					A107			A111	R112 [#]	A113	A114 [#]			A121			
вотн			AЗ	A4	A5 [*]	86		88	A9					R15	A16		ASS	823	A24

A4 REPLACED BY A204 IN OPTION 001

A5 OPTION 001 ONLY

A8 OPTION 001 ONLY

A12 BECOMES A112 BY CUTTING LINKS

A114 REPLACED BY A214 IN 3776B OPTION 002(JAPANESE)

8-7 RECOMMENDED TEST EQUIPMENT

8-8 Test equipment required to maintain the 3776A and 3776B is listed in Table 1-4 in Section I. Any other equipment which meets or exceeds the critical specification may be used.

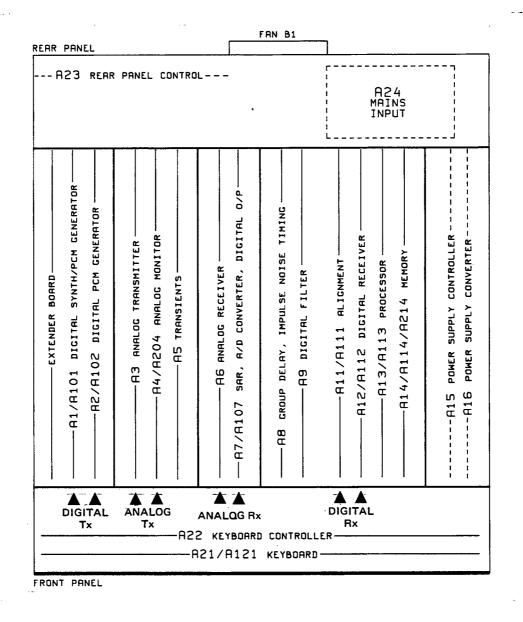
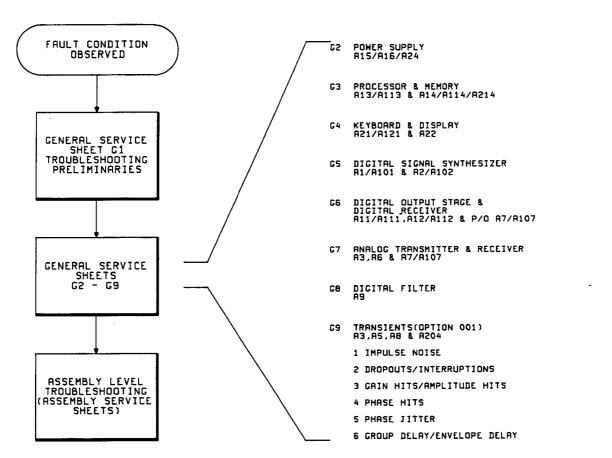



Figure 8-1 Assembly Location

8-9 TROUBLESHOOTING

8-10 The troubleshooting information provided enables technicians to diagnose faults to component level. It is recommended that all troubleshooting should start from GENERAL SERVICE SHEET G1. Service Sheet G1 contains general troubleshooting which guides the technician to the fault via the more specialised General Service Sheets G2 to G9. Figure 8-2 illustrates the troubleshooting layout for the instrument.

Service

Figure 8-2 Troubleshooting Layout

8-11 REPAIR

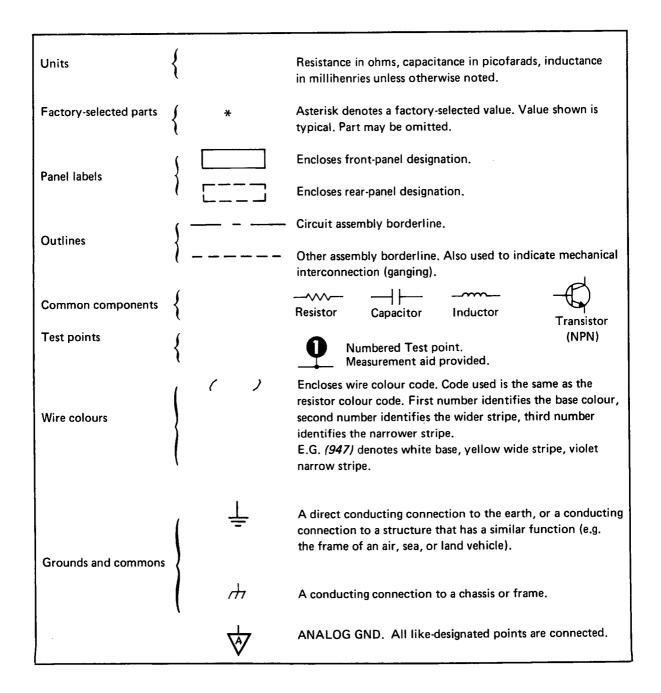
8-12 When replacing an ic which has an adhesive fixed heat sink; ensure that the heat sink is fixed to the new ic with an adhesive with the correct thermal conductivity (such as Eccobond 286 by Emerson & Cuming, California, US; HP Part Number 0470-0647).

8-13 After Service Product Safety Checks

8-14 Visually inspect interior of instrument for any signs of abnormal internally generated heat, such as discoloured printed circuit boards or components, damaged insulation, or evidence of arcing. Determine and remedy cause of any such condition.

8-15 Using a suitable ohmmeter, check resistance from instrument enclosure to ground pin on power cord plug. The reading must be less that one ohm. Flex the power cord while making this measurement to determine whether intermittent discontinuities exist.

8-16 Check any indicated front or rear panel ground terminals marked, using the above procedures.


8-17 Check resistance from instrument enclosure to line and neutral (tied together) with the power switch on and the power source disconnected. The minimum acceptable resistance is two megohms. Replace any component which results in a failure.

8-18 Check line fuse(s) to verify that a correctly rated fuse is installed.

8-19 SCHEMATIC DIAGRAMS

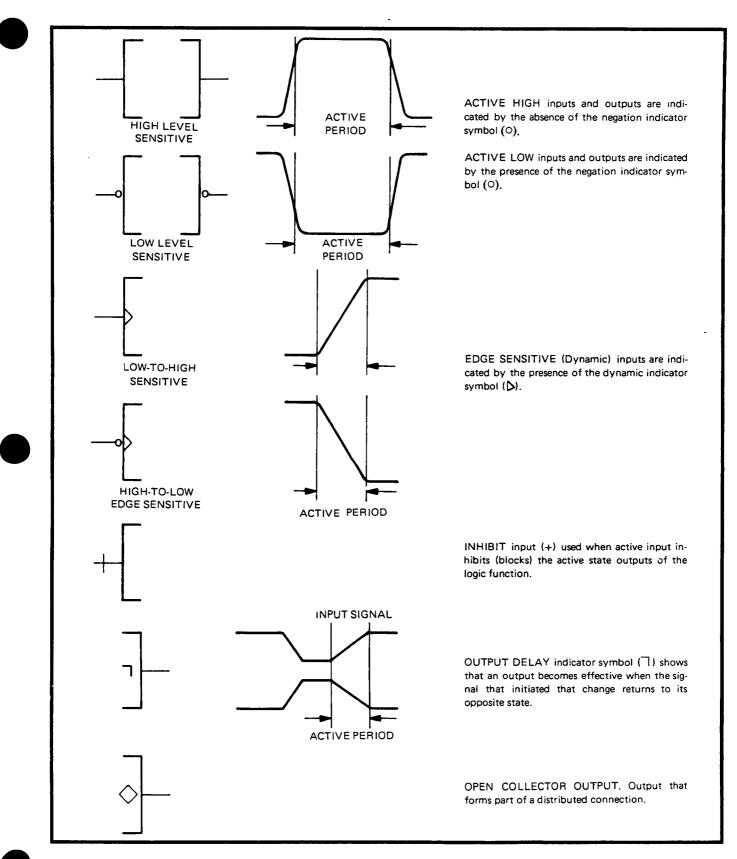
8-20 Schematic diagram drawing information is listed in Table 8-2.

Table 8-2 Schematic Diagram Notes

8-21 LOGIC SYMBOLS

8-22 The logic symbols used in this manual are based on the American National Standard ANSI Y32.14-1973, "Graphic symbols for Logic Diagrams (Two-State Devices)".

8-23 Qualifiers


8-24 Qualifiers are that portion of a logic symbol that denotes its logic function. The following qualifiers are used in this manual:

- & AND.
- Bilateral Switch: A binary controlled circuit which acts as an on/off switch to analog or binary signals flowing in both directions.
- X-Y Coder: Input code (X) is converted to output code (Y) per weighted values.
- mCNTR COUNTER with modules m.
- RAM RANDOM ACCESS MEMORY.
- ROM READ ONLY MEMORY.
- +m COUNT UP INPUT (m is replaced with a number indicating number of shifts or counts).
- MUX MULTIPLEXER
- 3-ST THREE STATE OUTPUT: 3 state label is used with F notation to symbolize devices that have an output disconnect ability.
- T Toggle Input.
- X/Y Signal Level Converter: Input levels are different from output levels.

- Indicates that hysteresis exists in the device.

8-25 Indicator Symbols

Indicator Symbols identify the active state or level of a symbol's input or output (see Figure 8-3).

8-26 Dependency Notation

8-27 Dependency notation is the technique for defining input/output and input/input relationships without showing all the elements and interconnections involved. Logic relationships between inputs and outputs are shown in this manual by using the following notation:

- mAm Address Dependency: The m prefix should be replaced with a number that differentiates between several address inputs, indicates dependency or indicated demultiplexing and multiplexing of address inputs/ouputs. The "m" suffix indicates the number of cells that can be addressed.
- Gm Gate (AND) Dependency: The G input gates those inputs or outputs labelled with the same identifier m. The m is replaced with a number.
- Cm Control Dependency: This is used only with D type Flip-Flops and indicates that the basic function of the Flip-Flop is controlled by inputs with the same identifier. The m is replaced with a number.
- Fm Free Dependency: This is an input that acts as a connect switch when active and a disconnect when inactive. Used for 3-state.

The input that controls or gates other inputs is labelled with a "C" or a "G", followed by an identifying number. The controlled or gated input or output is labelled with the same number. In this example, "1" is controlled by "G1".

When the controlled or gated input or output already has a functional label (X is used here), that level will be prefixed or subscripted by the identifying number.

If a particular device has only one gating or control input then the identifying number may be eliminated and the relationship shown with a subscript.

G1 G2 1,2X

OR

G1 G2

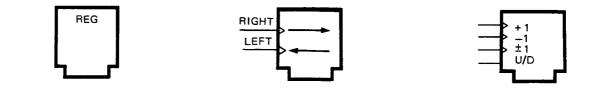
G1

G1

 X_1


OR

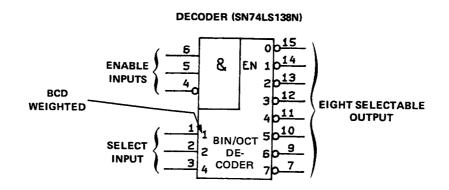
G1 1X


С

×c

If the input or output is affected by more than one gate or control input, then the identifying numbers of each gate or control input will appear in the prefix or subscript separated by commas. In this example "X" is controlled by "G1" and "G2".

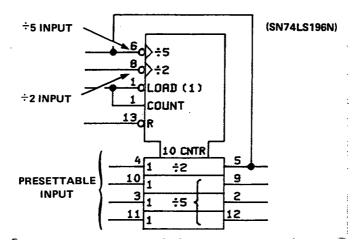
8-29 Control Blocks are used with complex logic to show when common control signals are applied to a group of functionally separate units. Typical examples of control blocks follow.


(A) REGISTER CONTROL

(B) SHIFT REGISTER CONTROL

(C) COUNTER CONTROL

- (A) Register Control Block: This symbol is used with an associated array of flip-flop symbols to provide a point of placement for common function lines, such as a common clear.
- (B) Shift Register Control Block: This symbol is used with an array of flip-flop symbols to form a shift register. An active transition at the inputs causes left or right shifting as indicated.
- (C) Counter Control Block: This symbol is used with an array of flip-flops or other circuits serving as a binary or decade counter. An active transition at the +1 or -1 inputs causes the counter to increment one count upward or downward, respectivly. An active transition at the +/-1 input causes the counter to increment one count upward or downward depending on the input at an up/down control.


8-30 Examples of Logic Devices

DECIMAL WEIGHTED

8-31 This device decodes one of eight lines (0 to 7) depending on the conditions at the three select inputs and the three enable inputs, ie output "5" is selected and set low when the select inputs are 101 and the enable inputs are 110.

PRESETTABLE DECADE COUNTER (÷2,÷5 OPTION)

8-32 This counter has a divide by 2 or a divide by 5 function. Both the divide by 2 and divide by 5 operations are enabled by positive to negative transition of signals at the respective divide by 2 and divide by 5 inputs.

8-33 The presettable inputs marked "1" are activated when the LOAD (1) input is set low.

8-34 A low on the R input resets all outputs regardless of the other inputs.

THEORY OF OPERATION

Paragraph	8-36	INTRODUCTION	8-11
	8-38	TRANSMITTER	8-11
	8-40	Digital Synthesizer and PCM Generator	8-11
	8-41	Digital Transmitter	
	8-44	Analog Transmitter	
	8-46	Monitor	
	8-47	RECEIVER	
	8-49	Digital Receiver and Alignment	
	8-57	Analog Receiver and Autoranging	
	8-61	Digital Filtering	
	8-63	Impulse Noise	
	8-66	Group Delay Distortion	
	8-69	Envelope Delay Distortion	
	8-71	Transients	
	8-72	PROCESSOR AND KEYBOARD/DISPLAYS	
	8-73	Processing and Memory	
	8-78	Keyboard and Display	
		• • • •	_,
Figure	8-4	Simplified Block Diagram	8-15
	8-5	Overall Block Diagram (in envelope at rear of man	

8-35 THEORY OF OPERATION

8-36 INTRODUCTION

8-37 The 3776 is a microprocessor controlled transmitter and receiver which performs a wide variety of measurements on PRIMARY MULTIPLEX systems. Test signals are transmitted/received in either the PCM or analog domains. A simplified block diagram of the instrument, illustrated in Figure 8-4, shows the 3776 to be made up of three main sections:-

- 1 TRANSMITTER
- 2 RECEIVER
- 3 PROCESSOR and KEYBOARD/DISPLAYS

The following overall 3776 description should be read along with Figure 8-4 (page 8-15) and the 3776 Overall Block Diagram contained in the envelope at the rear of the Manual.

8-38 TRANSMITTER

8-39 The instrument's TRANSMITTER section is made up of the following four sub-sections:

- 1 Digital Synthesizer and PCM Generator
- 2 Digital Transmitter
- 3 Analog Transmitter
- 4 Monitor Output

8-40 Digital Synthesizer and PCM Generator assembly A1/A101, generates 7 different types of test signals (see Assembly Service Sheet A1/A101) for 3776 measurements. These signals digitally synthesized on A1/A101 are applied to A3 for A to A and A to D measurements. For D to D and D to A measurements the digitally synthesized signals are inserted into a PCM frame structure prior to being digitally transmitted. The wide range of test signals generated by A1/A101 is due to the A1/A101 software stored in ROM and RAM, and to the bit slice processor. The A1/A101 software program is linearly incremented by the Program Counter and repeats every 125us under the control of the 3776 main operating program.

8-41 Digital Transmitter assembly A2/A102, has data applied to it from A1 or the AUX I/P when performing D to D or D to A measurements, or from A12 when the 3776 is in the THRU MODE and performing an A to A measurement on a 2-WIRE system.

8-42 Digital test signals are inserted into timeslots (selected via the front panel) of a PCM frame structure by the A1/A101 software. This is implemented on A2/A102 by loading the measurement test data D OUT 0 to D OUT 7 into the Foreground Latch at the appropriate times, all other timeslots are loaded with a PCM Background test signal via the Background Latch. The parallel outputs of the Latches are converted to a serial form, then line encoded, HDB3/AMI (3776A) or B8ZS/AMI (AZS) (3776B). The 2,048kb/s (3776A) or 1,544kb/s (3776B) PCM data stream at the output of A2 is fed via the output buffers on A7/A107 to the DIGITAL TRANSMIT outputs.

8-43 An external analog source (connecting a microphone to the AUX I/P) may be inserted into a timeslot and transmitted in the PCM data stream. The analog input from the AUX I/P is converted to digital form on A1 and inserted into a timeslot as in the previous paragraph.

8-44 Analog Transmitter assembly A3, uses a DAC to convert a 12 bit binary word D OUT 0 to D OUT 11 (representing the keyed in frequency) from A1/A101 to an analog form prior to transmission. The signal level information (also keyed in via the front panel) is decoded on A13 and implemented by the gain and

attenuator stages on A3. Signal purity is maintained by the de-glitch and anti-aliasing filter circuits. The amplifiers at the ANALOG TRANSMIT output are protected against improper application of RINGING TONE signals.

8-45 The remodulation circuit is used when the 3776 is operating in the THRU mode (see Assembly Service Sheet A 3).

8-46 Monitor assembly A4/A204, may be used in the DIGITAL or ANALOG TRANSMIT modes. The binary output data of A1/A101 is applied to A4 via A3 where it is converted to analog form. The analog signal may be applied to a speaker or to the MONITOR OUTPUT for further analysis. Assembly A204 is used in the ENVELOPE DELAY DISTORTION mode (see RECEIVER section).

8-47 RECEIVER

8-48 The RECEIVER section of the instrument is made up of the following seven sub-sections:-

- 1 Digital Receiver and Alignment
- 2 Analog Receiver and Autoranging
- 3 Digital Filtering
- 4 Impulse Noise
- 5 Group Delay Distortion
- 6 Envelope Delay Distortion
- 7 Transients

8-49 Digital Receiver and Alignment circuits are contained on assemblies A12 and A11/A111 respectively... The received PCM data stream is applied to the 3776 via a BALanced or UNBALanced input port. On A12, this data is converted from a ternary signal to a TTL binary signal prior to having the line code HDB3/AMI (3776A) or B8ZS/AMI (AZS) (3776B) removed, which produces TTL DATA at the output of the Line Code Decoder. Clock signals which drive the A11/A111 and A12 circuits are extracted from the PCM data stream on A12. PCM data is also monitored for alarm conditions (ALL 1s and signal loss).

8-50 PCM data is organised in formal structures (timeslots, frames and multiframes), the commonly used structures are illustrated in Appendix A. The A11/A111 accesses data within the timeslots and applies it to A9. However, before the received PCM data can be analysed by the 3776, the instrument must be in alignment with the formal PCM structures. Searching for and maintaining alignment is a function of the A11/A111 Assembly. Alignment must be achieved before TTL DATA is applied to A9 for processing.

8-51 Alignment information is contained in all PCM structures, the Frame and Multiframe Alignment Detector and Timing Generator on A11/A111 interrogate TTL DATA looking for the alignment information. When a bit/pattern matching the alignment bit/pattern is detected the Timing Generator is enabled and increments through to the next alignment bit/pattern. The Frame and Multiframe Alignment Detector rechecks TTL DATA for each alignment bit/pattern. If the alignment bit/pattern remains good the Timing Generator continues counting and the next alignment bit/pattern is rechecked. This action is repeated and when the frame and multiframe alignment criteria are satisfied alignment is considered to be achieved. When this occurs the Frame and Multiframe Alignment Detector flags the Test Timeslot Selector.

8-52 If however, the frame and multiframe criteria are NOT met the Timing Generator is reset and held in its reset state until an alignment bit/pattern is detected. It should be noted that it may take many attempts before alignment is achieved.

8-53 Once alignment is achieved the Frame and Multiframe Alignment Detector monitors TTL DATA for violations in the alignment criteria and informs the Status Condition Detector accordingly.

8-54 Alignment achieved, data can be accessed within the timeslots by the Timeslot Selector. The Test Timeslot Selector compares the receiver timing data (RX TSC, RX FC) from the Timing Generator with the control pattern for the test timeslot (TEST WORD). When both bit patterns are the same TTL DATA is the data contained in the test timeslot. RX SELTS then flags that the required data is available and ready for processing. The timeslot under test is keyed in via the front panel and stored in A13 and applied to A11/A111 as TEST WORD (see Figure A11-1).

8-55 The data stored in the Test Timeslot Register is either A-Law (3776A) or U-LAW (3776B) encoded, the Expander decodes the data prior to it being processed by the A9 Assembly.

8-56 When the received data is ready for processing the Digital Filter Handshake Control interfaces with A9. Level information is applied to the A13 Assembly via the Peak Codes Detector.

8-57 Analog Receiver and Autoranging circuits are contained on assemblies A6 and A7/A107 respectively. The 3776 uses digital circuits on A9 and A13 to process analog input signals. The circuits on A6 and A7/A107 convert these analog signals to a digital form for processing. Autoranging and calibration routines contained in the 3776 main operating program control the analog receiver circuits and ensure that the sequence of 16 bit binary words obtained at the output of A7/A107 accurately represent the incoming analog signal.

8-58 The autoranging circuits contained on both A6 and A7/A107 are designated Primary Autoranging (PAR) and Secondary Autoranging (SAR) respectively. The level of the incoming signal is monitored by the Level Detector on A6 which instructs the processor to initiate the appropriate PAR routine. After the PAR routine is completed the SAR routine goes into action. In SAR the peak level of the signal is monitored directly by A13 and A9 via the A/D Converter at the output of A7/A107. The processor instructs the SAR circuits to insert the appropriate amount of gain.

8-59 The anti-aliasing filter on A6 ensures that out-of-band signals do not corrupt the in band voice channel with aliasing signals (see APPENDIX B).

8-60 A calibration routine contained in the software of A13 ensures that the various gain stages of the PAR and SAR circuits and the anti-aliasing filter response are accurately checked after every analog measurement.

8-61 Digital Filtering of either analog or digital received data is performed on assembly A9. Fundamental to this operation is the Digital Filter Chip and the loading of the Digital Filter program from the processor on A13 to the Filter Program RAM.

8-62 When the 3776 front panel RUN key is pressed, the processor on A13 assembles the filter coefficients (see Assembly Service Sheet A9) and down loads these into the Filter Program RAM. Once programmed, digital filtering commences. The output of the Digital Filter Chip is applied to A13, A8 and A4/A204 for further processing.

8-63 Impulse Noise is measured on assembly A8 by comparing the input noise against the threshold levels Lo, MID and Hi. The Lo level is keyed in via the front panel while the other two levels are derived from the 3776 main operating program (see Assembly Service Sheet A8).

8-64 Impulse Noise information is applied serially along H THRESHOLD from A9 and converted to a parallel form by the Threshold Detector. The L Lo, L MID and L Hi lines are then monitored by the Latch Self-blocking Timers. When an impluse noise threshold level is exceeded the appropriate input to the Lo/MID/Hi Encoder goes low. The encoder then converts from 3 to 2 lines which are then applied to the processor on A13 for processing.

8-65 Assembly A8 also contains the Group Delay Timing circuits (see Group Delay Distortion) and a frequency counter which measure the carrier frequencies during Group Delay and Envelope Delay Distortion measurements.

8-66 Group Delay Distortion is measured in the PCM and analog domains by the 3776, using the recommended CCITT (0.81) method. A typical analog waveform is illustrated in Assembly Service Sheet A8. The 41 2/3Hz and 166 2/3Hz modulation envelopes of the waveform are used by the 3776 to measure group delay.

8-67 The phase of the 41 2/3Hz modulation envelope is measured alternately in the Reference and Measurement carrier periods by the 3776 (applied to the processor on A13 from the output of A9). Differences in phase define the Group Delay.

8-68 The 166 2/3Hz modulation envelope is a synchronising marker and indicates the start/finish of the Measurement/Reference carrier. This marker detected on A9 (H THRESHOLD) flags the Timing Chain on A8 which generates the group delay timing signals for A13.

8-69 Envelope Delay Distortion

8-70 An Envelope Delay Distortion (EDD) measurement is described in Assembly Service sheet A4/A204. Two measurement steps are necessary in computing EDD. First 55 cycles of the 83 1/3Hz modulated 1.01kHz reference signal IP PH-REF is applied around the loop of Figure A4-3b and the phase of the 83 1/3Hz envelope compared against an absolute reference R PH-ABS (a reference signal produced in the 3776). The result is stored in the processor. The next step is to apply 55 cycles of 83 1/3Hz modulated measurement carrier IP PH-MEAS (in the range 200 to 3.6kHz) around the loop as described in paragraph A4-7. Both the reference and measurement phases are averaged over 55 cycles to overcome any jitter in the carrier frequencies. The IP PH-MEAS of the 83 1/3Hz envelope of these carriers is compared against the absolute reference R PH-ABS. The Envelope Delay Distortion (EDD) is computed as illustrated in Figure A4-4.

8-71 Transients and phase jitter measurements are performed on A5. Five main circuit elements are contained on A5, namely;

- *1 Temperature Compensated Log converter
- *2 Dropouts (3776B)/Interruptions (3776A)
- *3 Gain Hits
- *4 Phase Hits
- 5 Phase Jitter

*Transient Measurements

The transients and phase jitter measurements are described in detail in Assembly Service Sheet A 5.

8-72 PROCESSOR and KEYBOARD/DISPLAYS

8-73 Processing and Memory functions of the 3776 are provided by the A13 and A14 Assemblies respectively. The microprocessor contained on A13 communicates with all the other assemblies by means of the following bus systems:

1	Instrument Bus	
2	Memory Bus	
	Keyboard Bus	
	HP-IB Bus	
5	Address Bus	To A1 thru A12 and A22

The main 3776 operating program stored on A13/A14 allows the instrument to perform a wide variety of measurement.

8-74 Interrupt requests (LIRQ) to the microprocessor can be issued by the following six sources:

HP-IB front panel keys rear panel switches Digital Receiver (A11/A12) Impulse Noise & Frequency Detector (A8) Transients (A 5)

All these interrupts are maskable and can be enabled or disabled by the processor. There are also nonmaskable interrupts (LNMI) which are serviced immediately by the microprocessor and these occur during power failure or time-out conditions (see Assembly Service Sheet A13).

8-75 The transfer of data between A13 and the other assemblies along the bus systems requires a handshake protocol. This is described in Assembly Service Sheet A13.

8-76 The main memory store is contained on A14 in RAM and ROM. The A14 Assembly contains a non-volatile memory (NVM) RAM which is used to store set-up and default parameters. It is also used when there is a power failure to store the data being processed.

8-78 Keyboard and Displays, contained on A21 enables the operator to manually control the 3776. The front panel keyboard is arranged in the form of a grid. When a key at the point of intersection is pressed a connection is made between a pair of X and Y lines (see Figure A22-3 in Assembly Service Sheet A22). The X lines strobed at 16kHz are decoded by the processor on A13. The Y lines inform the processor that a key has been pressed, by generating an interrupt request flag LIRQ.

8-79 Assembly A22 interacts with A13 to control the flow of KEYBOARD and DISPLAY DATA (see Figure A22-2). All front panel 7 segment and LED information, DISPLAY DATA, is produced on A13 and stored in RAM in the Display Control Logic on A22. This circuit when instructed by the processor on A13 provides the drive for the 7 segment displays and LEDs.

Figure 8-4 Simplified Block Diagram

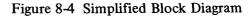
8-15

-ruried Block Diag

The main 3776 operating program stored on A13/A14 allows the instrument to perform a wide variety of measurement.

8-74 Interrupt requests (LIRQ) to the microprocessor can be issued by the following six sources:

HP-IB front panel keys rear panel switches Digital Receiver (A11/A12) Impulse Noise & Frequency Detector (A8) Transients (A5)


All these interrupts are maskable and can be enabled or disabled by the processor. There are also nonmaskable interrupts (LNMI) which are serviced immediately by the microprocessor and these occur during power failure or time-out conditions (see Assembly Service Sheet A13).

8-75 The transfer of data between A13 and the other assemblies along the bus systems requires a handshake protocol. This is described in Assembly Service Sheet A13.

8-76 The main memory store is contained on A14 in RAM and ROM. The A14 Assembly contains a non-volatile memory (NVM) RAM which is used to store set-up and default parameters. It is also used when there is a power failure to store the data being processed.

8-78 Keyboard and Displays, contained on A21 enables the operator to manually control the 3776. The front panel keyboard is arranged in the form of a grid. When a key at the point of intersection is pressed a connection is made between a pair of X and Y lines (see Figure A22-3 in Assembly Service Sheet A22). The X lines strobed at 16kHz are decoded by the processor on A13. The Y lines inform the processor that a key has been pressed, by generating an interrupt request flag LIRQ.

8-79 Assembly A22 interacts with A13 to control the flow of KEYBOARD and DISPLAY DATA (see Figure A22-2). All front panel 7 segment and LED information, DISPLAY DATA, is produced on A13 and stored in RAM in the Display Control Logic on A22. This circuit when instructed by the processor on A13 provides the drive for the 7 segment displays and LEDs.

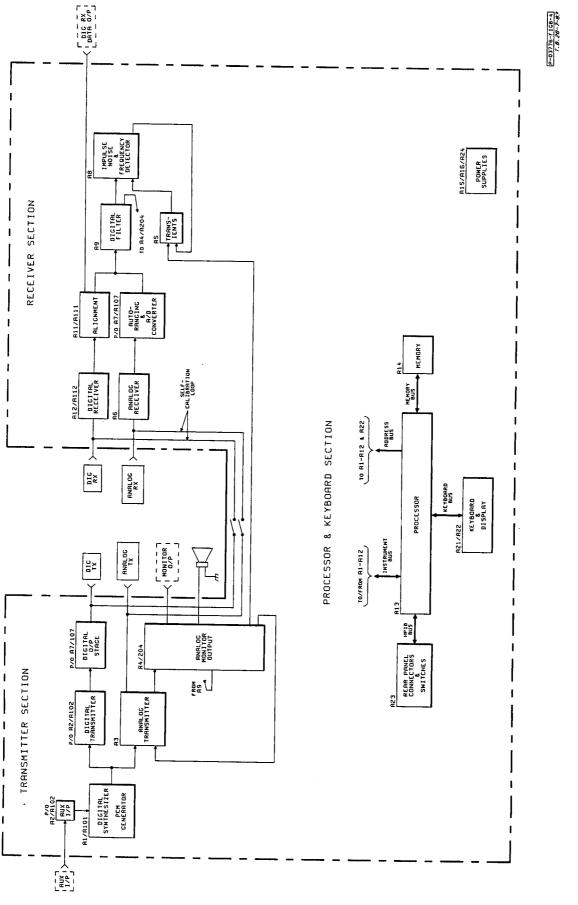


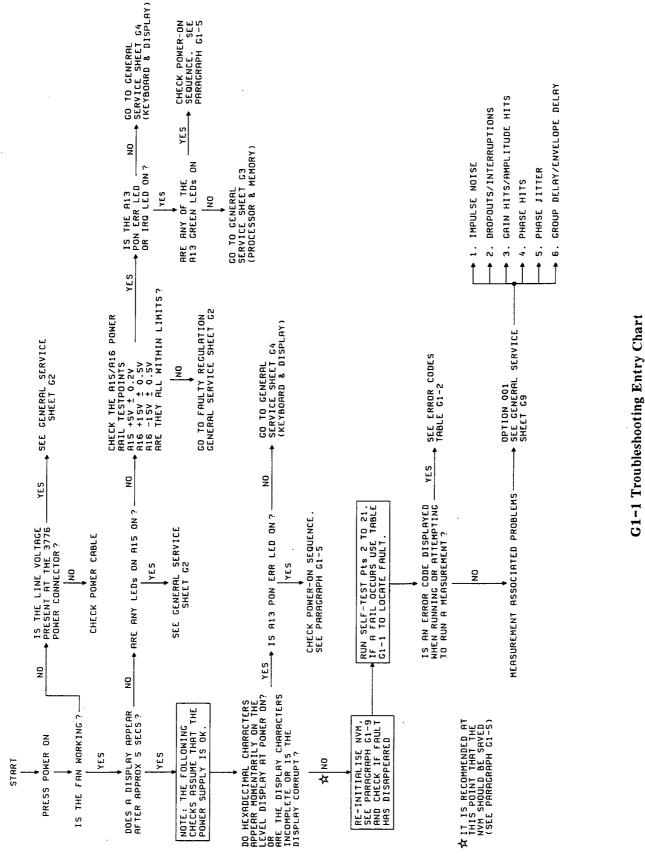
Figure 8-4 Simplified Block Diagram

GENERAL SERVICE SHEET G1 TROUBLESHOOTING PRELIMINARIES

Paragraph	G1-1 G1-5 G1-7 G1-11 G1-18 G1-23 G1-25 G1-41	INTRODUCTION Page SAVING CONTENTS OF THE NVM POWER-ON SEQUENCE RE-INITIALIZE NVM (Non-Volatile Memory) SELF TEST ERROR CODES INSTRUMENT BUS ACCESS USING THE UTILITIES INSTRUMENT BUS ACCESS USING HP-IB	8-G1- 3
	G1-46 G1-48 G1-51 G1-53	INSTRUMENT IDENTIFICATION SWITCH SELECTED SELF TESTS PROTECTIVE FUSING BALANCED LINES AND CONNECTORS	8-G1-19 8-G1-21 8-G1-26
Figure	G1-1	Troubleshooting Entry Chart Page	8-G1- 2
Table	G1-1 G1-2 G1-3 G1-4	Self-Test Checks Page Error Codes Instrument Bus Read Ports Instrument Bus Write Ports	8-G1- 8 8-G1-17

GENERAL SERVICE SHEET G1 TROUBLESHOOTING PRELIMINARIES

G1-1 INTRODUCTION


G1-2 The 3776 Troubleshooting information is contained in General Service Sheets G1 to G9. All troubleshooting starts from the preliminary troubleshooting in G1.

G1-3 Figure G1-1 is the start point for all fault conditions. By following this chart the detailed information on G2 to G9 is quickly accessed.

G1-4 General Service Sheet G1 also contains other useful troubleshooting information which is listed here.

- 1. Power-On Sequence
- 2. Re-initialising NVM (non-volatile memory)
- 3. Self-Test
- 4. Error Codes
- 5. Instrument Bus Access using the utilities
- 6. Instrument Bus Access using HP-IB
- 7. Instrument Identification
- 8. Switch Selected Self Tests
- 9. Protective Fusing
- 10. Balanced Lines and Connectors

Model 3776A/B

G1-5 SAVING CONTENTS OF THE NVM

G1-6 The following procedures should be used to save the NVM data on tape or load saved NVM data from tape into the 3776.

Equipment Required

Controller	HP85B Service Tool
3776 Test Programs	
Data Cartridge	HP 03776- 10001

Procedure for Saving Contents of 3776 NVM

- 1. Connect the HP85B controller to the 3776 via the HP-IB interface.
- 2. Load the "NVMCOP" program into the HP85B and press the HP85B RUN key.
- 3. Enter the 3776 HP-IB address and press END LINE.
- 4. Press R to read the 3776 NVM into the HP85B then press END LINE.
- 5. Ensure that a Data Cartridge set to record is inserted in the HP85B. Enter your file name (eg NEM76) and press END LINE. Ensure that your file name does not correspond to file names already used. The 3776 NVM is now loaded into the HP85B, this takes approximately 6 minutes.

Procedure for Loading Saved NVM back into the 3776

- 1. Connect the HP85B Controller to the 3776 via the HP-IB interface.
- 2. Load the "NVMCOP" program into the HP85B and press the HP85B RUN key.
- 3. Enter the 3776 HP-IB address and press END LINE.
- 4. Press W to Write the NVM data on tape to the 3776 then press END LINE.
- 5. Insert the Data Cartridge with the saved NVM into the HP85B.
- 6. Enter your file name (eg NEM76) then press END LINE. The saved NVM is now transferred from tape into the 3776. This takes approximately 3 minutes.
- 7. When the program stops, switch the 3776 power off, then on, to verify the NVM checksums. Error 120 should be displayed momentarily at power on. The NVM has now been successfully loaded.

G1-7 POWER-ON SEQUENCE

G1-8 The power on sequence is automatically implemented at switch on. A full description of the checks performed is given in Section IV of the Service Manual.

G1-9 Each item in the power-on sequence has an associated code indicated by the green leds on A13. The led codes and associated items are as follows:

Sequence Step No	Green LED Codes 54321	Description
1	00000	68A21 PIA initialisation
2	00000	8291A HP-IB chip initialisation
3	00000	Front panel display RAM clear
4	00001	Processor board RAM test
5	00010	Provisional hardware initialisation
6	00100	Activation of system monitor
7	01001	Switch selected Self-Test (if required)
8	01010	Front panel and display RAM test
9	01011	Instrument bus operation check
10	01100	Instrument bus ports check
11	01101	Non-volatile area verification (A14 U43)
12	01110	Group delay RAM check (A14 U33)
13	01111	Show HP-IB address/talk only format
14	01111	Check ROM C, ROM A and ROM 20 on A14 are loaded
15	10000	Instrument configuration

G1-10 When a Self-Test Result (Table G1-1) or Error Code (Table G1-2) CANNOT be displayed (ie Processor failure or Keyboard/Display failure), then the above led codes are used in determining the error condition. If any of the power-on sequence steps fail, the PON ERR led on A13 comes on. If the failure is catastrophic, (ie a faulty processor RAM is catastrophic since no further progress can be made) then the appropriate green led code indicates the failed step. In most cases, troublehooting can be performed using General Service Sheet G3 Processor and Memory. If step 9 fails (ie Front Panel and Display RAM) then General Service Sheet G4 Keyboard and Display may be used for troubleshooting.

G1-11 RE-INITIALIZE NVM (Non-Volatile Memory)

G1-12 Introduction

G1-13 The NVM RAM A14U43 can be reset to its factory preset condition by either running the "NVMCLR" program via HP-IB or manually using the A13S2 Utility switches.

G1-14 Manual Procedure for Re-initializing NVM.

G1-15 This check runs a RAM test on the NVM RAM A14U43. After the test, the four non-volatile areas within this memory are reset to the factory preset default condition. The configuration saved at the last

power-fail, and the dialling tables, are replaced by default values taken from RAM The measurement parameter store and the sequence store are cleared.

- 1. Remove the 3776 top cover and assemblies screen.
- 2. Set the A13S2 switches to 10010.
- 3. Press the A13S1 reset button.
- 4. Set the A13S2 switches to 00000.
- 5. Replace the assemblies screen and top cover.
- 6. Check and see if the fault has disappeared.

G1-16 HP-IB Procedure for Re-initializing the NVM

G1-17 The following program resets the NVM to its factory preset default condition.

Equipment Required

Controller	
3776 "NVMCLR" Program	
	Data Cartridge 03776-10001

Procedure

- 1. Connect the HP85 to the 3776 via HP-IB.
- 2. Insert HP3776 Test Programs Data Cartridge 03776-10001 into the HP85.
- 3. Load program "NVM CLR" and RUN.
- 4. After running the program check and see if the fault has disappeared.

G1-18 SELF TEST

G1-19 Introduction

G1-20 Self-Test can be either run manually or automatically via HP-IB. A list of all Self-Test points with corresponding description and fault locations are given in Table G1-1.

G1-21 Manual Procedure for Running Self-Test

- 1. Press the 3776 SELF-TEST key-CAL will be displayed.
- 2. Press the NEXT PARAM key Pt2 will be displayed.

- 3. Press RUN and check that Pt2 PASS 0 is displayed. If FAIL is displayed refer to Table G1-1.
- 4. Repeat Steps 2 and 3 for Pts 3 to 21.

G1-22 Automatic Procedure for Running Self-Test

Equipment Required

Controller	
-	Cartridge 03776-10001

Procedure

- 1. Connect the HP85 to the 3776 via HP-IB.
- 2. Insert HP3776 Test Programs Data Cartridge 03776-10001 into the HP85.
- 3. Load program "STEST" and RUN.
- 4. Any Self-Test Pts that FAIL will be printed. Any Error Codes generated are also printed. If a FAIL is printed refer to Table G1-1 for Troubleshooting. See Error Codes Paragraph G1-23 if an Error Code is printed.

......

Test No	Description	Fault Location
	Note: Run Test No.13 (A13/A14 ROM check) first before running other Self Test Nos. Other Self Test Nos. should be run in sequence and appropriate troubleshooting performed in sequence given unless otherwise stated.	If any of the Self-Tests 2 to 10 fail, manually run Self-Test 20 to ascertain that the Digital Filter is okay. If Self-Test 20 fails then use GENERAL SERVICE SHEET G8 to locate the fault. If Self-Test 20 passes and any of Self-Test 2 to 10
2 to 10	Instrument Calibration Routine	fail then go to GENERAL SERVICE SHEET G7 for A3, A6, A7 and A107 troubleshooting.
11	Transient Gain	Check A5 A/D Converter path. Go to GENERAL SERVICE SHEET G9.
12	AN Rx Weighting	Use GENERAL SERVICE SHEET G7 to locate fault.
13	A13/A14 ROM check. Generates the CRC code for each ROM and checks that it is correct. Returns PASS/FAIL for each ROM. The Revision code for each ROM can be obtained over the HP-IB (see G1-46).	The ROM locations are as follows: Pt13 - 0 A13U36 Pt13 - 1 A14U13 Pt13 - 2 A14U12 Pt13 - 3 A14U22 Pt13 - 4 A14U32

Table G1-1 Self-Test Checks

	•	
		Pt13 - 5 A14U42 Pt13 - 6 A14U41 Pt13 - 7 A14U31 Pt13 - 8 A14U21 Pt13 - 9 A14U23 Pt13 - 9 A14U23
14	NVM check. Verifies correct operation of the A14U43 RAM chip. Pt14-0 checks overall operation of the chip. Pt14-1 to Pt14-4 checks the CRC of each of the four non-volatile areas contained in A14U43.	If Pt14-0 FAILS then replace A14U43. If Pt14-1, 14-2, 14-3 or 14-4 FAILS and Pt14-0 PASSES then re-run Self-Test 14 and re-check. If either 14-1, 14-2, 14-3 and 14-4 FAILS after re- running Self-Test 14 then go to GENERAL SERVICE SHEET G3.
15	Group Delay RAM Check. Verifies correct operation of the A14U33 RAM chip.	If Pt15 FAILS then replace A14U33.
16	Instrument Bus Check. Tests that the Interface Bus will transfer data.	Sends data to A3 I/O Buffer and reads data back. Power-on sequence should fail if this check FAILS. Use the utilities (see GENERAL SERVICE SHEET G1 Paragraph G1-25) to continually write to the I/O Buffer checking the I/O Buffer/Processor Handshake.
17	Front Panel Keyboard Controller Assembly A22 RAM check. Checks that data can be transferred to and from A22 Display RAMS A22U16, A22U17, A22U26 and A22U27.	Possible A22U16, A22U17, A22U26 or A22U27 Display RAM fault. See GENERAL SERVICE SHEET G4 Keyboard and Display.
18	AN Tx to AN Rx Internal Loop Continuity Check. Note: The ANALOG RECEIVE termination must not be set to BRIDGED before setting SELF-TEST and running Pt18.	If Self-Test Pts 2 to 10 PASS (ie Calibration Routine) then fault is in A3 Output Amplifier Stage or the CAL 1B and CAL 1A lines between A3 and A6.
19	PCM Continuity Check. Checks that the signal from the A1/101 Synthesizer assembly can be received by the digital filter via the DIG Tx and DIG Rx.	Use GENERAL SERVICE SHEETS G6, G5 or G8 to locate fault. Check DIG Rx Troubleshooting G6 first before checking G5. Note: If S/Test 20 fails then use GENERAL SERVICE SHEET G8 to lo- cate fault.
20	Digital Filter Test. Operation of the Digital Filter is	Use GENERAL SERVICE SHEET G8 to locate the fault.
	 20-0: Programming Test 20-1: Interrupt rate AN Rx/DIG Rx 20-2: Digital Filter Bus Test AN Rx 20-3: Digital Filter Bus Test DIG Rx 20-4: Digital Filter Clear RAM Test 20-5: Addition Test (tests the Carry-out Counter) 20-6: Arithmetic and Hardware Overflow test 20-7: Instruction Set Test, (leaves the digital filter in the Signature Analysis mode). 	

21	PCM Function Test. Runs the following tests for the DIG Rx via the internal DIG Tx to DIG Rx loop.	Use GENERAL SERVICE SHEET G6 to locate the fault.
	21-0: Checks that DIG Rx alignment is okay	
	21-1: Tests that correct codes are sent and received on	
	A11/ A111 code port.	
	21-2: Positive Peak Codes test	
	21-3: Negative Peak Codes test	
	21-4: DIG Rx to digital filter handshake test	
22	Pt22 (ie NATTER) is not a SELF-TEST check. 11 al-	
	lows the user to set up a two way conversation (see the	
	Operating Manual).	

G1-23 ERROR CODES

G1-24 Normally the SELF-TEST results will indicate the faulty area for troubleshooting, however, when the SELF-TEST procedure (see Paragraph G1-18) passes and a fault condition still exists, the ERROR CODES must be used to indicate the faulty area. It should be noted that this is not the normal function of the Error Codes and particular care should be exercised in interpreting them in this way. The following table is therefore provided as a GUIDE ONLY and should only be used to attempt to locate the faulty areas if SELF-TEST passes.

Code	Description	Possible fault location/Notes (see Paragraph G1-24)
	Operator/programming errors	
1	HP-IB command string syntax incorrect	
2	HP-IB command string too long	
3	Unrecognised HP-IB command	
4	HP-IB command parameter is out of range	
5	Command parameter missing	
6	Too many command parameters	
7	Unsupported block data format	
8	Zero or negative byte count in BDFA data list	
9.	Byte count in BDFA data list is greater than the number of subsequent bytes	
10	Odd number of bytes in binary format data list	
11	Command ignored instrument under local control	
12	Key (or command) out of context in current state	
13	Measurement not defined for this instrument	
14	Measurement not available in current mode	

Table G1-2 Error Codes

15	Option hardware not present for this measurement	
16	Framing / signalling measurement not applicable with current	
	PCM format	
17	(3776A only) channel 31 requested with 30 channel pcm	
	format	
18	Append to sequence fails - measurement cannot be sequenced	
	or mode not end-end	
19	Append to sequence fails - not enough room left in NVAREA	
	3	
20	RECALL from sequence failed - no sequence present or	
	beyond end of sequence	
21	RECALL measurement parameters failed - none stored for	
	this measuremet	
22	Format parameter in "OH", "OR" or "OT" command is	
	undefined	
23	HP-IB interface error - addressed to talk but no listeners	
	present	
24	Rear panel switch changed when running	
25	Parameter out of range during run time	
26	Requested pre-distortion of transmit Group Delay/EDD sig-	
	nal is not possible	
27	undefined	
28	Invalid transients / phase jitter test signal requested	
29	undefined	
	Measurement Errors	
30	No clock for digital transmitter – check external clock i/p	Check A2F1
31	Loss of DIG Rx alignment/signal	
32	Loss of DIG Rx alignment / signal when in THRU PCM mode	Suspect synthesizer clock
33	Analogue input level too high	
34	Signal too small to measure	
35	Signal too unstable for autorange	
36	Analogue receiver overloaded following autorange	Signal too unstable
37	Digital filter overload	Signal level too high or unstable
38	Receive level too low to measure in reference section of	
38	Receive level too low to measure in reference section of measurement	
38 39		
	measurement	Group delay signal not present
39	measurement No modulation envelope present for delay measurement	Group delay signal not present Group delay signal not stable
39 40	measurement No modulation envelope present for delay measurement Group Delay carrier changeover irrecoverable	
39 40 41	measurement No modulation envelope present for delay measurement Group Delay carrier changeover irrecoverable Digital filter overload during settling	Group delay signal not stable
39 40 41 42	measurement No modulation envelope present for delay measurement Group Delay carrier changeover irrecoverable Digital filter overload during settling Group Delay sync loss	Group delay signal not stable
39 40 41 42 43	measurement No modulation envelope present for delay measurement Group Delay carrier changeover irrecoverable Digital filter overload during settling Group Delay sync loss Meas section of Group Delay waveform is too small	Group delay signal not stable
39 40 41 42 43	measurement No modulation envelope present for delay measurement Group Delay carrier changeover irrecoverable Digital filter overload during settling Group Delay sync loss Meas section of Group Delay waveform is too small Coder offset too great (outside bottom 2 segments), or >3276	Group delay signal not stable
39 40 41 42 43 44	measurement No modulation envelope present for delay measurement Group Delay carrier changeover irrecoverable Digital filter overload during settling Group Delay sync loss Meas section of Group Delay waveform is too small Coder offset too great (outside bottom 2 segments), or >3276 expanded code steps	Group delay signal not stable
39 40 41 42 43 44 	measurement No modulation envelope present for delay measurement Group Delay carrier changeover irrecoverable Digital filter overload during settling Group Delay sync loss Meas section of Group Delay waveform is too small Coder offset too great (outside bottom 2 segments), or >3276 expanded code steps Power fail recovery for transients, remod etc	Group delay signal not stable
39 40 41 42 43 44 45 46	measurement No modulation envelope present for delay measurement Group Delay carrier changeover irrecoverable Digital filter overload during settling Group Delay sync loss Meas section of Group Delay waveform is too small Coder offset too great (outside bottom 2 segments), or >3276 expanded code steps Power fail recovery for transients, remod etc Impulse threshold out of range because of received signal level	Group delay signal not stable
39 40 41 42 43 44 45 46	measurement No modulation envelope present for delay measurement Group Delay carrier changeover irrecoverable Digital filter overload during settling Group Delay sync loss Meas section of Group Delay waveform is too small Coder offset too great (outside bottom 2 segments), or >3276 expanded code steps Power fail recovery for transients, remod etc Impulse threshold out of range because of received signal level Group Delay level too low; peak sample returned by secondary	Group delay signal not stable

50	Measurement Software Faults	
50		h
	Invalid parameters for synthesiser programming routine	
	(formerly AGB conceptual)	
51	Divide by zero	
52	Digital transmit level too high	
53	Digital transmit level too low	
54	DIG Rx mode requested not compatable with PCM format	
55	Both AN Rx and DIG Rx selected to feed digital filter	
56	Invalid mode, filter, or detector passed to the digital filter	
	downloader	
57	Invalid filter number passed to the digital filter programming	
	routine	
58	undefined	
59	Digital filter program too long	
60	Dig filter coefft C1 or C2 not in [-16384 16383] when	
	shifts = -1	
61	Digital filter coefficient C0 not in [-16]	
62	Group Delay DFT power squared too high, result may be	-
	suspect. Point repeated	
63	Group Delay DFT power squared too low, result may be	
	suspect. Point repeated	
64	Attempt to set run-time abort stack <0.	
65	Too many run-time abort levels.	
66	Overflow in ADD LEVELS routine.	
67	Routine called that is not yet written.	
68	undefined	
69	undefined	
	Calibration Errors	
70	AN Tx calibration not possible – no synthesizer clock	A1/A101, A3, A4, A6, A7/A107. See GENERAL SERVICE SHEETS G5, 7 and 9
71	AN Tx calibration figure not valid	A3, A4, A6, A7/A107. See GENERAL
		SERVICE SHEET G7 and G9
70	Attempt to use a calibration figure that cannot be calibrated	A3, A4, A6, A7/A107. See GENERAL
72	Attempt to use a calibration figure that cannot be calibrated	SERVICE SHEET G7 and G9
73	Transient carrier Level ADC calibration failed	A 5. See GENERAL SERVICE SHEET G9
, .		
74	Frequency for calibration is out of range	A1/A101. See GENERAL SERVICE SHEETG5
75	undefined	
76	undefined	
70	undefined	
78	undefined	
79	undefined	

r	· · · · · · · · · · · · · · · · · · ·	
	Measurement Hardware Fault	
80	Primary Autoranging (PAR) fault	
81	Secondary Autoranging (SAR) timeout	
82	SAR analog input level to high	Fault on A6 or A7/A107 see GENERAL SERVICE SHEET G7
83	SAR hardware fault	
84	SAR analog input level to low	
85	Sync loss between analog receiver and digital filter	Fault on A6 or A7/A107 or A9. See GENERAL SERVICE SHEETS G7 or G8.
86	Sync loss between digital receiver and digital filter	Fault on A11/A111,A12 or A9. See GENERAL SERVICE SHEETS G6 or G8
87	No digital filter handshake	Fault on A9 or A13. See GENERAL SERVICE SHEET G3 or G8
88	Digital filter - 28 bit hardware overflow	Fault on A9, A6, A7/A107, A11/A111 or A12. See GENERAL SERVICE SHEETS G6, G7 or G8.
89	Option 001 – group delay frequency counter failure	Fault on A8. See GENERAL SERVICE SHEET G9.
90	Option 001 – A/D Converter failure	Fault on A5. See GENERAL SERVICE SHEET G9.
91	Digital receiver sample never available	Fault on A9 or A11/A111. See GENERAL SERVICE SHEET G8 or G6.
92	Digital filter programming incorrect	Fault on A9. See GENERAL SERVICE SHEET G8.
93	Digital receiver clock failure	If the digital receiver clock stops then the processor cannot read the digital receiver status. This may occur when the 3776 is connected back to back (DIG Tx to DIG Rx) and in the THRU or MONITOR Mode
94	undefined	
95	HP-IB chip failure - (mislaid SRQ)	Fault on A13. See GENERAL SERVICE SHEET G3.
96	Spurious or untraceable interrupt	Fault on A11/A111, A12 or A5. See GENERAL SERVICE SHEETS G6 or G9

8-G1-11

97	Display bus timeout	Fault on A21/A121 or A22 See GENERAL SERVICE SHEET G4
98	Instrument bus timeout	See GENERAL SERVICE SHEET G1, Paragraph G1-39
99	Transient power-failure detected	Fault on A15, A16 or A13 see GENERAL SERVICE SHEETS G2 or G3
	Power-On Self-Test Faults	
100	A13 RAM faulty	See GENERAL SERVICE SHEET G3
101	ROM not loaded	Fault on A14. See GENERAL SERVICE SHEET G3
102	ROM CRC failure	-
103	A13 PIA fault	See GENERAL SERVICE SHEET G3
104	Multiple interrupts (LIRQ) from keyboard	
		Fault on A21/A22. See GENERAL SERVICE SHEET G4
105	Display bus time-out during Self-Test	
106	Display RAM Self -Test failure	
107	Instrument bus timeout during Self-Test	_ See GENERAL SERVICE SHEET G1, Paragraph G1-18
108	Instrument bus read/ write error	Fault on A4/A204. See GENERAL SERVICE SHEET G9
109	Instrument bus write port faulty	Fault on A13 See GENERAL SERVICE SHEET G3
110	Instrument bus timeout detection faulty	
111	Non-volatile memory - NVM (power-on default parameter)	
	Cyclic Redundancy Check (CRC) failure	Fault on A14 See GENERAL SERVICE SHEET G3
112	NVM (stored masks) CRC failure	
113	NVM (measurement sequence) CRC failure	

•

114	NVM (dual tone multi frequency - DTMF table) CRC failure	
115	3776A NVM fitted to 3776B or visa versa	Wrong A14 board
116	NVM RAM Self-Test failure	Fault on A14. See GENERAL SER SHEET G3.
117	ROM mapping facility failure	Fault on A14. See GENERAL SER' SHEET G3
118	A14 Option RAM faulty	
119	Memory board faulty	Fault on A14. See GENERAL SER SHEETG3
120	Configuration not saved at last power-down, i.e. missing PWR FAIL interrupt	Fault on A15, A16 or A13. (Pressing button - A13S1 also causes ERROR C 120). See GENERAL SERVICE SHEE or G3.
121	Cannot restart power-fail protected measurement	Fault on A13, A14 or A23. See GENE SERVICE SHEET G3.
_	Digital Filter Test Error Codes	
130	Error in down Loading program	
131	L DATA READY (status sign bit) at incorrect rate	
132	Digital filter input has error	
133	Unable to clear data RAM	Fault on A9. See GENERAL SERV SHEETG8
134	Digital filter failed to increment carry out counter DF STATUS (D3 to D0)	
135	Digital filter unable to set or clear OVR24 in DF STATUS	
136	Digital filter unable to set or clear OVR28 in DF STATUS	
137	Digital filter test program gives incorrect result	
	System Software Errors	
200 to 214	Repeat the operation to confirm the error. These codes are provided for factory service purposes.	

G1-25 INSTRUMENT BUS ACCESS USING THE UTILITIES

 G_{1-26} The utilities are called up at power-on if the A13S2 switches are set to 10001. To exit the utilities and continue the power-on sequence the SELF TEST button should be pressed. To exit utilities, set A13S2 to 00000 then press the reset button A13S1.

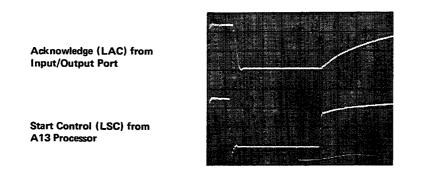
The utilities can also be called up at any time during the normal operation of the 3776 by means of the front panel SELF TEST key. If A13S2 #1 is set (up), the SELF TEST key does not select the standard self test items, but causes the utilities to be entered. While in the utilities the normal operation of the instrument is frozen (with interrupts off). Pressing SELF TEST again will toggle out of the utilities and normal operation will resume.

G1-27 On initial entry into the utilities, the Processor Register access utility is automatically selected. The contents of the program counter (PC) just prior to the interrupt into the utilities is displayed.

G1-28 Instrument Bus Access Selection

G1-29 When the utility mode has been called up, Instrument Bus Access is selected by pressing the 3776 AN Tx front panel key.

G1-30 Instrument Bus Access


G1-31 The instrument Bus Access Utility is used to read from or write to the instrument bus ports. The port address number (in hexadecimal) should be entered into the LEVEL display and, if required, the data to be written, entered in the left hand half of the RESULTS display. Tables G1-3 and G1-4 contain the addresses of the Instrument bus read/write ports. To read/write to the instrument bus port, the RUN and REPEAT keys may be used.

FREQUENCY HZ		RES		
UEII		XX	XX	
	I/O PORT ADDRESS		DATA READ FROM I/O PORT	
		DATA WRITTE TO I/O PORT		

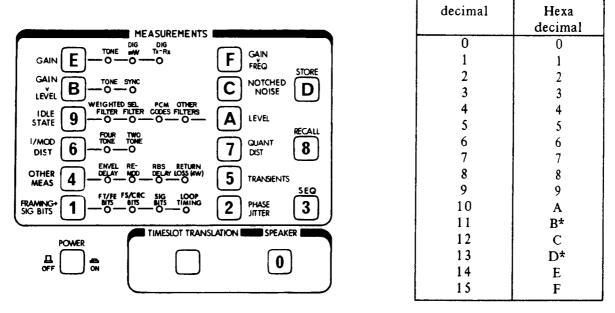
G1-32 If the RUN key is pressed when the SET LEVEL led is lit, a port read is done. The contents of the selected port are displayed in the right hand half of the RESULTS display. If RUN is pressed when the SET FREQ led is lit, a port write is performed. The data displayed on the left hand half of the RESULTS display is written to the selected port. A check read from this port is then done and the data displayed in the right hand half of the RESULTS display.

G1-33 The REPEAT key is used to continually read or write a port. Note: press REPEAT only, not RUN then REPEAT. When this key is pressed the REPEAT led will light and the selected port will be continually read or written (about once every 40us). This enables port handshake timing to be observed on a scope (see handshake waveform). To stop this bus activity, the STOP key should be pressed. Any bus timeouts will be displayed via an error code in the RESULTS display.

Timebase = $0.2\mu s/DIV$ 0.2V/DIV (10:1 PROBE)

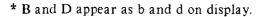
G1-34 Hexadecimal Data

G1-35 Address Data Written or Data Read information is inserted or displayed in Hexadecimal. Instrument bus data is represented in Hex as follows:


Data Bus: Binary Weighting: Example:	D7 2 ³ 1	D6 2 ² 0 P	D5 21 1	D4 2° 1	D3 2 ³ 0	D2 2 ² 1	D1 2 ¹ 1	D0 2° 1
Hexadecimal:		В				/		

Note: Hexadecimal Instrument Bus Port Addresses are given in Tables G1-3 and G1-4.

G1-36 Utility Parameters


G1-37 The Instrument Bus Access Utility requires several numeric parameters to set up a read/write sequence. This is done by using the SET LEVEL and SET FREQ keys and the measurement keys. Parameters are entered as hexadecimal numbers. While in the utilities the measurement keys are redefined to be hexadecimal key pad as follows:

G1-38 Where a "utility" requires only one parameter, this is always entered into the LEVEL display. If two parameters are required the SET LEVEL and SET FREQ keys are used to select the appropriate parameter. The SET LEVEL key selects the parameter displayed in the LEVEL display and the SET FREQ selects the parameter displayed in the left hand half of the RESULTS display. The INCR/DECR keys may also be used. These add or subtract one from the currently selected parameter. The left and right keys are not active.

G1-39 The following list can be used to determine the faulty assembly when the Power-On Sequence Step Number 10 (Instrument bus ports check) fails.

For example: If, during Power-On Sequence Test, "08 Error 107" is displayed, check the assembly associated with port address 08. In this case port or buffer address 08 is located on assembly A4. Use the REPEAT key to continually read port 08 to locate the fault, see Paragraph G1-35. Note: Press the REPEAT key only, do not press RUN then REPEAT.

G1-40 The following tables list the Instrument Bus Read/Write Ports.

		· · · · · · · · · · · · · · · · · · ·
Port Address	Assembly	Description
00	A23	Rear panel HP-IB address switches
01	A23	Rear panel PCM format switches
02	A9	Digital filter output (ms byte)
03	A9	Digital filter output (middle byte)
04	A9	Digital filter output (ls byte)
05	A9	Digital filter status
06	A9	decoded by A9, but not used
07	A9	Digital filter program read back
08	A4	EDD result (ms byte)
09	A4	EDD result (ls byte)
0A	A4	EDD status and option present flag
0B		not used
0C	A 8	Impulse Noise Threshold status
0D	A8	Group delay and impulse count status
0E	A 8	Frequency counter (ms byte)
0F	A 8	Frequency counter (ls byte)
10	A11/A12	Digital receiver status
11	A11/A12	Digital receiver peak negative code
12	A11/A12	Digital receiver peak positive code
13	A11/A12	Digital receiver code from selected timeslot
14		not used
15	A3	Data Test Buffer
16	A6	Analogue receiver threshold detector outputs
17		not used
18	A1/A2	Digital transmitter status (Address Decoder on A3)
19		not used
1A		not used
1B		not used
1C		not used
1D		not used
1E	A 5	Phase jitter results
1F	A 5	Transients status

Table G1-3 Instrument Bus Read Ports

-

Note: ls = least significant; ms = most significant

. А. _____

•	
Table G1-4 Instrument	Bus Write Ports

Port Address	Assembly	Description
20	A9	Digital filter reset
21	A9	Digital filter control register
22	A9	Digital filter threshold register (ms byte)
23	A9	Digital filter threshold register (ls byte)
24	A9	decoded by A9, but not used
25	A9	Digital filter program counter (ms byte)
26	A9	Digital filter program counter (ls byte)
27	A9	Digital filter instruction load port
28	A4	Digital filter output DAC control
29	A3	Analogue transmitter output control
2A	A3	Analogue transmitter coarse attenuator
2B	A3	Analogue transmitter signal path control
2C	A8	Group delay and impulse count reset
2D	A8	Group delay and impulse count control
2E	A8	Frequency counter clear
2F	A8	decoded by A8, but not used
30	A11/A12	Digital receiver control byte #2
31	A11/A12	Digital receiver timeslot selection
32	A11/A12	Digital receiver frame selection
33	A11/A12	Digital receiver control byte #1
34	A6	Analogue receiver impedance and cal path
35	A6	Analogue receiver PAR and anti-alias filter
36	A6/A7	Analogue receiver SAR
37	A6/A7	Analogue receiver SAR path
38	A1/A2	Digital transmitter data load (ls byte)
39	A1/A2	Digital transmitter data load (ms byte)
3A	A1/A2	Digital transmitter address load (ls byte)
3B	A1/A2	Digital transmitter address load (ms byte)
3C	A1/A2	Digital transmitter write enable
3D	• A1/A2	Digital transmitter control word
3E	A 5	Dropouts/Interruptions threshold
3F	A 5	Transients mode

Note: ls = least significant; ms = most significant

G1-41 INSTRUMENT BUS ACCESS USING HP-IB

G1-42 The following commands allow the controller to read or write to any port or buffer on the 3776 instrument bus. See Tables G1-3 and G1-4 for port addresses and descriptions.

•

G1-43 HP-IB Commands

IO <PORT ADDRESS>, <DATA> IO? <PORT ADDRESS>

10 <PORT ADDRESS>, <DATA>. This command writes <DATA> to <PORT ADDRESS>. For example, "IO#H28, #H2F" will write 2F (hex) to port address 28 (hex). #H means hexadecimal number.

IO? <PORT ADDRESS>. This command reads the contents of <PORT ADDRESS> and outputs the data to the Controller. The string returned has the same syntax as the write form of the "IO" command. For example, the command "IO?#28" reads port 28 (hex) and returns: "IO 40, 47CRLF".

G1-44 Example using HP85 basic and hex values:

10 OUTPUT702; "CA OFF" 20 OUTPUT702; "I0#H28, #H2F" 30 OUTPUT702; "I0?#H28" 40 ENTER702;A\$ 50 DISPA\$ IO 40, 47

Note: The address and data of the returned string is in decimal.

G1-45 Example using HP85 basic and decimal values:

10 OUTPUT702; "CA OFF" 20 OUTPUT702; "I040, 16" 30 OUTPUT702; I0?40" 40 ENTER702;B\$ 50 DISPB\$ I0 40, 16

Note: To avoid the I/O Port data being changed by the instrument calibration routine, always set the calibration off ("CA OFF") before setting the I/O Port data.

G1-46 INSTRUMENT IDENTIFICATION

 G_{1-47} Instrument, options fitted, firmware revision and list of all ROM revisions can be obtained using the following:

1. "OI" HP-IB command. On receipt of this command the 3776 responds with the five character string "3776A CRLF" or "3776B CRLF" as appropriate.

2. "ID" HP-IB command. On receipt of this command the 3776 will respond with the following string----"HP3776(x), OPT (Opt 1), (Opt 2), (Opt 3), REV (datecode) CRLF".

(x): "A" or "B"

- (Opt 1): Set to 1 if optional delay and transients measurements present, otherwise 0.
- (Opt 2): Set to 2 if 3776B Opt 002 (Japanese filters), otherwise set to 0.
- (Opt 3): For future options. This is always returned as zero at present.
- (datecode): Firmware date-code in the HP standard format of (Year 1960) (Week number). For example 2328 is 1983, week 28.

Example:

10 DIM A\$[100] 20 DISP "ENTER HP-IB ADDRESS" 30 DISP "AND PRESS ENDLINE" 40 INPUT A 50 A = 700 + A 60 OUTPUT A; "IO?" 70 ENTER A; A\$ 80 DISP A\$ 90 END ENTER HP-IB ADDRESS AND PRESS ENDLINE ? 8 3776 response ---- HP3776B, OPT 1, 0, 0,REV 2345

Note: The REV number returned (i.e. 2329) is the highest date code of all firmware ROMS in asemblies A13 or A14.

3. ROM Revisions. The revisions on datecodes of all ROMS can be obtained as follows.

a. Connect an 80 column printer to the 3776 HP-IB connector (use an HP2671A, HP2671G or HP2673A. The HP82905A is not compatible).

b. Set the 3776 to TALK ONLY and set the Address switches to 00010 (i.e. 2 is the Print mode).

c. Press Self-Test then continually press the NEXT PARAM key until Pt13 is displayed in the LEVEL display.

d. Press the 3776 RUN key. The following ROM datecodes should be printed.

HP 3776A ROM CRC CHECK

Section: 0	PASS	2331
Section: 1	PASS	2344
Section: 2	PASS	2337
Section: 3	PASS	2338
Section: 4	PASS	2343
Section: 5	PASS	2338
Section: 6	PASS	2331
Section: 7	PASS	2328
Section: 8	PASS	2333
Section: 9	PASS	2345

where:

- Section 0 = A13U36(E)Section 1 = A14U13(C)Section 2 = A14U12(A)Section 3 = A14U22(8)Section 4 = A14U32(6)Section 5 = A14U42(4)Section 6 = A14U41(20)Section 7 = A14U31(21)Section 8 = A14U21(22)Section 9 = A14U23(1)
- Note: 1. The values given in brackets are sometimes used for ROM identification. They correspond to the start address of the appropriate ROM.
 - 2. A14U12 ROM (Section 2) is different for the 3776A and 3776B.

G1-48 SWITCH SELECTED SELF TESTS

G1-49 Introduction

G1-50 The switch selected Self Tests within the 3776 are a set of routines that may be of use in tracing hardware faults. These tests are activated at the beginning of the power-on sequence if switch A13S2#5 is set (up). This is the only time they can be called; they are not accessable via the front panel SELF TEST key or from the HP-IB. Most of the switch selected Self-Tests are referred to in the General Service Sheets. Given that switch #5 is set, switches #1 through #4 select one of the following tests:

A13S2 Switch Code 54321	Description
10000	No operation - return to power-on sequence
10001	Enter utilities
10010	Test and re-initialise the non-volatile RAM
10011	Check ROM CRCs then return to power-on sequence
10100	undefined
10101	Front panel display test
10110	Keyboard test (interrupt driven)
10111	Keyboard test (loop read).
11000	Signature Analysis - PIA stimulus.
11001	Signature Analysis - HP-IB stimlus.
11010	Signature Analysis - Instrument/Display bus
11011	Signature Analysis - A14 assembly stimulus
11100	Processor bus exerciser
11101	Display bus exerciser
11110	Instrument bus exerciser
11111	A13 led check

1. Utilities (10001)

This item calls up the 3776 utilities. This allows access to memory, I/O ports etc. before the majority of the power-on tests and instrument configuration occurs. The utility package is described in detail in Paragraph G_{1-25} . On exiting the utilities (via the SELF-TEST key) the power-on sequence continues normally.

2. Non-Volatile RAM Test (10010)

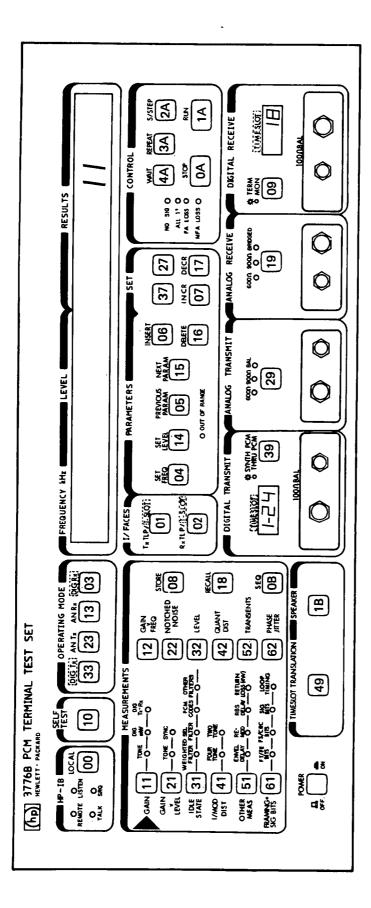
This runs a RAM test on the non-volatile RAM (A14 U43). After the test the four non-volatile areas within this memory are reset to a default condition. The configuration saved at the last power-fail and the dialling tables are replaced by default values taken from ROM. The measurement parameter store and the sequence store are cleared.

3. ROM CRC Check (10011)

This item checks the existence and CRC of all processor ROMs. As each ROM is checked an identifier is displayed in the LEVEL display. If any ROM is missing or corrupt, an error is displayed along with the ROM identifier.

ROM	DISPLAYED ID	LOCATION
ROM E	Е	A13U36
ROM C	с	A14U13
ROM A	A	A14U12
ROM 8	8	A14U22
ROM 6	6	A14U32
ROM 4	4	A14U42
ROM 20	2.0	A14U41
ROM 21	2.1	A14U31
ROM 22	2.2	A14U21
ROM 23	2.3	A14U11
ROM 1	1	A14U23

Note: if the current rev of software does not use ROM 23, this will be faulted as missing.


4. Front Panel Display Test (10101)

This lights up all the front panel leds. The display bright-up feature is also tested by "walking" a bright digit along the large seven segment displays. This test never terminates. To reset the instrument to normal operation all A13 switches should be cleared (down) and the A13 reset switch pressed or the power cycled.

5. Keyboard Test (10110/10111)

The keyboard test has two modes of operation selected by the A13S2#1 switch. If this switch is set to "1" the keyboard port is continually read and the key code displayed in the front panel RESULT display. The key codes are listed below. This test should be used when fault finding the front panel keyboard circuitry and display bus. Any display bus time-out error will be reported.

If A13S2 #1 switch is set to "0" the keycode is read and displayed only when a keyboard interrupt occurs. A decimal point in the RESULT display is flashed to indicate interrupts. This test will report key bounce errors (two interrupts within 50ms of each other) but not display bus time-out errors. Like the display test, the keyboard tests never terminate. Key codes (in hexadecimal) are shown with their keys in the following figure, ie 11 is displayed in the RESULT display when GAIN is pressed.

Hexadecimal Key Codes

Note: Hexadecimal "B" and "D" appear in lower case ("b") and ("d") on display.

6. Signature Analysis for the 6821 PIA (11000)

This item runs a signature analysis stimulus program for testing the PIA. Note that this test assumes port A of the PIA is working so that the switches can be read See General Service Sheet G3 Processor and Memory.

7. Signature Analysis for the 8291A HP-IB CHIP (11001)

This item runs a signature analysis stimulus program for testing the 8291A HP-IB interface chip and bus transceivers. See General Service Sheet G3 Processor and Memory.

8. Signature Analysis for the Instrument/Display Bus (11010)

This item runs a signature analysis stimulus program for testing the instrument and display data buses. See General Service Sheet G3 Processor and Memory.

9. Signature Analysis for the A14 Assembly (11011)

This item runs a signature analysis stimulus program for testing the A14 Memory board. See General Service Sheet G3 Processor and Memory.

10. Processor Bus Exerciser (11100)

This drives the address and data lines of the processor with the data patterns listed below. This is useful for examining the bus switching waveforms and ROM and RAM timing on an oscilloscope. Before entering the following 23 cycle loop, the A register is loaded with 055H and the B register with 0AAH.

CYCLE	Instruction	VMA	LWRITE	Address	Data
1	STAA 05555H	1	1	????	0B7H
2		1	1	????	055H
3		1	1	????	055H
5		0	1	05555H	tri-state
6		1	0	05555H	055H
7	STAB 0AAAAH	1	1	????	0F7H
8		1	1	????	0AAH
9		1	1	????	0AAH
11		0	1	0AAAAH	tri-state
12		1	0	0AAAAH	0AAH
13	CLR 00000H	1	1	????	07FH
14		1	1	????	000H
15		1	1	????	000H
16		1	1	00000 H	000H
17		0	1	00000H	tri-state
18		1	0	00000H	000H
20	BRA \$-009H	1	1	????	020H
21		1	1	????	OF 5H
22		0	1	????	????
23		0	1	????	????

Address and data bus contents marked ???? depend on the absolute location of the code. This will vary with software revision, but is somewhere in the range 0E000H . . OFFFFH.

11. Display Bus Exerciser (11101)

This is similar to the processor bus exerciser but applies to the display bus. This enables display bus and handshake switching to be observed on an ocilloscope.

The code executed in this test is ...

	CLR	00F90H	turn display off
	LDAA	#055H	
Loop	LDAB	00F80H	read keyboard port
	STAA	00FAAH	write 055H to display RAM
	LDAB	00FAAH	check read display RAM
	COMA		
	STAA	00FAAH	write OAAH to display RAM
	LDAB	00FAAH	check read display RAM
	BRA	Loop	

12. Instrument Bus Exerciser (11110)

As above, but for the instrument bus. This uses the bus Self Test ports on A3, so this board must be loaded and preferably working.

The code executed in this test is ...

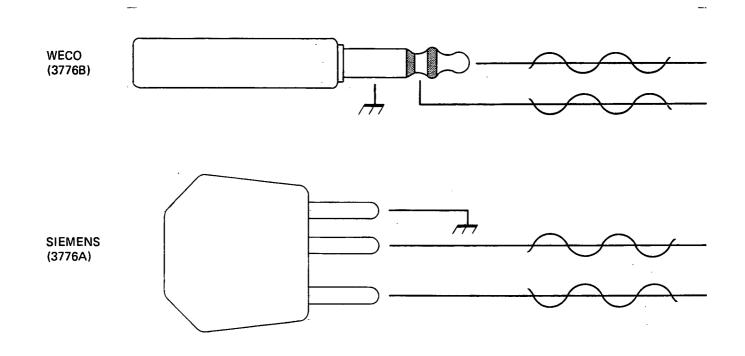
	LDAA	#055H	
Loop	STAA	00FEAH	write 055H to port 2A
	LDAB	00FD5H	check read from port 15
	COMA	,	
	STAA	00FEAH	write 0AAH to port 2A
	LDAB	00FD5H	check read from port 15
	BRA	Loop	

13. A13 Led Check (11111)

This test checks the leds on the A13 board work correctly. On entry to the test all the leds are cleared. After a one second pause the nine leds CR1 thru CR5, IT0, DT0, PON ERR and IRQ are lit in turn, each for half a second. Finally all the leds are lit together (including the HALT led).

G1-51 PROTECTIVE FUSING

G1-52 Apart from the MAINS POWER FUSE located on the 3776 rear panel, protective fusing is provided on the following assemblies:


~	
Ser	vice
~ ~ ~	

Assembly	Fuse Ref	Description	Spare Fuse Ref
A2 (3776A)	F1	Ext. Clock I/P	F2
A102 (3776B)	F1	Ext. Clock I/P	F2
A7 (3776A)	F2	Dig Tx O/P	F1
A107 (3776B)	F2	Dig Tx O/P	F 1
A12	F1	Dig Rx I/P	F2
A15	Fl	AUX PWR Supply	_
A16	F1&F2	PWR Supply Drivers	-
A24	F2&F3	AUX Transformer Primary	-

G1-53 BALANCED LINES AND CONNECTORS

G1-54 Balanced lines are used extensively where wire pairs are run in a noisy environment. The signal is impressed on two wires such that the signal on each wire is 180 degrees out of phase with respect to the other wire. Since most noise is coupled into each line equally, it can easily be separated from the signal. The unwanted noise is referred to as the common mode signal. Common mode rejection in a balanced line is sometimes referred to as Longitudinal Balance.

G1-55 The balanced output/input connectors used in the 3776 are the Siemens Type connector (3776A Only) and the Weco Type connector (3776B Only). Note: when connecting an UNBAL line to a BAL Input, always connect the UNBAL ground to one of the BAL signal connections and the UNBAL signal to the other BAL signal connection.

Model 3776A/B

.

.

GENERAL SERVICE SHEET G2 POWER SUPPLY

Paragraph	G2-1 G2-3 G2-4 G2-11 G2-13	INTRODUCTION.Page 8-G2-1MAINS FUSE BLOWN.8-G2-1A15 LED ILLUMINATED.8-G2-2FAULTY REGULATION.8-G2-3THE SWITCHING POWER SUPPLY A15/A168-G2-4
Figure	G2-1	Faulty Regulation Page 8-G2-3

.

.

G2

GENERAL SERVICE SHEET G2 POWER SUPPLY

G2-1 INTRODUCTION

G2-2 This service sheet covers troubleshooting of the mains input wiring and assemblies A24, A15 and A16. The main sections are:

- a. Mains Fuse Blown
- b. A15 LED Illuminated
- c. Faulty Regulation
- d. Switching Power Supply Troubleshooting

G2-3 MAINS FUSE BLOWN

CAUTION

If fuse F1 is blown, adhere to the procedure given below. Missing out a step could result in damage to components.

Procedure				Troubleshooting
1.	If F1 is blown, switch off the instrument. Replace mains fuse F1 and check the follow- ing resistances:			If incorrect, check the wiring between mains socket and Assembly A24 (see Assembly Service Sheet A24).
	Line to Earth: o Neutral to Eart Chassis to Eartl	h: open circui	t	·
2.	With the instrument POWER switch still on, check the resistance between line and neutral:			If incorrect, remove assemblies A16 and A15 ar recheck. If still incorrect fault is on Assemb A24 (see Assembly Service Sheet A24). Suspe Mains Overvoltage Protection on A24. If corre with A15 and A16 removed, proceed Switching Power Supply Troubleshooting.
	Position of Voltage Selector	Correct Resistance		

G2-4 A15 LED ILLUMINATED

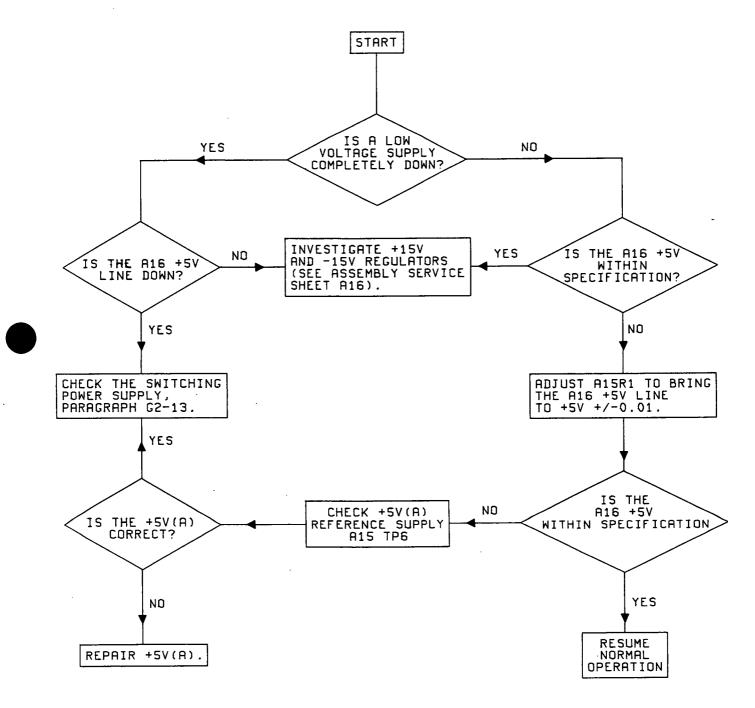
G2-5 Over-Temperature Detector

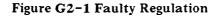
G2-6 The OVER TEMP led is most likely to be illuminated when the instrument cooling is defective. Check fan operation.

G2-7 Over-Current Detector

G2-8 This led indicates an overload in one of the low voltage outputs. To determine which low voltage supply is affected, switch off the instrument and check for a short circuit between each supply line and ground. Remove boards one at a time to locate the fault. Maximum current drawn from the low voltage supplies is as follows:

+5V = 10A max +15V = 1A max -15V = 0.5A max


Note: It is likely that only the +5V line will bring on the Over-Current led.


G2-9 Over-Voltage Detector

G2-10 The over-voltage led can be illuminated when over-voltage occurs in either the UNREG +15V or the +15V and -15V regulated lines. The over-voltage supply can be determined using a DC Voltmeter.

G2-11 FAULTY REGULATION

G2-12 Faulty regulation occurs when the low voltage lines (i.e. +5V, +15V and -15V) are completely down or when the voltage is out of specification. The following flow chart shows the procedure to be adopted in each case.

G2-13 THE SWITCHING POWER SUPPLY A15/A16 TROUBLESHOOTING

G2-14 A15 Power Supply Controller

G2-15 Check assembly A15 using the following procedure.

Procedure	Troubleshooting
Switch the 3776 power off.	
Remove assembly A16 and place A15 on the extender board.	
Switch the 3776 power on.	
Auxiliary Power Supply	
Check that approximately $12VDC$ is present across bridge rectifier CR4. Waveform should correspond as shown.	If incorrect, check Auxiliary Transformer T1 (see A24 Schematic). Also check bridge rectifier CR4. Check regulators Q1/CR6 and U13.
A15CR4+ ov 0V 0V 0.5V/DIV (10:1 PROBE) 5ms/DIV Check that V _{BD} is 8.5V ± 0.5V, +5V(A) is +5V ±0.1V, and +V _{AUX} is +13V ±0.5V. Note: V _{BD} : A15TP7 +5V(A): A15TP6 +V _{AUX} : A15U13(1)	
	Remove assembly A16 and place A15 on the extender board. Switch the 3776 power on. Auxiliary Power Supply Check that approximately 12VDC is present across bridge rectifier CR4. Waveform should correspond as shown. A15CR4+ OV 0V 0.5V/DIV (10:1 PROBE) 5ms/DIV Check that V _{BD} is 8.5V ± 0.5V, +5V(A) is +5V ±0.1V, and +V _{AUX} is +13V ±0.5V. Note: V _{BD} : A15TP7 +5V(A): A15TP6

	Procedure	Troubleshooting
	Mains Power Detector	
6.	Check that A15TP2 is high (ie Not L POWER FAIL). Note: Power failure can be simulated by shorting U37(14) to GND. Check continuity of the LPWR FAIL signal to A13. Remember to remove link.	Check the operation of CR5, U37A, U55 and U54.
7.	Check that U37B(13) is high.	If U37B is not high and none of the leds are il- luminated, fault must be in U37B. Check that V_B at U37B(10) is approximately 1.5V.
	Overload Protection and Reset Control	
8.	Check that $U37C(1)$ is high and $U37D(2)$ is low.	Check the operation of U37C and U37D. Check that V_B is approximately 1.5V.
	Variable Pulse Generator	
9.	Check that Base Drive 1, A15TP5, and Base Drive 2, A15TP8 correspond to the waveforms shown.	Check the operation of U33 and Q3/Q2. U33 in- ternal oscillator clock at A15TP9 should cor- respond to the waveform shown.
	A15TP5 0V A15TP8 0V 0.05V/DIV (10:1 PROBE) 20µs/DIV	A15TP9 ov 0.2V/DIV (10:1 PROBE) 20µs/DIV

G2-16 A16 Power Supply Converter

G2-17 Check assembly A16 using the following procedures.

Procedure	Troubleshooting
1. Switch the 3776 power off and remove power cable.	
2. Remove fuse A15F1 and insert in the A15 F2 position.	
3. Connect a DC Power Supply to A15TP11.	
A16 Inverter Drivers	
 Unsolder fuses A16F1 and A16F2 as shown below. 	
BOARD A16F1 A16F2	
Mount A16 on the extender board	
Adjust the DC Power Supply output to give $+12V \pm 1V$.	
. With the mains power switched off, check that Inverter Drive outputs correspond to the waveforms shown. Connect oscillocope probes to A16F1 and A16F2.	Check the operation of inverter drivers Q7, T3, Q3, Q5 and Q8, T4, Q4, Q6.
F1 BASE DRIVE 1 OV	
OV F2 BASE DRIVE 2	
0.1V/DIV (10:1 PROBE) 20µs/DIV	

-

Í

Procedure	Troubleshooting
A16 Transformer Switching Circuit	
8. Check the fuses A16F1 and A16F2 and replace into A16.	
9. Connect the 3776 mains power cord to a mains auto-transformer, set for OV.	
10. Switch the 3776 power on.	
WARNING	
Potentially hazardous voltages are now present on A16.	
11. Slowly run up the auto-transformer towards mains voltage, checking for excessive current.	
12. Check the that the following waveforms are present at the anodes of A16CR3 and A16CR4.	Check operation of switching transistors A16Q and A16Q2 and transformer A16T1.
СR3 OV СR4 OV 1V/DIV (10:1 PROBE) 10µs/DIV	
 Check that the +5V UNSMOOTHED voltage is present at A16C20. 	Check the operation of +5V Rectifier.
14. Check that the following waveform is present at A16 edge connector 39, 87.	If pulses are not present, check A16R3 an A16T2.

Procedure	Troubleshooting
OV	
0.02V/DIV (10:1 PROBE)	
15. Switch the DC Power Supply and Auto-transformer off.	
16. Disconnect the DC Power Supply and Auto-transformer.	
17. Replace A15 fuse into the A15F1 position.	
18. Remove the extender board and replace A16.	

GENERAL SERVICE SHEET G3 PROCESSOR AND MEMORY

•

Paragraph	G3-1	INTRODUCTION Page	8-G3- 1
	G3-5	A13 PROCESSOR CLOCKS AND RESET CIRCUITRY	
	G3-6	A13 PROCESSOR, ADDRESS BUFFERS/BUS	-
		AND ADDRESS DECODER	8-G3- 2
	G3-7	A13 KEYBOARD BUS AND INSTRUMENT HANDSHAKE	U –
		CONTROL	8-G3- 4
	G3-8	INSTRUMENT ADDRESS BUS INTERFACE	-
	G3-9	BUS HANDSHAKE TIMEOUT	
	G3-10	A13 DATA BUS AND U36 ROM VERIFICATION	
	G3-11	A13 PIA U24	
	G3-12	A13 HP-IB INTERFACE ADAPTOR U55	• •
		AND DRIVERS/RECEIVERS U65/U75	8-G3- 8
	G3-13	INSTRUMENT DATA BUS INTERFACE U62/INSTRUMENT BUS	8-63-11
	G3-14	A13 KEYBOARD DATA BUS INTERFACE U52/KEYBOARD	_
		DATA BUS	8-G3-11
	G3-15	A13 LED CHECK	8-G3-12
	G3-16	A14 ROM ADDRESS DECODER	8-G3-12
	- G3-17	A14 NON-VOLATILE RAM POWER SUPPLY	8-G3-14
	G3-18	A14 NON-VOLATILE RAM	8-63-15
	G3-19	A14 ROM CRC	8-G3-15

.

G3

GENERAL SERVICE SHEET G3 PROCESSOR AND MEMORY

G3-1 INTRODUCTION

G3-2 This service sheet covers troubleshooting for assemblies A13 (03776-60013) and A14 (03776-60014): 3776A; A114 (03776-60114): 3776B; A214 (03776-60214): 3776B Japanese Option.

G3-3 Signature analysis (SA) is used extensively in the troubleshooting of A13 and A14. When using SA, thresholds should be set as follows:

DATA (TTL): high = 2.00V, low = 0.80V CLOCK (TTL): 2.00V ST-SP (TTL): 2.00V

Note that the clock and Start/Stop thresholds are non-standard. This is to increase noise immunity when connected to the NMOS components (68B00 processor and 6875 clock chip).

G3-4 Troubleshooting must be carried out in the following sequence:

- 1. A13 Processor Clocks and Reset Circuitry
- 2. A13 Processor, Address Buffers/Bus and Address Decoder
- 3. A13 Keyboard Bus and Instrument Handshake Control
- 4. Instrument Address Bus Interface
- 5. Bus Handshake Timeout
- 6. A13 Data Bus and U36 ROM Verification
- 7. A13 PIA U24
- 8. A13 HP-IB Interface Adapter U55 and Drivers/Receivers U65/U75
- 9. A13 Instrument Data Bus Interface U62/Instrument Data Bus
- 10. A13 Keyboard Data Bus Interface U52/Keyboard Data Bus
- 11. A13 LED Check
- 12. A14 ROM Address Decoder
- 13. A14 Non-Volatile RAM Power Supply
- 14. A14 Non-Volatile RAM
- 15. A14 ROM CRC

G3-5 A13 PROCESSOR CLOCKS AND RESET CIRCUITRY

1. Using an oscilloscope and frequency counter check that the following clocks are present.

Note: If any of the clocks cannot be obtained, remove the processor chip U31 and recheck. Remember to replace U31 after performing this check.

> PCLK (U10 pin 10) = Squarewave; 8.192MHz (3776A) 9.264MHz (3776B)

> 2F0 (U20 pin 5) = Squarewave; 2.048MHz (3776A) 2.316MHz (3776B)

Note: 2F0 is a quarter the frequency of PCLK.

MCLK (U20 pin 9) = Squarewave; 1.024MHz (3776A) 1.158MHz (3776B)

Note: MCLK is an eighth the frequency of PCLK

DBE (U35 pin 8) = As MCLK, but 3:1 mark-to-space ratio.

- 2. Check that when Reset switch A13S1 is pressed, U43(9) goes high and U22(4) goes low. Ensure that L PWR ON is not stuck at OV.
- 3. Check the continuity of LPWR FAIL from A15TP2 to A13U24(40). This can be checked by momentarily shorting A15TP2 to GND.

G3-6 A13 PROCESSOR, ADDRESS BUFFERS/BUS AND ADDRESS DECODER

- 1. Set the MD0 to MD7 bus link TL1 in the SA socket. This sets the processor in the "free run" mode and causes it to cycle through all the memory locations. Set links TL2 and TL3 to the TEST position. This enables the LAC and L KBD SC signals to be looped back.
- 2. With the power switched off, remove assembly A14.
- 3. Set the HP5005A function to NORM and connect as follows:

GROUND to GND CLK to A13 2F0 test point. Polarity; positive edge START to A13 15 test point. Polarity; negative edge STOP to A13 15 test point. Polarity; negative edge

Note: see Paragraph G3-3 for threshold settings.

4. Switch the power on and check the following signatures.

Assembly	Logic Function	Signature
A13	U31 Processor	U31 pin 2 P757 always logic 1 U31 pin 3 2U52 U31 pin 5 P757 always logic 1 U31 pin 6 P757 always logic 1 U31 pin 7 0000 always logic 0 U31 pin 9 67P9 U31 pin 10 58P3 U31 pin 11 548F U31 pin 12 404U U31 pin 13 UUP5 U31 pin 14 24A8 U31 pin 15 272H U31 pin 16 U038 U31 pin 17 P95A U31 pin 18 8619 U31 pin 18 8619 U31 pin 19 29C9 U31 pin 20 FU8A U31 pin 22 69F8 U31 pin 23 P064 U31 pin 24 0005 U31 pin 24 0005 U31 pin 3 P757 always logic 1 U31 pin 34 P757 always logic 1 U31 pin 37 F085 F805 (3776A)
A13	Address Buffers	U51 pin $3 - MA1$ 58P3 U51 pin $5 - MA3$ 404U U51 pin $7 - MA5$ 24A8 U51 pin $9 - MA7$ U038 U51 pin 12 - MA6 272H U51 pin 14 - MA4 UUP5 U51 pin 16 - MA2 548F U51 pin 18 - MA0 67P9 U61 pin $3 - MA8$ P95A U61 pin $5 - MA9$ 8619 U61 pin $7 - MA10$ 29C9 U61 pin $9 - MA11$ FU8A U61 pin 12 - MA12 69F8 U61 pin 14 - MA13 P064 U61 pin 18 - MA15 0003

•

Assembly	Logic Function	Signature	
A13	Address Decoder	U12 pin 11 - LNVEN	FH2P
1115		U21 pin 2	26HU
		U22 pin 6	PC9P
		U22 pin 8	755U
		U22 pin 10	*264U
		U23 pin 11	*24A8
		U33 pin 6 - LROMADDR	9208
		U33 pin 8	0C2H
		U33 pin 12 - LROME	3462
		U35 pin 3 - LBUSEN	F7F3
		U35 pin 6 - LADDROF	PC61
		U35 pin 11	898H
		U44 pin 8 - LRAM	31 P 8
		U63 pin 14	F118
		U63 pin 15 - LADDRO	F188
		U64 pin 4 - LPIA	78AA
		U64 pin 5 - LHP-IB	3H8P
		U64 pin 6 - LKBDEN	2737
		U64 pin 7	0FF9
		U73 pin 8	8U08

Note: *Set SA CLOCK to negative edge for these signatures.

G3-7 A13 KEYBOARD BUS AND INSTRUMENT HANDSHAKE CONTROL

1. With TL1 in the SA socket and TL2 and TL3 set to TEST, set the HP5005A as shown and check the following signatures.

GROUND to GND Test Point. CLOCK to 2F0 Test Point. Polarity; negative edge. START to A15 Test Point. Polarity; negative edge. STOP to A15 Test Point. Polarity; negative edge.

Note: see Paragraph G3-3 for Threshold settings.

Assembly	Logic Function	Signature
A13	Keyboard Bus and Instrument Bus Handshake Control	U54 pin 1 2094 U54 pin 4 F060 U34 pin 6 7913 U12 pin 6 P757 U12 pin 3 P757 U43 pin 13 2094 U43 pin 7 F060 U44 pin 6 07A3 U13 pin 9 99P7 U54 pin 13 F7F3 U54 pin 10 2737 U34 pin 8 0000 always logic 0 U34 pin 12 0000 always logic 0

G3-8 INSTRUMENT ADDRESS BUS INTERFACE

1. With TL1 in the SA socket and TL2 and TL3 set to TEST, set the HP5005A as shown and check the following signatures.

FUNCTION TO QUAL GROUND to GND Test Point CLOCK to 2F0 Test Point. Polarity; negative edge ST-SP to A15 Test Point. START; negative edge. STOP, negative edge QUAL to LKBDSC Test Point. Polarity; 0

Note: see Paragraph G3-3 for Threshold settings.

Assembly	Logic Function	Signature	
A13	Data Bus Interface (Address)	U71 pin 9 - A0 U71 pin 12 - A1 U71 pin 7 - A2 U71 pin 14 - A3 U71 pin 5 - A4 U71 pin 16 - A5 U71 pin 3 - LKBDRW	P5PH 5CP0 7P25 85PA 77F7 6PCP CC34

G3-9 BUS HANDSHAKE TIMEOUT

1. This makes use of the HP5005A timing function to check the delay of the timeout monostable U13. Test link TL1 should remain in the SA position for free run mode. Test links TL2 and TL3 should be removed completely so as to cause a timeout when an instrument bus or display bus address is referenced. Set the HP5005A function to ms and connect leads as follows:

START to LSC Test Point. Polarity; negative edge STOP to LSC Test Point. Polarity; positive edge

2. Check that the time displayed is between 9.8ms and 8.8ms. Time variations are due to the tolerance of the timing capacitor C4 and quantising by the processor clock.

Note: 9.8ms equals 0.0098 displayed on the SA. This might be confusing as the range specified on the 5005A is in ms.

G3-10 A13 DATA BUS AND U36 ROM VERIFICATION

- 1. Ensure that Assembly A14 is removed.
- 2. Test links A13TL2 and A13TL3 should be in the NORM position.
- 3. Set A13TL1 to the SA socket and switch the power on.
- 4. Set the HP5005A function to NORM and connect leads as follows:

GROUND to GND test point CLOCK to MCLK test point. Polarity; negative edge START to A15 test point. Polarity; positive edge STOP to A15 test point. Polarity; negative edge

Note: See Paragraph G3-3 for Threshold settings.

5. Check that the following signatures can be obtained.

Note: These signatures depend on the software revision. If signatures are incorrect, check if a new revision of software has been installed. This will be covered in the Service Manual Change Sheet. The signatures given here are derived from ROM U36 date code 2338 (HP 03776-80054). See Instrument Identification procedure given in General Service Sheet G1 for ROM date code retrieval.

Assembly	Signatures	Logic Function
A13 U36 ROM		U36 pin 11 - MD0 H7H0 U36 pin 12 - MD1 8672 U36 pin 13 - MD2 73P0 U36 pin 15 - MD3 U2F4 U36 pin 16 - MD4 9PC8 U36 pin 17 - MD5 096F U36 pin 18 - MD6 HP95 U36 pin 19 - MD7 A634

G3-11 A13 PIA U24

- 1. Switch the power off and replace assembly A14.
- 2. Set A13 TL1 and TL3 to the NORM positions. Set TL2 to the TEST position. This enables LSC to be used as an SA START/STOP signal. Set the HP5005A function to NORM and connect the leads as follows:

GROUND to GND test point CLOCK to MCLK test point. Polarity; negative edge START to LSC test point. Polarity; negative edge STOP to LSC test point. Polarity; negative edge

Note: See Paragraph G3-3 for threshold settings.

- 3. Switch the power on. Set A13S2 to 11000 and press reset button A13S1.
- 4. When the A13 green leds stop at 01001, set the A13S2 switches to 00000 (i.e. all open). All the leds on the A13 board except HALT should then come on at half brightness.
- 5. Check the following signatures:

Note: When the PIA signature analysis has been completed set A13TL2 to the NORM position.

Assembly	Logic Function	Signatures	
A13	Peripheral Interface Adapter (PIA) U24	U24 pin 40 - LPFAIL U24 pin 39 U24 pin 2 U24 pin 3 U24 pin 4 U24 pin 5 U24 pin 6 U24 pin 7 U24 pin 7 U24 pin 8 U24 pin 9 - 6441 (3776B) U24 pin 10 U24 pin 11 U24 pin 12 U24 pin 13 U24 pin 14 U24 pin 15 U24 pin 16 U24 pin 17	0AU0 8122 18A2 7A4H F61F 033U CA40 84CP 8HF8 0AU0 (3776A) U862 FHP9 3U18 P00F 0AP9 C612 3637 802C

CAUTION

At the end of this test, with A13S2 set to 00000, press the A13S1 reset button or power off then on. The PIA chip U24 could be damaged if this is not done.

If the PIA is faulty the chances are that this test cannot be selected (the switches are read via the PIA). If there is difficulty in selecting this test, and all the signatures are correct in the processor free run mode then the PIA is faulty.

G3-12 A13 HP-IB INTERFACE ADAPTER U55 AND DRIVERS/ RECEIVERS U65/U75

1. The HP-IB check tests most of the HP-IB Interface and transceiver signals. The Interface chip U55 is configured as a talk only and listen only device which allows data bytes to be written and read from the bus.

CAUTION

Remove any connections to the rear panel HP-IB connector before performing these checks. The HP-IB Drivers/Receivers could be damaged if this is not done.

2. Set the HP5005A function to NORM and connect the leads as follows:

GROUND to GND Test Point CLOCK to MCLK Test Point. Polarity; negative edge START to TP1 Test Point. Polarity; negative edge STOP to TP1 Test Point. Polarity; negative edge

Note: See Paragraph G3-3 for threshold settings.

3. Set the A13S2 switches to 11001 and press the A13S1 reset button. When the green leds stop at 01001, check the following signatures.

Assembly	Logic Function	Signatur	re
A13	HP-IB Interface	U55 pin 1 - TR1	8U41
	Adapter	U55 pin 2 - TR2	8U41
	-	U55 pin 8	FHC4
		U55 pin 9	5FU3
		U55 pin 10	2UAF
		U55 pin 11	2799
		U55 pin 12 - MD0	52 P 4
		U55 pin 13 - MD1	
		U55 pin 14 - MD2	738U
		U55 pin 15 - MD3	91UA
		U55 pin 16 - MD4	C192
		U55 pin 17 - MD5	PC6C
		U55 pin 18 - MD6	P3U7
		U55 pin 19 - MD7	FF8A
		U55 pin 21 - MA0	57 P 8
		U55 pin 22 - MA1	**U204
		U55 pin 23 - MA2	**46U4
		U55 pin 27 C625	
		U55 pin 28 320A	
		U55 pin 29 U44P	
		U55 pin 30 66AC	
		U55 pin 31 AUPF	
		U55 pin 32 HUC7	
		U55 pin 33 5172	
		U55 pin 34 6169	
		U55 pin 35 9PC0	
			oe tip flashes
		U55 pin 37 735U - logi	
		U55 pin 39 02UC	
A13	Drivers/Receivers	U65 pin 16 - E01 020	
		-	U41
		-	JC7
		U65 pin 20 - DI06 51	
		U65 pin 21 - DI07 61	69

Assembly	Logic Function	Signature
		U65 pin 22 - DI08 9PC0 U65 pin 23 - DAV 735U ensure that the probe tip flashes
		U75 pin 18- NRFD735U always logic 1U75 pin 19DI01320AU75 pin 20- DI02U44PU75 pin 21- DI0366ACU75 pin 22- DI04AUPFU75 pin 23- SRQC625

**Note: The signatures given were derived from A13U36 ROM datecode 2338 (HP Part Number 03776-80054). See Instrument Identification procedure given in General Service Sheet G1 for ROM datecode retrieval.

G3-13 INSTRUMENT DATA BUS INTERFACE U62/INSTRUMENT BUS

- 1. This check tests the Instrument Data Bus Interface. If the signatures are correct, then we can assume that the Instrument Data Bus is NOT faulty.
- 2. Set the HP 5005A FUNCTION to QUAL and connect the leads as follows:

GROUND to GND test point CLOCK to MCLK test point. Polarity; negative edge ST/SP to TP1 test point. START; negative edge. STOP; negative edge QUAL to LSC test point. Polarity; 0

Note: See paragraph G3-3 for threshold settings.

3. Set the A13S2 switches to 11010 and press the A13S1 reset button. Check that the following signatures can be obtained.

Assembly	Logic Function	Signature
A13	Data Bus Interface (keyboard)	U62 pin 9 - D0 96PF U62 pin 8 - D1 725C U62 pin 7 - D2 P5PH U62 pin 6 - D3 5CP0 U62 pin 5 - D4 7P25 U62 pin 4 - D5 8 5PA U62 pin 3 - D6 77F7 U62 pin 2 - D7 6PCP

G3-14 A13 KEYBOARD DATABUS INTERFACE U52/KEYBOARD DATA BUS

- 1. Set the HP5005A FUNCTION to QUAL.
- 2. Connect the HP 5005A as follows:

GROUND to GND Test Point GLOCK to MCLK Test Point. Polarity; negative edge ST-SP to A13 TP1 Test Point. Polarity; START; negative edge STOP; negative edge QUAL to LKBDSC Test Point. Polarity; 0

Note: See paragraph G3-3 for Threshold settings.

- 3. Set the A13S2 switches to 11010 and press the A13S1 reset button.
- 4. Check that the following signatures can be obtained.

Assembly	Logic Function	Signature
A13	Data Bus Interface (Keyboard)	U52 pin 9 - KBD0 96PF U52 pin 8 - KBD1 725C U52 pin 7 - KBD2 P5PH U52 pin 6 - KBD3 5CP0 U52 pin 5 - KBD4 7P25 U52 pin 4 - KBD5 85PA U52 pin 3 - KBD6 77F7 U52 pin 2 - KBD7 6PCP U71 pin 3 - LKBDRW 0000 clock

G3-15 A13 LED CHECK

- 1. This check tests that the leds on A13 work correctly.
- 2. Set the A13S2 switches to 11111 and press the reset button A13S1.
- 3. Check that all leds are cleared, then after aproximately a one second pause the nine leds CR1 to CR5, IT0, DT0, PONERR and IRQ are lit in turn (each for half a second). Finally all the leds are lit together (including the HALT led).

G3-16 A14 ROM ADDRESS DECODER

- 1. Ensure A13TL1, TL2 and TL3 are set to the NORM position.
- 2. Switch the power off. Mount A14 on the extender board and with the HP5005A set to NORM connect up as follows:

GROUND to GND Test Point CLOCK to A13 2F0 Test Point. Polarity; positive edge START to A13TP1 Test Point. Polarity; negative edge STOP to A13TP1 Test Point. Polarity; negative edge

Note: See Paragraph G3-3 for Threshold settings.

- 3. Switch the power on. Set the A13S2 switches to 11011 and press the A13S1 reset button.
- 4. Check the following signatures:

Note: Some of these signatures depend on the software revision of A13U36. If signatures are incorrect, check if a new revision of software has been installed. This will be covered in the Service Manual Change Sheet. The signatures given here are derived from ROM U36 datecode 2338 (HP03776-80054). See Instrument Identification procedure given in General Service Sheet G1 for ROM datecode retrieval.

Assembly	Logic Function	Signature
A14	*3776B only. These signatures may be unstable. If unstable set the threshold of the sig- nature analyzer data probe from 2.00V to 1.8V and recheck. If still unstable then check that MD0 to MD7 toggle.	Edge con 44 - MA0 1358 Edge con 43 - MA1 FFA6 Edge con 42 - MA2 HFC6 Edge con 41 - MA3 3U83 Edge con 40 - MA4 34A0 Edge con 39 - MA5 7A96 Edge con 38 - MA6 A7UA Edge con 36 - MA8 U1AC Edge con 35 - MA9 7533 Edge con 34 - MA10 7533 Edge con 32 - MA12 72FH Edge con 32 - MA12 72FH Edge con 30 - MA14 9671 Edge con 29 - MA15 394H@ Edge con 26 - LNVEN 03FH Edge con 27 - MD1 5609* Edge con 18 - MD0 C7C1* Edge con 16 - MD2 9882* Edge con 13 - MD3 U33C* Edge con 13 - MD5 C394* Edge con 12 - MD6 HP10* Edge con 5 - LWRITE C0F7 Edge con 4 - LREAD 4C4H
A14	Note: the 3776 power on sequence tests the A14 assembly and returns error 119 if faulty. ROM Address Decoder	U54 pin 15 H3UH U54 pin 14 32A1 U54 pin 13 55PU U54 pin 12 6H4F U54 pin 11 P3HF U54 pin 10 A3P2 U54 pin 9 5C60

Note: @ Set SA CLOCK to negative edge

Assembly	Logic Function	Signature
		U55 pin 9 53C7
		U45 pin 2 9F61
		U45 pin 7 F0C8
		U45 pin 10 3C81
		U45 pin 14 - ROM1 HALF 2H2A
		U35 pin 15 A206
		U35 pin 14 867P
		U35 pin 13 574F
		U35 pin 12 U31F
		U35 pin 7 - LGDRAM EN 5P64
		U34 pin 3 U847
		U34 pin 6 53C7
		U34 pin 11 - LRAM 2877
		U34 pin 8 6CU8

G3-17 A14 NON-VOLATILE RAM POWER SUPPLY

The following checks test the battery back-up circuitry for the Non-Volatile RAM (NVM). These checks should be implemented if the NVM is corrupted during power down.

WARNING

In the event of battery replacement, the old battery should not be incinerated or mutilated. It might burst or release toxic materials, causing personal injury.

- 1. Remove the processor card A13.
- 2. Remove test link TL1 from A14.
- 3. Without power applied to the board, measure the battery voltage with a high impedance multimeter (e.g. HP 3435A). Black lead to GND, Red lead to BATT VOLTS test pin. This should read in the range 2.75 to 2.82 volts. If less, make sure the board is CLEAN and DRY. The battery has a very high internal impedance and any moisture will tend to reduce its voltage.
- 4. Move the black lead from GND to the BATT CURRENT test pin and change the meter range to 200uA. The cmos RAM U43 is now connected to the battery via the meter. The current taken by the RAM should be typically unmeasureable. If greater than 1uA suspect (i) wet or dirty board, (ii) leaky C1, C2, Q1 or Q2, (iii) out-of-spec cmos RAM U43.
- 5. Apply power to the board with the meter still connected as above. The battery will now be trickle charging from the +5V rail. The meter reading should be approximately -0.7uA.
- 6. Remove the power and disconnect the meter. Replace test link TL1. Set the meter range to 20V DC and connect the black lead to GND, red lead to RAM volts. This measures the standby voltage at the RAM chip. This should be >2.5V.

- 7. With the meter still connected as in step 6, apply power to the board. The RAM voltage should be >4.8V. If not, check the +5V within specification. (See Section 5 Adjustments). If +5V rail is okay, suspect Q2. This should not drop by more than 0.15V.
- 8. Replace Assembly A13.

G3-18 A14 NON-VOLATILE RAM

This check runs the RAM rest on the NVM RAM A14U43. An error is displayed if this check fails.

Note: After this check, the four NVM areas within the memory are reset to a default condition. The configuration saved at the last power-fail and the dialling tables are replaced by default values taken from ROM. The measurement parameter store and the sequence are cleared.

- 1. Set the A13S2 switches to 10010.
- 2. Press A13S1 reset button and check that no errors are displayed.
- 3. If an error is displayed (assuming previous checks have been performed successfully) then A14U43 is faulty.

G3-19 A14 ROM CRC

This check tests the existence and CRC of all processor ROMS. As each ROM is checked an identifier is displayed in the LEVEL display. If any ROM is missing or corrupt an error is displayed opposite the ROM identifier.

Note: The current revision of software does not use ROM 23 and this should be faulted as missing.

- 1. Set the A13S2 switches to 10011 and press the A13S1 reset button.
- 2. Check that the following identifiers are displayed:

ROM	DISPLAYED ID	LOCATION
ROM E	"E"	A13U36
ROM C	"C"	A14U22
ROM A	"A"	A14U12
ROM 8	"8"	A14U22
ROM 6	"6"	A14U32
ROM 4	"4"	A14U42
ROM 20	"2.0"	A14U41
ROM 21	"2.1"	A14U31
ROM 22	"2.2"	A14U21
ROM 23	"2.3"	A14U11
ROM 1	"1"	A14U23

Note: The Group Delay RAM A14U33 is checked during Power-on sequence. See General Service Sheet G1. Also ROM23 (A14U11) is not used at firmware revision 2338 and will return Error 101. Model 3776A/B

.

.

8-G3-16

GENERAL SERVICE SHEET G4 KEYBOARD AND DISPLAY

-

Paragraph		
	G4-4	REFERENCES
	G4-6	FRONT PANEL DISPLAY 8-G4-1
	G4-8	FRONT PANEL DISPLAY TROUBLESHOOTING PROCEDURE
	G4-9	KEYBOARD TROUBLESHOOTING

Figure	G4-1	Front Panel Display	Troubleshooting Sequence	Page 8-G4-2
--------	------	---------------------	--------------------------	-------------

GENERAL SERVICE SHEET G4 KEYBOARD AND DISPLAY

G4-1 INTRODUCTION

G4-2 This service sheet covers troubleshooting for the Keyboard and Display Assembly A21 (03776-60021), and the Keyboard Controller Assembly A22 (03776-60022).

G4-3 Troubleshooting is split into two sections:

- 1. Front Panel Display
- 2. Keyboard

G4-4 REFERENCES

G4-5 Figures A21-2 and A22-9,10 (Schematics), and A21-1 and A22-8 (Component Location).

G4-6 FRONT PANEL DISPLAY

G4-7 The Front Panel Display troubleshooting sequence is outlined in Figure G4-1.

G4-8 FRONT PANEL DISPLAY TROUBLESHOOTING PROCEDURE

WARNING

MAINTENANCE DESCRIBED HEREIN IS PERFORMED WITH POWER SUPPLIED TO THE INSTRUMENT, AND PROTECTIVE COVERS REMOVED. SUCH MAINTENANCE SHOULD BE PERFORMED ONLY BY SERVICE-TRAINED PERSONNEL WHO ARE AWARE OF THE HAZARDS INVOLVED (FOR EXAMPLE, FIRE AND ELECTRIC SHOCK).

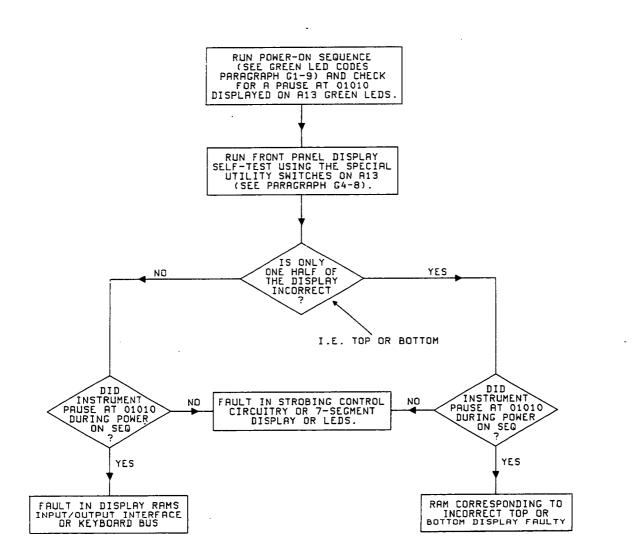
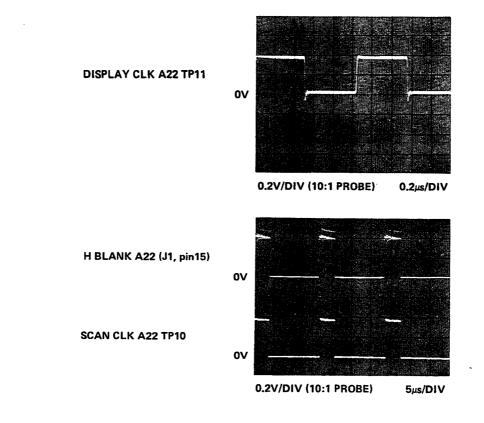
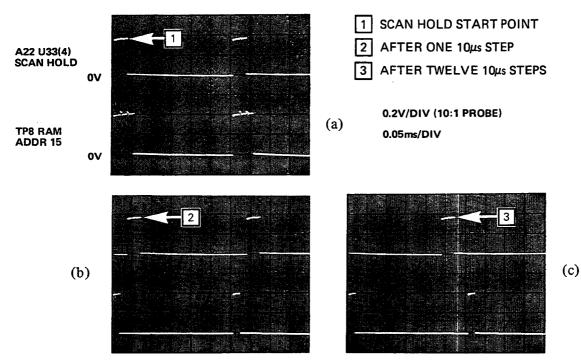



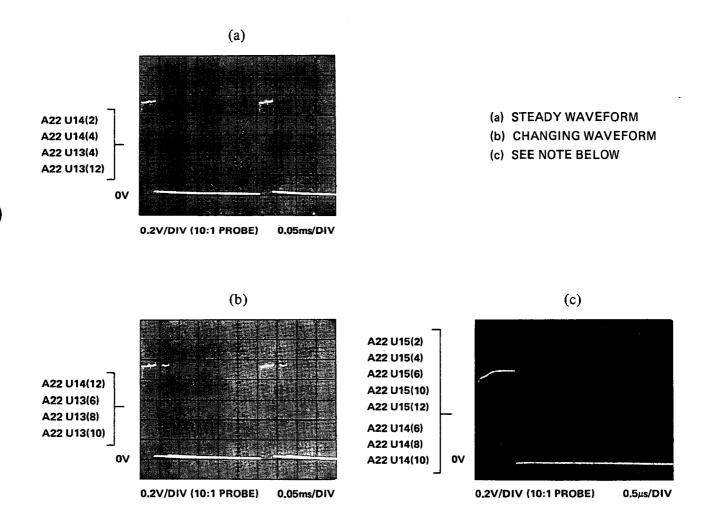
Figure G4-1 Front Panel Display Troubleshooting Sequence

- 1. Switch the instrument off and remove the top cover and p.c. assemblies retaining cover.
- 2. Switch the power on and monitor the A13 green leds. If the led sequence pauses for approximately 2 seconds at 01010 a fault is present on the Keyboard bus or the A22 Display RAMS and associated Input/Output Interfaces. Continue with the procedure.
- 3. Set the A13S2 switches to 10101 and press the A13S1 reset button. This sets the 3776 into the front panel display Self-Test mode. Check that all front panel displays and leds are illuminated. The bright-up facility scans along the FREQUENCY, LEVEL and RESULTS display (bright-up on each 7-segment lasts approximately 1.5 seconds) and the SET FREQ/SET LEVEL/OUT OF RANGE leds flash at approximately a 2Hz rate. Note the DIGITAL RECEIVE CHANNEL display illuminates only two digits.
- 4. In the Self-Test Display mode, the front panel display and led data is loaded from A13 into the Display "A" RAM and Display "B" RAM on A22, see the A22 Schematic. Display "A" RAM applies data to the top half of the front panel display and Display "B" RAM applies data to the bottom half of the display, see the A21 schematic.

- 5. If the green leds in A13 pause at 01010 during the power on sequence and only one half of the display is incorrect, then the RAM corresponding to the incorrect top or bottom display is faulty, (see the A22 and A21 schematics).
- 6. If the green leds on A13 paused at 01010, and both halves of the front panel display are incorrect, then the fault is likely to be in the Keyboard bus or the Display RAMs Input/Output Interfaces. Proceed to Step 8.
- 7. If the power-on sequence in Step 2 passed and the display is incorrect, then fault must be in the A21 Character Strobe Generator, the display bus buffers or the 7-segment displays or leds. Proceed to step 8.
- 8. Switch the 3776 power off and remove the top and bottom front panel trims.
- 9. Unscrew the front panel retaining screws (3 on top, 4 on the bottom).
- 10. Gently pull forward the front panel from the instrument.
- 11. Set the A13S2 switches to 10101 and switch the power on.
- 12. Check that the following clocks are present:

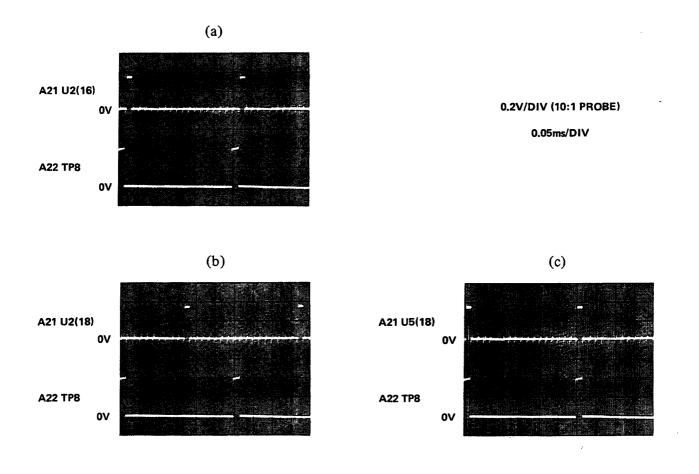

13. If any of these clocks are not present, check the A22 Clock Generator.

14. Using a logic probe check that the following signals are present. Note that all of these signals repeat approximately every 1.5 seconds.


LKBDSC	-ve pulse	A22U54(4)
LKBDAC	-ve pulse	A22U57(10)
HOLD RAM	+ve pulse	A22U56(15)
L HOLD RAM	-ve pulse	A22U56(14)
U54 ENABLE	-ve pulse	A22U56(3)
L SET DISP STATUS	-ve pulse	A22U54(14)
"A" RAM ENABLE	-ve pulse	A22U46(6)
"B" RAM ENABLE	-ve pulse	A22U47(8)

- 15. If any of the above signals are incorrect, fault must be in the A22 Display ROMS Read/Write Control and Keyboard Read Control or the Display ROMS Hold Control and Write Pulse Generator and Handshake.
- 16. Check that the following waveforms can be obtained.

Note: The SCAN HOLD pulses shift right in approximately 10us steps in relation to RAM ADDR 15 TP8. This scanning is repetitive. At the start of each scan the RAM ADDR 15 pulses increase (see waveform (a)).



- 17. If RAM ADDR 15 is not present, check the operation of the Bright-Up Comparator U50 and the Keyboard Data Input Buffer U51.
- 18. Check that a 2Hz squarewave is present at A22TP7. This may be approximately 1.5Hz.
- 19. If all steps have been completed successfully at this point and the Power-on sequence check (step 2) still pauses at 01010, then the fault must be in Display RAM "A" Read Buffer U36 or Display RAM "B" Read Buffer U37.
- 20. At this point in the procedure it is assumed that the Power-on sequence does NOT pause at 01010 (see Step 2). With the instrument running as in Step 3, check that the following display bus waveforms can be obtained.

Note: Use a scope viewing hood to see waveform (c) as the repetiton rate is approximately 1.5Hz. A logic probe can also be used to check this signal.

- 21. If any of the display bus waveforms CANNOT be obtained, then the fault is in the Bright-Up Control Logic or buffers U15 or U14 (see A22 schematic).
- 22. Switch the power off.
- 23. Unscrew the eleven screws securing assemblies A22 and A21 from the front panel and carefully separate the A21 Assembly from the front panel.
- 24. Check that the A21 strobe signals can be obtained. Waveforms a, b and c show typical strobing outputs relative to A22 RAM ADDR 15 (A22 TP8). Waveform (a) corresponds to character 0 and waveform (c) corresponds to character 15.

Note: At the start of each bright-up scan (see Step 10) pulse widths increase.

- 25. If any of the strobing outputs are not obtained, then the fault is in the corresponding Binary to Octal Decoder or Buffer.
- 26. Use the waveforms obtained in Step 20 (ie display bus signals) and Step 24 (Strobe signals) to find the faulty displays or leds.

G4-9 KEYBOARD TROUBLESHOOTING

G4-10 Introduction

G4-11 Troubleshooting is performed using the Keyboard Special Utility program selected by the A13S2 switches. The program causes A13 to either continually read the Keyboard Buffer without the Keyboard IRQ being generated, or read the Keyboard Read Buffer only when a Keyboard IRQ is generated. In both modes, the code of the key pressed is displayed on the 3776 RESULTS display.

G4-12 Procedure

- 1. Set the A13S2 switches to 10111 and press the A13S1 reset button. The A22 Keyboard Buffer is now continually read without keyboard IRQ being generated and the keycode read from the Buffer is displayed on the 3776 RESULTS Display.
- 2. Check the following when a key is pressed:
- (a) A hexadecimal code corresponding to the apropriate key (see codes in figure given) is displayed on the RESULTS display, ie when GAIN is pressed, 11 is displayed in RESULTS window.
- (b) A decimal point appears momentarily in front of the code displayed. This indicates that an IRQ is present on D7 of the word read from the Keyboard Read Buffer.
- (c) The decimal point flashes continually when keys indicated with an asterisk below are pressed and held.

(hp) 37768 PCM TERMINAL TEST SET		
HP-IB LOCAL NEWOTE LISTEN 00 ALX SNO CAL		
MEASUREMENTS MEASUREMENTS GAIN GAIN IDAE TOME OF OF OF OF OF OF OF OF OF OF OF OF OF		VAIT REFEAT S/STEP VAIT REFEAT S/STEP ALL 1' 0 ALL 1'
OTHER 51 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	(<u>1046530)</u> : 양 STATU KAN 600 900 84 600 900 84 600 900 800 800 800 800 800 800 800 800 8	Ť I
ACMER A GF C C C C C C C C C C C C C C C C C C		

Note: See step 3(f) regarding keys marked *

- 3. Troubleshooting points:
- (a) All keys dead: Suspect a fault in A22 Scan Counter, Keyboard Scanner or Y-Decoder. Check that L KEY INT is applied to the Scan Counter when a key is pressed. Check also that connector J1 is not loose.
- (b) Group of Keys dead: If a group of keys are dead on the same X or Y line, press any key on suspect scan line, and track signal through from the Scan Counter to the Y-Decoder.
- (c) Only one key dead: When key is pressed the code displayed is that of the previous key pressed. Suspect faulty key switch.
- (d) Wrong code obtained after key pressed: Suspect wrong data being latched into A22 Keyboard Read Buffer. Keep key pressed and check that the X and Y codes output from the Scan Counter respectively correspond to the co-ordinate of the key being pressed.
- (e) Decimal Point does not appear: Keyboard IRQ not being applied to D7 of the Keyboard bus. Fault in the A22 IRQ Generator or A22 U39B or U57B. Set the A13 S2 switches to 10110, press A13 S1 reset switch and check that the IRQ led on A13 is illuminated momentarily when a key is pressed. If A13 IRQ led illuminates when key is pressed but decimal point does not appear, then fault must be in the Output Buffer U57B. If A13 led does not illuminate then fault is in the A22 IRQ Generator, probably A22 U12A.
- (f) Decimal Point does not flash continuously when key indicated with an asterisk is pressed and held: Assuming that keyboard IRQs being generated, fault is in the X-Even Coder Repeat Enable Control Logic.

GENERAL SERVICE SHEET G5 DIGITAL SIGNAL SYNTHESIZER

5-4 A101 TRO 5-5 A1 TROUM	CTION Page OUBLESHOOTING PROCEDURE (3776B only) Page BLESHOOTING PROCEDURE (3776A only)	8-65- 2
5-5 A1 TROUM	BLESHOOTING PROCEDURE (3776A only)	
- (5-65- 5
5-6 A2/A102	CODEC TROUBLESHOOTING (combined 3776A/B)	8-G5- 8
5-7 HDB3/AMI	I ENCODER TROUBLESHOOTING (3776A only)	8-65-11
5-8 A102 B82	ZS/AMI ENCODER (3776B only)	3-65-13
5-9 A2 CLOCH	K SELECTION (3776A only)	3-65-15
5-10 A102 CLC	OCK SELECTION (3776B only)	3-65-16
5-11 A2/A102	LOOP TIMING (combined 3776A/B)	3-65-17
	5-7 HDB3/AM 5-8 A102 B8 5-9 A2 CLOC 5-10 A102 CL	5-7HDE3/AMI ENCODER TROUBLESHOOTING (3776A only)

Figure	G5-1	Codec Test Setup	Page 8-G5- 8
--------	------	------------------	--------------

G5

GENERAL SERVICE SHEET G5 DIGITAL SIGNAL SYNTHESIZER

G5-1 INTRODUCTION

G5-2 This service sheet covers troubleshooting for the following assemblies:

3776A:A1 Digital Synthesizer & PCM Generator (03776-60001)

A2 Digital PCM Transmitter (03776-60002)

3776B: A101 Digital Synthesizer & PCM Generator (03776-60101)

A102 Digital PCM Transmitter (03776-60102)

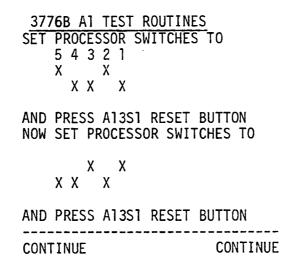
G5-3 The troubleshooting is arranged as follows:

A101 Troubleshooting Procedure (3776B only) A1 Troubleshooting Procedure (3776A only) A2/A102 Codec Troubleshooting (combined 3776A/B) A2 HDB3/AMI Encoder Troubleshooting (3776A only) A102 B8ZS/AMI (AZS) Encoder Troubleshooting (3776B only) A2 Clock Selection (3776A only) A102 Clock Selection (3776B only) A2/A102 Loop Timing (combined 3776A/B)

NOTES

1. The A1/A101 troubleshooting is performed using the SA programs available on the 3776A/B Test Program Data Cartridge (HP 03776-10001).

2. Some of the signatures depend on the software version. If signatures are incorrect, check if a new version of software has been installed. This will be covered in the Service Manual Change Sheet. The signatures given in paragraphs G5-4 and G5-5 are derived from instrument REV 2345. See Instrument Identification procedure given in General Service Sheet G1 for ROM REVcode retrieval.


G5-4 A101 TROUBLESHOOTING PROCEDURE (3776B only)

- 1. Connect the HP85 to the 3776B. Remove the top cover and mount assembly A101 on the extender board, and ensure the A13S2 processor switches are set to 00000.
- 2. Insert the 3776A/B Test Programs Data Cartridge (HP03776-10001) into the HP85.
- 3. Load the "A1B" program into the HP85 and press the HP85 RUN button.

Note: After the RUN button is pressed, the HP85 CRT display blanks for approximately 10 seconds.

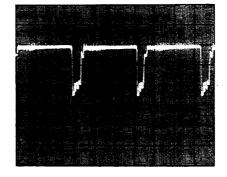
- 4. When prompted, enter the 3776B HP-IB address and press END LINE.
- 5. Check that the following is displayed.

*NOTE: The commands given at the bottom of the display (or print out) are actioned by pressing the special function keys (K1 to K8) that aligns with the command. In the example given K1 or K4 action CONTINUE

SPECIAL FUNCTION KEYS

6. Set the A13S2 Processor switches as instructed.

A101 CLK


7. Press the HP85 special function key K1 to CONTINUE. The following logic circuitry can now be selected by pressing the appropriate special function key. It is recommended that the circuitry be checked in the order given.

a.	CLOCK	K1
b.	I/FACE	K2
c.	u CODE	K 3
d.	DATA	K4

CLOCK

.

8. Press special function key K1 and check the A1 clock as instructed. The clock waveform should be as shown.

0.2V/DIV (10:1 PROBE) 0.1µs/DIV

9. Press K1 to continue.

8-G5-3

I/FACE

 Press the HP85 special function key K2 to select I/FACE troubleshooting. The I/FACE troubleshooting makes use of the "utilities" (See Instrument Bus Access Using the Utilities, General Service Sheet G1) to continually write HEX data 55 to I/O Port or Buffer addresses 38, 39, 3A, 3b, 3C and 3d in turn.

> Note: On some instruments, when writing data 55 to address 3C, error 98 may be displayed. If this occurs, ignore the waveform at address 3C and continue to address 3d.

11. After each I/O Port check press special function key K1 to continue to the next step.

u CODE

12. Press the HP85 special function key K3 to select the u CODE troubleshooting. Check through the signatures as instructed.

Note: Only signatures preceded by an asterisk need be checked to verify IC operation.

13. When signatures on all ICs have been checked press K7 to END TEST.

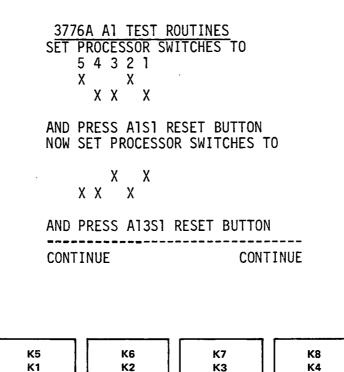
DATA

- 14. Press the special function key K4 to select the DATA troubleshooting. It is recommended that the circuitry be checked in the order given.
 - a. CONST
 - b. RAM TEST

c. SINE ROM

- d. BIT SLICE
- 15. Use the HP85 special function keys to select the appropriate circuitry and check through the signatures as instructed.

Note: Only signatures preceded by an asterisk need be checked to verify IC operation.

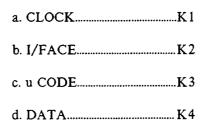

G5-5 A1 TROUBLESHOOTING PROCEDURE (3776A only)

- 1. Connect the HP85 to the 3776A. Remove the top cover and mount assembly A1 on the extender board.
- 2. Insert the 3776A/B Test Programs Data Cartridge (HP03776-10001) into the HP85.
- 3. Load the "A1 A" program into the HP85 and press the HP85 RUN button.

Note: After the RUN button is pressed, the HP85 CRT display blanks for approximately 10 seconds.

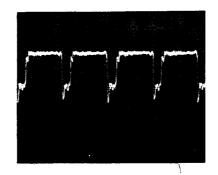
- 4. When prompted, enter the 3776A HP-IB address and press END LINE.
- 5. Check that the following is displayed.

Note: The commands given at the bottom of the display (or print out) are actioned by pressing the special function key (K1 to K8) that aligns with the command. In the example given K1 or K4 action CONTINUE.



SPECIAL FUNCTION KEYS

6. Set the A13S2 Processor switches as instructed.


A1 CLK

7. Press the HP85 special function key K1 to continue. The following logic circuitry can now be selected by pressing the appropriate special function key. It is recommended that the circuitry be checked in the order given.

CLOCK

8. Press special function key K1 and check the A1 clock as instructed. The clock waveform should be as shown.

0.2V/DIV (10:1 PROBE) 0.1µs/DIV

9. Press K1 to continue.

I/FACE

- 10. Press the HP85 special function key K2 to select I/FACE troubleshooting. The I/FACE troubleshooting makes use of the Utilities (See Instrument Bus Access Using the Utilities, General Service Sheet G1) to continually write HEX data 55 to I/O Port on Buffer addresses 38, 39, 3A, 3b, 3C and 3d in turn.
- 11. After each I/O Port check press special function key K1 to continue to the next step.

u CODE

12. Press the HP85 special function key K3 to select u CODE troubleshooting. Check through the signatures as instructed.

•

Note: Only signatures preceded by an asterisk need be checked to verify IC operation.

13. When signatures on all ICs have been checked, press K7 to END TEST.

DATA

- 14. Press the special function key K4 to select DATA troubleshooting. It is recommended that the circuitry be checked in the order given.
 - a. CONST
 - b. RAM TEST
 - c. SINE ROM
 - d. BIT SLICE
- 15. Use the HP85 special function keys to select the appropriate circuitry and check through the signatures as instructed.

Note: Only signatures preceded by an asterisk need be checked to verify IC operation.

G5-6 A2/A102 CODEC TROUBLESHOOTING (combined 3776A/B)

Equipment Required

Test Oscillator	
AC Voltmeter	HP3455A
Frequency Counter	HP5328A

Procedure

- 1. Remove the instrument top cover and printed circuit assemblies metal retaining cover.
- 2. Connect the DIGITAL TRANSMIT output to the DIGITAL RECEIVE input.
- 3. Connect the test equipment as shown in Figure G5-1.
- 4. Set the 3776 operating mode to DIG Tx to DIG Rx.
- 5. Set the 3776 DIGITAL TRANSMIT CHAN to 1.30 (3776A) or TIMESLOT to 1.24 (3776B). Set the DIGITAL RECEIVE CHAN/TIMESLOT to 1.

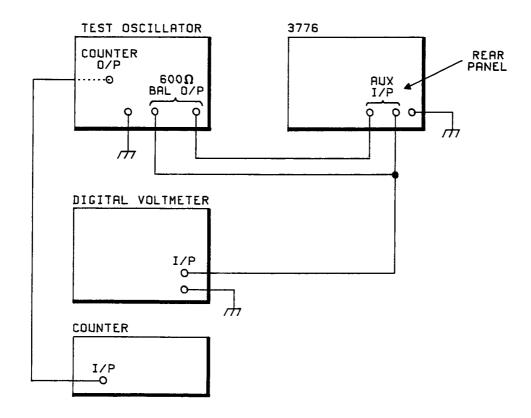
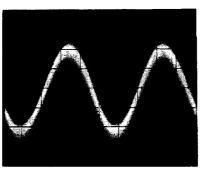
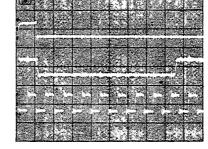



Figure G5-1 Codec Test Setup

- Adjust the Test Oscillator Frequency to display 1.01kHz on the Frequency Counter and 0.1228V (-16dBm/600Ω) if the instrument is a 3776B or 0. 45V (-i4dBm/600Ω) if the instrument is a 3776A displayed on the AC Voltmeter.
- 7. Ensure DIGITAL TRANSMIT CHAN/TIMESLOT is in SYNTH PCM mode (led lit).
- 8. Set the measurement mode to LEVEL/SEL FILTER.
- 9. Set the MEAS Frequency on the 3776 to 1.01kHz.
- 10. Press the 3776 DELETE button (this selects AUX I/P).
- 11. Press RUN/REPEAT.
- 12. At this point, if the codec circuitry is not faulty, 0.00 dBm0 will be displayed in the 3776 RESULTS display. If the 3776 display is approximately 0.00 dBm0, then adjust A2R6 to give 0.00dBm0 on the RESULTS display. If the display cannot be adjusted, then continue with the procedure.
- 13. Check that the following waveform can be obtained. Note that noise pick-up is high on the signal, this is normal. If the waveform cannot be obtained, check the A2 Auxiliary Input Stage.

A2 CODEC INPUT Test Point

0.02V/DIV (10:1 PROBE) 0.2ms/DIV


14. Check that the following waveforms can be obtained (trigger the scope from the positive-going edge of the CODEC SYNC waveform).

Note: The following waveforms were obtained from a 3776A. As the 3776B clock rate is slower (ie 1.544MHz) the LCODEC VALID signal should be approximately 5.15us wide and each Codec Data bit approximately 0.65us wide. The oscilloscope setting of 0.5us/Div for the 3776A waveforms will be different for the 3776B waveforms.

A2 CODEC SYNC (8kHz)

A2 LCODEC

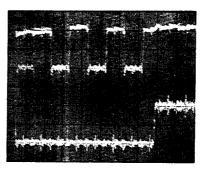
* L PCM CLK

0.5V/DIV (10:1 PROBE)

0.5µs/DIV

- 15. If the waveforms cannot be obtained, check the operation of the A2 Codec Timing Logic and the Clock Selection Logic.
- 16. Check that the following Codec waveform can be obtained.

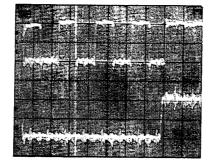
A2 CODEC DATA (8-bit word)


A2 LCODEC VALID

0.2V/DIV (10:1 PROBE) 0.5µs/DIV

17. The Codec Data 8-bit word should be able to be changed by setting the Test Oscillator to a negligible output level or a maximum output level. Typical waveforms obtained are as follows:

A2 CODEC DATA (8-bit word)

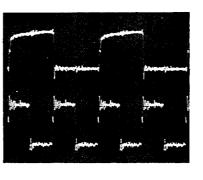

WITH TEST OSCILLATOR SET TO NEGLIGIBLE OUTPUT LEVEL

AS ABOVE

A2 CODEC DATA (8-bit word)

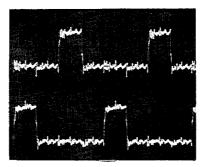
WITH TEST OSCILLATOR SET TO MAXIMUM OUTPUT LEVEL

AS ABOVE


18. If the waveforms cannot be obtained then Codec U212 is faulty.

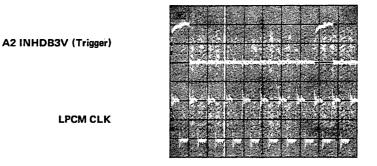
G5-7 A2 HDB3/AMI ENCODER TROUBLESHOOTING (3776A only)

- 1. Set the 3776A operating mode to DIG Tx only.
- 2. Select FRAME WORD then continually press NEXT PARAM to select AIS.
- 3. Press RUN.
- 4. Check that the output of U307(6) is held high.
- 5. The outputs of D-type flip-flops U309(10), U309(5), U309(2) should all be set high and U309(12) should be low.
- 6. Check that U309(15) output is as shown.



0.2V/DIV (10:1 PROBE) 0.2µs/DIV

7. Check that the POS MARK and NEG MARK signals are as shown.


A2 POS MARK (AIS selected)

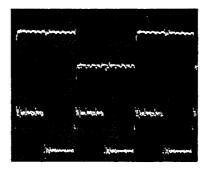
A2 NEG MARK (AIS selected)

0.2V/DIV (10:1 PROBE) 0.2µs/DIV

- 8. Press STOP and check that the output of D-type flip-flops U309(10), U309(5), U309(2) and U309(12) toggle.
- 9. Connect the DIGITAL TRANSMIT output to DIGITAL RECEIVE input and ensure that the rear panel HDB3/AMI switch is set to HDB3.
- 10. Set the 3776A Tx CHAN to 1.. 30 and Rx CHAN to 1. Set D-D GAIN/TONE measurement and press RUN/REPEAT.
- 11. Check that the following waveform can be obtained.

0.2V/DIV (10:1 PROBE) 0.5μs/DIV

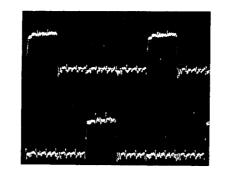
12. If the INHDB3V signal cannot be obtained, check the operation of U310B. Also check that U310B(11) L CODE is set low and when the rear panel HDB3/AMI switch is set to AMI that LCODE goes high.



8-G5-12

G5-8 A102 B8ZS/AMI ENCODER (3776B only)

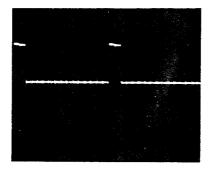
- 1. Connect DIGITAL TRANSMIT output to DIGITAL RECEIVE input.
- 2. Mount assembly A102 on the extender board.
- 3. Set the A13S2 switches to 10001 then press the A13S1 reset button. This selects "utilities" (see General Service Sheet G1).
- 4. Press AN Tx.
- 5. Write OC to address 3d as follows:
 - a. Press SEQ then STORE, 3d should be displayed on the LEVEL display.
 - b. Press SET FREQ, 00 should be displayed on the RESULTS display.
 - c. Press SPEAKER then NOTCHED NOISE, OC should now be displayed on the RESULTS display.
 - d. Press REPEAT. This selects AIS (all ones) in the digital transmitter.
- 6. Check that the outputs of D-type flip-flops U309(2), U309(5), U309(6), U309(9), U309(12), U309(15) and U309(16) are held high. Check also that the outputs of D-type flipflops U408(2), U408(5), U408(7), U408(10) and U408(12) are held low.
- 7. Check that the following waveform can be obtained.


A102 U309 (19) (AIS selected)

0.2V/DIV (10:1 PROBE) 0.2µs/DIV

LPCM CLK

8. Check that the POS MARK and NEG MARK signals are as shown.


2µs/DIV

0.2V/DIV (10:1 PROBE)

A102 NEG MARK

A102 POS MARK

- 9. Set the A13S2 switches to 00000 and press the A13S1 reset button.
- 10. Set the 3776B operating mode, DIG Tx to DIG Rx and GAIN/DIG Tx Rx. Set the rear panel B8ZS/AMI switch to B8ZS.
- 11. Set the I/FACES Tx T-SLOT to 1..24.
- 12. Set the displayed CODE to -127 and press RUN/REPEAT.
- 13. Check that the following waveform can be obtained.

0.2V/DIV (10:1 PROBE) 1µs/DIV

- 14. If the VIOLATE signal cannot be obtained, check the operation of gates U202(11), U310(6) and U310(5). Check that LB8ZS is low. Also check that the D-Type flip-flops U309A to U309G are toggling.
- 15. Check that the VIOLATE waveform given in Step 13 can be obtained at the outputs of D-type flip-flops U408A to U408E.

A102 TP7 VIOLATE

G5-9 A2 CLOCK SELECTION (3776A only)

Introduction

The 3776A 2.048MHz internal or PCM CLK can be derived from three sources, they are:

- a. P CLK (A13 Processor Clock); 8.192MHz divided down to give 2.048MHz.
- b. DIG Tx EXT CLK; 2.048MHz provided by the external equipment.
- c. N CLK Rx (3776 Receiver Clock); 2.048MHz clock recovered by the 3776 Receiver. Selected when the 3776 is in the THROUGH mode.

Procedure

- 1. Mount assembly A2 on the extender board.
- 2. Check that Processor clock (test point PROC CLK) is 8.192MHz ±kHz and that the output of the divide-by-four stage U203(13) is 2.048MHz ±1kHz.
- 3. Connect a Function Generator to the 3776 rear panel DIG Tx CLOCK.
- 4. Set the Function Generator to give a 2.048MHz ±1kHz squarewave with TTL levels (nominal), ie OV low, +5V high.
- 5. Check that the Function Generator clock is present on A2 EXT CLK test point. If the clock cannot be obtained, check fuse A2F1. A spare fuse is provided and is located on A2 just below A2F1.
- 6. Set the DIGITAL TRANSMIT to THROUGH PCM and check that a 2.048MHz ±1kHz clock can be obtained on A2 LRx CLK test point. If this clock cannot be obtained, mount A12 on an extender board and check the operation of gate A12 U402(3).
- 7. Connect the oscilloscope to A2 LPCM CLK and check that the LRx CLK signal can be obtained. To determine that LRx CLK has been routed through A2 U104 connect connect the DIGITAL TRANSMIT output to the DIGITAL RECEIVE input. This causes jitter to be introduced as the clock is not now derived from a crystal source.
- 8. Set the DIGITAL TRANSMIT to SYNTH PCM.
- 9. Set the rear panel DIG Tx CLOCK INT/EXT switch to EXT. Check that the A2 EXT CLK signal can be obtained at A2 LPCM CLK test point. The A2 EXT CLK can be identified by changing the frequency on the Function Generator.
- 10. Set the rear panel DIG Tx CLOCK INT/EXT switch to INT and disconnect the Function Generator.
- 11. Check that the divided down A2 PROC CLK is present at A2 LPCM CLK. To check that the clock is derived from the Processor clock, continually press the DIGITAL TRANSMIT SYNTH PCM/THROUGH PCM switch. With the instrument connected back-to-back the THROUGH PCM signal will appear with jitter.

- 12. If any of the LPCM clocks in Steps 7, 9 and 11 cannot be obtained, and Multiplexer U104 select lines Rx LOOP and SEL Tx EXT CLK are correct, then Multiplexer A2U104 is faulty.
- 13. Check operation of retriggerable monostable U401. If the PCM CLK is not present, the L INHIBIT output inhibits POS MARK and NEG MARK generation. The INHIBIT output is interrogated by the processor via buffer U402 (Address 18).

G5-10 A102 CLOCK SELECTION (3776B only)

Introduction

The 3776B 1.544MHz internal or PCM CLK can be derived from three sources, they are:

- a. PCLK (A13 Processor Clock); 9.264MHz divided down to give 1/544MHz.
- b. DIG Tx EXT CLK; 1.544MHz provided by external equipment.
- c. N CLK Rx (3776 Receiver Clock); 1.544MHz clock recovered by the 3776 Receiver. Selected when the 3776 is set in the THRU mode.

Procedure

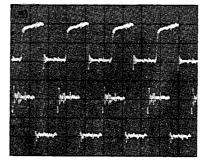
- 1. Mount assembly A102 on the extender board.
- 2. Check that Processor clock (test point PROC CLK) is 9.264MHz ±1kHz and that the output of divide-by-six stage U203 is 1.544MHz ±1kHz.
- 3. Connect a Function Generator to the 3776 rear panel DIG Tx CLOCK.
- 4. Set the Function Generator to give a 1.544MHz ±1kHz squarewave with approximately TTL levels (ie OV low, +5V high).
- 5. Check that the Function Generator clock is present on A102 EXT CLK test point. If the clock cannot be obtained, check fuse A102 F1. A spare fuse is provided and is located on A102 just below A102 F1.
- 6. Set the DIGITAL TRANSMIT to THRU PCM and check that a 1.544MHz ±1kHz clock can be obtained on A102L Rx CLK test point. If this clock cannot be obtained, mount A12 on an extender board and check the operation of gate A12U402(3).
- 7. Connect an oscilloscope to A102 LPCM CLK and check that the LRx CLK signal can be obtained. To determine that LRx CLK has been routed through A102 U104, connect the DIGITAL TRANSMIT output to the DIGITAL RECEIVE input. This causes jitter to be introduced as the clock is not now derived from a crystal source.
- 8. Set the DIGITAL TRANSMIT to SYNTH PCM.
- 9. Set the rear panel DIG Tx CLOCK INT/EXT switch to EXT. Check that the A102 EXT CLK signal can be obtained at A102 LPCM CLK test point. The A102 EXT CLK can be identified by changing the frequency on the Function Generator.

- 10. Set the rear panel DIG Tx CLOCK INT/EXT switch to INT and disconnect the Function Generator.
- 11. Check that the divided down A102 PROC CLK is present at A102 LPCM CLK. To check that the clock is derived from the Processor clock, continually press the DIGITAL TRANSMIT SYNTH PCM/THRU PCM switch. With the instrument connected back-to-back the THRU PCM signal will appear with jitter.
- 12. If any of the LPCM clocks in Steps 7, 9 and 11 cannot be obtained, and multiplexer U104 select lines Rx LOOP and SEL Tx EXT CLK are correct, then Multiplexer A102 U104 is faulty.
- 13. Check the operation of retriggerable monostable U401. If the PCM CLK is not present, the L INHIBIT output inhibits POS MARK and NEG MARK. The INHIBIT output is interrogated by the processor via buffer U402 (Address 18).

G5-11 A2/A102 LOOP TIMING (combined 3776A/B)

Introduction

The 3776 uses a pictorial display to indicate loop timing. The RESULTS display is stationary when the clock extracted from the received PCM stream is the same frequency as the clock of the transmitted PCM stream. Frequency difference is indicated by rotation of the marker, and jitter is indicated by jitter of the marker.


Procedure

- 1. Mount assembly A2/A102 on the extender board.
- 2. Set the 3776 to DIG Tx / DIG Rx Operating Mode and connect the DIGITAL TRANSMIT output to the DIGITAL RECEIVE input. Ensure that the DIGITAL TRANSMIT output is set to SYNTH PCM.
- 3. Set the 3776A to OTHER MEAS/LOOP TIMING, 3776B to FRAMING + SIG BITS/LOOP TIMING.
- 4. Press RUN and check that the following clocks can be obtained.

3776A

A2 U107 (13) Rx CLK

A2 U107 (1) LPCM CLK (Trigger)

0.2V/DIV (10:1 PROBE) 0.2µs/DIV

Model 3776A/B

3776B

generalit energist generalit generalit g tating tating parameter generality parameter generality parameter generality

A102 U210 (1) LPCM CLK (Trigger)

A102 U210 (13) Rx CLK

0.2V/DIV (10:1 PROBE) 0.2µs/DIV

- 5. With the 3776 connected back-to-back, the displayed marker should be stable. Check that the 3776A A2 U106 Loop Timing latch outputs LOOP0 to LOOP3 or 3776B A102 U211 Loop Timing latch outputs LOOP0 to LOOP3 are available. Note that the latch outputs can be either low or high. If the outputs are not stable and the clocks given in Step 4 are correct check that the L ADDR 3D signal is high. Check operation of the Loop Timing Counters and Loop Timing Latch.
- 6. Disconnect the DIGITAL TRANSMIT output from the DIGITAL RECEIVE input.
- 7. Check that the Loop Timing Latch outputs toggle. NOTE: When the DIGITAL TRANSMIT output is disconnected from the DIGITAL RECEIVE input, it is possible for the Clock Extractor on assembly A12, to lock on to PCM CLK pick-up and produce stable outputs on the Loop Timing Latch. If the Loop Timing Latch outputs are stable, check that the Rx CLK shown in Step 4 is not present before checking operation of the Loop Timing Counters and Latch.

GENERAL SERVICE SHEET G6 DIGITAL OUTPUT STAGE AND DIGITAL RECEIVER

P

aragraph	G6-1 G6-4 G6-5 G6-6 G6-7 G6-8 G6-9	INTRODUCTION	8-G6- 1 8-G6- 3 8-G6- 4 8-G6- 8 8-G6-19 8-G6-20
	GG-9 G6-10	A-LAW EXPANDER TROUBLESHOOTING (3776A only)	

G6

GENERAL SERVICE SHEET G6 DIGITAL OUTPUT STAGE AND DIGITAL RECEIVER

G6-1 INTRODUCTION

G6-2 This service sheet provides troubleshooting information for the following assemblies:

3776A

3776B

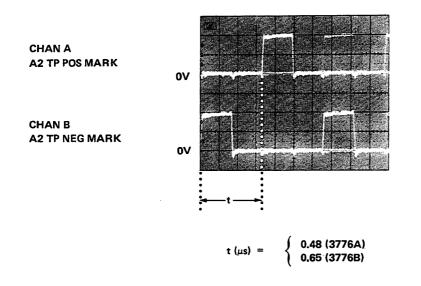
A7 Digital Output Stage (03776-60007) A11 A-Law Alignment (03776-60011) A12 Digital Receiver (03776-60012)

A107 Digital Output Stage (03776-60107) A111 U-Law Alignment (03776-60111) A112 Digital Receiver (03776-60112)

G6-3 Troubleshooting consists of the following:

- 1. Digital Output Stage check
- 2. Digital Input Stage check

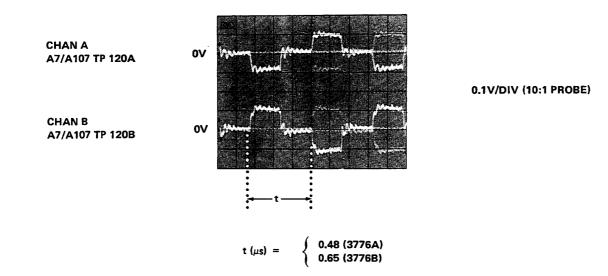
(combined 3776A/B troubleshooting)


- 3. Digital Receiver Troubleshooting
- 4. A111 Troubleshooting (3776B only)
- 5. All Troubleshooting (3776A only)

G6-4 DIGITAL OUTPUT STAGE

PROCEDURE

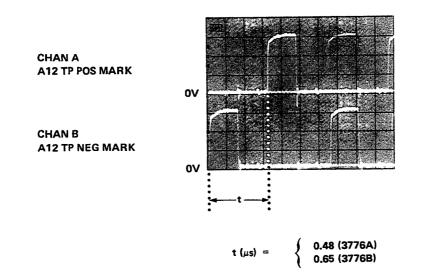
- 1. With the instrument power off, remove the top cover and mount the A7/A107 assembly on the extender board.
- 2. Connect the DIG Tx to the DIG Rx, set the A13S2 switches to 10010 and switch the power on.
- 3. Connect Channels A and B of an oscilloscope to A2 test points POS MARK and NEG MARK respectively and check that the positive and negative marks alternate as shown.


Note: Due to the nature of the data being transmitted, it is difficult to obtain clean traces in the following waveforms.

- 4. If alternating positive/negative marks are not present go to General Service Sheet G5.
- 5. Connect Channels A and B of the oscilloscope to A7/A107 test points 120A and 120B respectively. These test points are located on the bottom right-hand corner of the assembly.

0.2V/DIV (10:1 PROBE)

6. Check that the following complementary waveforms can be obtained.



7. If the waveforms cannot be obtained, use the waveform given in Step 3 to trace the fault through A7/A107. Check +12V and -12V supplies to the U47 Data Amplifiers. Check fuse F2. Note that fuse F1 is a spare. See Assembly Service Sheet A7/A107 for Drivers and Data Amplifiers.

G6-5 DIGITAL INPUT STAGE

PROCEDURE

- 1. Switch the instrument power off and remove the top cover.
- 2. Connect the DIG Tx output to the DIG Rx input.
- 3. Mount Assembly A12 on the extender board.
- 4. Set A13S2 switches to 10010 and switch the power on.
- 5. Connect Channels A and B of the Oscilloscope to A12 test points POS MARK and NEG MARK respectively.
- 6. Check that the positive and negative marks alternate as shown.

0.2V/DIV (10:1 PROBE)

- 7. If the waveforms are not present, use the waveform given in G6-4 Step 6 to trace through the Digital Input Stage. The following notes will help troubleshoot the Input Stages.
- a. Input relays K1 and K2 can be energised to select the CAL path direct from A7 by entering the "utilities" (See General Service Sheet G1) and writing 08 to address 30.
- b. The 0/30dB (3776A) or 0/20dB (3776B) Amplifier and Data to TTL Converter can be checked by monitoring the input signal to A12 U310 pin 3 and A12 U211 pin 3 on an oscilloscope and pressing the front panel DIGITAL RECEIVE TERM/MON key. In the MON position, 30dB (3776A) or 20dB (3776B) gain is applied to the input signal.

- 8. With the A13S2 switches set to 10010, press A13S1 Reset button.
- 9. Connect a Frequency Counter to A12 CLK Rx test point and check that the receiver frequency is 1.544MHz ±1kHz (3776B) or 2.048MHz ±1kHz (3776A).

G6-6 DIGITAL RECEIVER TROUBLESHOOTING

A12 Troubleshooting Procedure

- 1. With the power switched off, mount assembly A12 on the extender board.
- 2. Connect the DIGITAL TRANSMIT output to the DIGITAL RECEIVE input.
- 3. Connect the HP 5005A Signature Multimeter as follows:

GND	
CLOCK	
START	
STOP	

4. Set the HP5005A Signature Multimeter as follows:

FUNCTION	NORM
DATA	TTL
CLOCK	TTL
ST-SP-QL	TTL

5. Set A13S2 switches to 10010 and switch the power on.

Note: Steps 6 and 7 can be omitted by connecting an HP85 to the 3776, setting the HP-IB address to 02 and sending the following HP85 basic commands.

OUTPUT 702; "CA OFF" OUTPUT 702; "IO #H30, #H05" OUTPUT 702; "IO #H3D, #H08"

- 6. Set A13S2 switches to 10001 and press the A13S1 reset button. Press AN Tx.
- 7. Write 05 to Data Input Buffer or Port A12 U404 Address 30 and 08 to Data Input Buffer Address 3d (See General Service G1 for Instrument Bus Access using the "utilities"). This selects A12SA and THRU ENABLE. The procedure is as follows:

a. Press the SEQ (3) key.

b. Press the SPEAKER (0) key. 30 should now be displayed on the LEVEL display.

c. Press SET FREQ.

- d. Press TRANSIENTS. 05 should now be displayed on the left-hand side of the RESULTS display.
- e. Press RUN. 05 is now written to address 30.
- f. Write 08 to Data Input Buffer or Port Address 3d by repeating steps a. to e. (The hexadecimal key pad is contained in Paragraph G1-37).
- 8. Check that the signature obtained on A12U101 pin 14 (+5V supply) is 826P. This checks that counters U305, U306 and U307 used for SA START/STOP are correct. If this signature cannot be obtained, then check the counter operation using a logic probe or an oscilloscope.
- 9. Check that the following signatures can be obtained. Use A12 Schematic in conjunction with the signatures to locate the fault.

Note:	Where	indicated,	only	signatures	that	are	underlined	need	be	checked	to
				Function of							

Assembly	Logic Function	Signatures
A12	AIS, Signal Loss Detector and SA Verification	U305(1) 826P
	Code Generator	U305 (2) 0000 clock
		U305(11) ICF0
		U305(12) 925A
		U305(13) H657
		U305(14) UF4C
		U305(15) 8A79
	· · · ·	U306 (1) 826P
		U306 (2) 0000 clock
		U306 (7) 8A79
		U306 (10) 8A79
		U306 (11) 1A77 U306 (12) UPUA
		U306 (12) UFUA
1		U306 (14) 0446
		U306 (15) 30P8
		0,500 (15) 501 0
		U307(1) 826P
		U307 (2) 0000 clock
ľ		U307(7) 30P8
		U307 (10) 30P8
		U307 (14) 6HF9

and the second second second second second second second second second second second second second second second		
		U307 (15) F359
		U301 (1) 826P
		U301 (2) AH9H
		U301 (4) 826P clock (3776B)
		unstable (3776A)
		U301 (6) 826P
		U301 (7) 0000
		U301 (10) 826P
		U301 (12) 826P clock (3776B)
		unstable (3776A)
		U301 (14) F359
		U301 (15) 826P
		U205 (4) 8A79
		U205 (5) 0784
		U205 (6) AH9H
		U502 (4) 826P
		U502 (5) 826P
		U502 (6) 826P
		U202(11) 826P
		U202 (12) 0000
		U202 (13) 826P
<u></u>		
A12	Line Code Decoder and Time Slot Data	U405(1) 826P
	Devictor	U405 (2) 7P25
	Register	
	Register	U405 (3) 0000
	Register	U405 (3) 0000 U405 (4) UF4C
	Kegister	U405 (3) 0000 U405 (4) UF4C U405 (5) H657
	Kegister	U405 (3) 0000 U405 (4) UF4C U405 (5) H657 U405 (6) 0000
	Kegister	U405 (3) 0000 U405 (4) UF4C U405 (5) H657 U405 (6) 0000 U405 (7) A872
	Kegister	U405 (3) 0000 U405 (4) UF4C U405 (5) H657 U405 (6) 0000 U405 (7) A872 U405 (9) 0000 clock
	Kegister	U405 (3) 0000 U405 (4) UF4C U405 (5) H657 U405 (6) 0000 U405 (7) A872 U405 (9) 0000 clock U405 (10) 0A74
	Kegister	U405 (3) 0000 U405 (4) UF4C U405 (5) H657 U405 (6) 0000 U405 (7) A872 U405 (9) 0000 clock U405 (10) 0A74 U405 (12) 925A
	Kegister	U405 (3) 0000 U405 (4) UF4C U405 (5) H657 U405 (6) 0000 U405 (7) A872 U405 (9) 0000 clock U405 (10) 0A74
	Register	U405 (3) 0000 U405 (4) UF4C U405 (5) H657 U405 (6) 0000 U405 (7) A872 U405 (9) 0000 clock U405 (10) 0A74 U405 (12) 925A U405 (13) 1CF0 U405 (15) FPC9
	Register	U405 (3) 0000 U405 (4) UF4C U405 (5) H657 U405 (6) 0000 U405 (7) A872 U405 (9) 0000 clock U405 (10) 0A74 U405 (12) 925A U405 (13) 1CF0 U405 (15) FPC9 U406 (1) 826P
	Register	U405 (3) 0000 U405 (4) UF4C U405 (5) H657 U405 (6) 0000 U405 (7) A872 U405 (9) 0000 clock U405 (10) 0A74 U405 (12) 925A U405 (13) 1CF0 U405 (15) FPC9 U406 (1) 826P U406 (2) 417A
	Register	U405 (3)0000U405 (4)UF4CU405 (5)H657U405 (6)0000U405 (7)A872U405 (9)0000 clockU405 (10)0A74U405 (12)925AU405 (13)1CF0U405 (15)FPC9U406 (1)826PU406 (2)417AU406 (3)2FF7
	Register	U405 (3)0000U405 (4)UF4CU405 (5)H657U405 (6)0000U405 (7)A872U405 (9)0000 clockU405 (10)0A74U405 (12)925AU405 (13)1CF0U405 (15)FPC9U406 (1) $826P$ U406 (2)417AU406 (3)2FF7U406 (4)0446
	Register	U405 (3)0000U405 (4)UF4CU405 (5)H657U405 (6)0000U405 (7)A872U405 (9)0000 clockU405 (10)0A74U405 (12)925AU405 (13)1CF0U405 (15)FPC9U406 (1) $826P$ U406 (2)417AU406 (3)2FF7U406 (4)0446U406 (5)HAH5
	Register	U405 (3)0000U405 (4)UF4CU405 (5)H657U405 (6)0000U405 (7)A872U405 (9)0000 clockU405 (10)0A74U405 (12)925AU405 (13)1CF0U405 (15)FPC9U406 (1) $826P$ U406 (2)417AU406 (3)2FF7U406 (4)0446U406 (5)HAH5U406 (6)13UF
	Register	U405 (3)0000U405 (4)UF4CU405 (5)H657U405 (6)0000U405 (7)A872U405 (9)0000 clockU405 (10)0A74U405 (12)925AU405 (13)1CF0U405 (15)FPC9U406 (1) $826P$ U406 (2)417AU406 (3)2FF7U406 (4)0446U406 (5)HAH5U406 (6)13UFU406 (7)2P33
	Register	U405 (3)0000U405 (4)UF4CU405 (5)H657U405 (6)0000U405 (7)A872U405 (9)0000 clockU405 (10)0A74U405 (12)925AU405 (13)1CF0U405 (15)FPC9U406 (1)826PU406 (2)417AU406 (3)2FF7U406 (4)0446U406 (5)HAH5U406 (6)13UFU406 (7)2P33U406 (9)0000 clock
	Register	U405 (3)0000U405 (4)UF4CU405 (5)H657U405 (6)0000U405 (7)A872U405 (9)0000 clockU405 (10)0A74U405 (12)925AU405 (13)1CF0U405 (15)FPC9U406 (1)826PU406 (2)417AU406 (3)2FF7U406 (4)0446U406 (5)HAH5U406 (6)13UFU406 (7)2P33U406 (9)0000 clock
	Register	U405 (3)0000U405 (4)UF4CU405 (5)H657U405 (6)0000U405 (7)A872U405 (9)0000 clockU405 (10)0A74U405 (12)925AU405 (13)1CF0U405 (15)FPC9U406 (1)826PU406 (2)417AU406 (3)2FF7U406 (4)0446U406 (5)HAH5U406 (6)13UFU406 (7)2P33U406 (9)0000 clockU406 (10)CF24

Service

		U406 (14) 5652
		U406 (14) 5852 U406 (15) FP62
	· ·	0400(13) FF02
		U407 (1) 826P
		U407 (2) 75CH
		U407 (3) 1702
		U407 (4) 6HF9 U407 (6) 5C13
		U407 (7) 826P U407 (9) 0000 clock
		U407 (9) 0000 clock
		U203 (1) 75CH
		U203 (2) FP62
		U203 (3) CF24
		U203 (4) 2P33
		U203 (5) 417A
	1	U203 (6) 1702 U203 (7) 5652
		U203 (7) 5652 U203 (8) 681H
		U203 (9) 13UF
		U203 (11) 2FF7
		U203 (13) H571
		U203 (14) 71UC
		U203 (16) FPC9
		U203 (17) 0A74
	·	U203 (18) A872
		U203 (19) 7P25
		0203(17) /123
		U204 (1) FPC9
		U204 (2) 0A74
		U204 (3) CH4C
		U101 (11) H97H
		U101 (12) 6436
		U101 (13) CH4C
		U206 (2) CH4C
		U206 (3) CH4C
		U206 (9) 71UC
		U206 (10) 0000 clock
		U206 (11) 0784
		U206 (12) 85PA
		U206 (15) 6436
		U207 (2) 85PA
		U207 (3) 85PA
		U207 (9) H571
		U207 (10) 0000 clock
		U207 (12) 1408
		U408 (2) 1408
		<u>U408 (3) F95H</u>
—		

	· · · · · · · · · · · · · · · · · · ·	
		$\begin{array}{c ccccc} U408 & (4) & A7U7 \\ \hline U408 & (5) & H3UC \\ \hline U408 & (6) & 69UH \\ \hline U408 & (8) & 0000 \ clock \\ \hline U408 & (10) & 34UP \\ \hline U408 & (11) & 1A7U \\ \hline U408 & (12) & FP66 \\ \hline U408 & (13) & A46A \\ \hline \end{array}$
A12	Timeslot Translation Logic	U401(4) $826P(3776A)$ unstable $(3776B)$ $U401(5)$ 0000 $U401(6)$ 0000 $U401(8)$ 0000 $U401(9)$ $0000(3776A)$ unstable $(3776B)$ $U401(10)$ 0000 $U208(1)$ 0000 $U208(1)$ 0000 $U208(13)$ $0000 clock$ $U208(13)$ $0000 clock$ $U308(1)$ 0000 $U308(2)$ 0000 $U308(3)$ 1408 $U308(5)$ 0000 $U308(6)$ $A46A$ $U308(7)$ $A46A$ $U308(10)$ 0000 $U308(11)$ $A46A$ $U308(12)$ 0000 $U308(13)$ $A46A$ $U308(14)$ 0000 $U308(13)$ $A46A$ $U308(14)$ 0000 $U308(15)$ 0000

10. The A12 Address Decoder and Processor Handshake control troubleshooting can be performed using the utility sequence outlined in Step 7. Most circuitry can be exercised by selecting the appropriate address (i.e. 10, 11, 12, 13 or 30) and pressing the front panel REPEAT key.

G6-7 A111 TROUBLESHOOTING PROCEDURE (3776B only)

- 1. With the power switched off, mount assembly A111 on the extender board.
- 2. Connect the DIGITAL TRANSMIT output to the DIGITAL RECEIVE input.

3. Connect the HP 5005A Signature Multimeter as follows:

GND	A111 GND
CLOCK	.A12 CLK Rx, positive edge
START	A111 test point 4, positive edge
STOP	A111 test point 4, positive edge

4. Set the HP 5005A Signature Multimeter as follows:

FUNCTION	NORM
DATA	TTL
CLOCK	TTL
ST-SP-QL	TTL

5. Set A13S2 switches to 10010 and switch the power on.

Note: Steps 6, 7 and 8 can be omitted from the procedure by connecting an HP85 to the 3776, setting the HP-IB address to 02 and sending the following HP85 basic commands.

> OUTPUT 702; "CA OFF" OUTPUT 702; "IO#H33, #HA4" OUTPUT 702; "IO#H32, #H40" OUTPUT 702; "IO#H31, #H00" OUTPUT 702; "IO#H30, #H05" OUTPUT 702; "IO#H3D, #H08"

Note: Ignore any errors displayed when entering the HP85 basic commands.

6. Set A13S2 switches to 10001 and press A13S1 reset button.

7. Press AN Tx.

8. Write the following data to the corresponding addresses as shown:

A4 to address 33 40 to address 32 00 to address 31 05 to address 30 08 to address 3d

- 9. Check that the signature obtained on A111 U101 pin 14 (+5V) is 1180. This checks that counters U313, U312 and U106 used for SA START/STOP are correct. If this signature cannot be obtained, then check counter operation using a logic probe or an oscilloscope.
- 10. Check that the following signatures can be obtained. Use A111 schematics in conjunction with the signatures to locate the fault.

Note: Where indicated, only signatures that are underlined need be checked to verify Logic Function operation.

Assembly	Logic Function	Signatures
A111	Timing Generator (A111 Schematic Part 1)	U106 (2) CFPA
(3776 B)		U106 (3) 0000 clock
		<u>U106 (5) 5P75</u>
		<u>U106 (6) 4UU5</u>
		U108(1) 18C7
		U108 (2) 0937
		U108 (3) 0000
1		U108 (4) CFPA
		U108 (5) 0000
		U108(6) AH6A
		U109(8) 0000
		U109 (9) FUA3
1		U109 (10) AH6A
		U109 (11) 0937
	·	U109 (12) AH6A
		U109 (13) UU87
		U111(1) FUA3
		U111(2) 1180
		U111(3) FUA3
1		U111 (4) 1180
		U111 (5) 1U7C
		U111 (6) 1U7C
		<u>U112(12) 2281</u>
		U112(13) 3301
		U212(1) 18C7
		U212(2) 1180
		U212 (3) 1180
		U212(11) 1180
		U212 (12) CFPA
		U212(13) 1180
		U213(1) 052A

Service

		U213(2)	0108
		U213 (3)	3301
		U213 (4)	A7A2
		U213 (5)	4PCC
		U213 (6)	AH6A
			3301
		U213 (13)	0U7U
		0210(10)	
		U309 (5)	0000
		U309 (6)	1180
		U309 (8)	2281
		U309 (9)	3301
		U310(1)	377F
		U310(2)	0000 clock
		U310 (9)	1180
			1100
			0108
			052A
		U310(14)	
		U310(15)	
		,	
		U311 (1)	377F
		U311 (2)	0000 clock
_			U5F6
		U311 (9)	1180
		U311 (10)	
		U311 (11)	
			A7A2
	-	U311 (13)	
		U311 (14)	5342
		U312 (2)	0000 clock
		U312 (7)	P6HF
		U312 (9)	1180
		U312 (10)	P6HF
		U312 (11)	H6AA
		U312 (12)	0F62
		U312 (13)	OPOP
		U312 (14)	5HC4
		<u>U312 (15)</u>	26UF
		U313 (2)	0000 clock
		U313 (4)	1U7C
		U313 (6)	0000
		U313 (7)	AH6A
	1	U313 (9)	1180
		U313 (10)	
		U313 (11)	
		U313 (12)	
			1U7C
		 U313 (14)	64H9

		U313(15) P6HF
		U314 (2) 849C U314 (3) 1180 clock U314 (5) 424H U314 (9) 849C
		U314 (11) 1180 clock U314 (12) 0937
A111 (3776 B)	Frame and Multiframe Alignment Logic (A111 Schematic Part 1)	U105 (4) 9612 U105 (5) PA3C
(3770B)	(ATTT Schematic Tart T)	U105 (6) 59FF
		$U105(8) _ 4PCC$
		U105 (9) 4PCC
		U105(10) 1180
		U106 (9) U3H4
		U106 (11) 0000 clock
		U106 (12) H528
		U108 (8) 1180
		U108 (9) H592
		U108 (10) 0000
		U108 (11) 1180 U108 (12) 63FF
		U108 (13) 0000
		U109(1) 4UU5
		U109 (2) 1670
		U109 (3) H592
		U109 (4) 4UU5
		U109 (5) C048
		U109 (6) 63FF
		U110(1) 0U7U
		U110 (3) 59FF
		U110 (4) FUCA
		U110(5) 052A U110(6) 0108
		U110 (7) PA3C
		U110 (9) 9612
		U110 (10) 1180
		U110(11) 0000 clock
		U110(12) 0108
		U110(13) 052A
		U110 (14) 0U7U
		U110(15) 1180
		U111 (11) 1180
		U111 (12) 1180
		U111 (13) 1180

/		· · · · · · · · · · · · · · · · · · ·
		U112 (3) 1180
		U112 (4) 0000
		U112(5) 1180 U112(6) 0000
		0112(0) 0000
		U113(1) 0108
		U113 (2) 0U7U
		U113 (3) 6105
		U113 (4) 2FF3
	,	U113(5) F5F8 U113(6) 2HA8
		U113 (12) 80F0
		U113 (13) 052A
		U207(1) U120
		U207 (2) 8UCU
		U207 (3) 2FF3
		U207 (4) P395 U207 (5) C50U
		U207 (6) F5F8
		U208 (4) C048
		U208(5) 80F0
	·	<u>U208 (6)</u> FUA3
		U208(11) 1180 U208(12) 1180
		U208 (12) 1180 U208 (13) 1180
		2200(10) 1100
		U209 (2) 4PCC
		U209 (3) C5OU
		U209 (4) F5F8
		U209 (9) 2HA8 U209 (10) 1180
		U209 (11) 0000 clock
		U209 (12) 0000
		U209 (13) 0000
		U209 (14) 1180
		U209 (15) 4PCC
	· .	U210(1) 7956
		U210(1) 7936 U210(2) OU7U
		U210 (3) 052A
		U210(4) 0108
		U210(5) 1100
		U210 (6) FUCA
		U210(7) 9612 U210(8) PA3C
		U210(8) PA3C U210(9) 6105
		U210(11) U120
1		U210(12) 8UCU

•

· · · · · · · · · · · · · · · · · · ·	
	U210(14) C50U
	U210 (16) 5342
	U210 (17) 108P
	U210(18) A7A2
	U210(19) 4PCC
	U211 (1) 108P
	U211 (2) A7A2
	U211 (3) P395
	U211 (4) 8UCU
	U211 (5) 5342 U211 (6) 1100
	U211 (7) 6105
	U211 (9) U120
	U211 (10) 1180
	U211 (11) 0000 clock
	U211 (12) 1100
	U211 (13) 5342
	U211 (14) 108P
	U211 (15) A7A2
	U212 (4) 0000 clock U212 (5) 0000
	U212 (6) 0000 clock
	U212 (8) 0000 clock
	U212 (9) 0000
	U212 (10) 0000 clock
	U308 (8) H528
	U308 (10) 26UF
	U411(1) 1180
	U411 (2) 0000
	U411 (3) U3H4
	U411(4) U3H4
	U411(5) 0000
	U411 (6) 0F62
	U411(7) 0F62
	U411 (9) 0P0P U411 (10) 0P0P
	U411 (10) 0000
Í	U411 (12) H6AA
	U411 (13) H6AA
	U412(1) 64H9
	U412 (2) 1U7C
	U412 (3) CU96
	U412 (4) FF4F U412 (5) 5HC4
	U412 (6) 7956
	U412 (7) 1670
<u>_</u>	

		U412 (8) C048 U412 (9) U089 U412 (11) 5271 U412 (12) 790F U412 (13) 0P10
		U412 (14) UU87 U412 (15) 0000 U412 (16) 0P0P U412 (17) 0F62 U412 (18) H6AA U412 (19) U3H4
A111 (3776B)	Test Timeslot Selector (A111 Schematic Part 1)	U105 (1) P848 U105 (2) F111 U105 (3) A890
		U107 (2) H091 H107 (3) H091 U107 (4) H091 U107 (5) H091 U107 (6) F111 U107 (7) 0000 U107 (9) 0000 U107 (10) 1180 U107 (11) 0000
		U107 (11) 0000 U112 (1) H091 U112 (2) F111 U206 (10) P848
		U206 (12) 1180 clock U206 (13) H091 U206 (14) H091
		U208 (1) 2281 U208 (2) 0000 U208 (3) 0000 U213 (8) H091
		U213 (9) 2FC3 U213 (10) 1180 U213 (11) 8911
		U306 (1) 64H9 U306 (3) 4F34 U306 (6) 2FC3 U306 (9) FF4F U306 (10) 0000 U306 (11) CU96 U306 (12) 0000 U306 (13) 0000
		U306 (14) 1U7C

Model 3776A/B

				U306 (15) 0000		
				U307 (1) 1100		
				U307 (3) 5U3C		
				U307 (6) 8911		
				U307 (9) A7A2 U307 (10) 0000		
				U307 (10) 0000 U307 (11) 108P		
				U307 (12) 0000		
				U307 (13) 0000		
				U307 (14) 5342		
				U307 (15) 0000		
				U308 (1) 0000		
				U308 (2) 5HC4		
				U308(3) 5HC4		
				U308 (4) 4PCC		
				U308 (5) 0000		
				.U308 (6) 4PCC		
				U309 (10) 5U3C		}
				U309 (11) 4PCC		
				U309 (12) 4F34		
				U309 (13) 5HC4	•	
				U413(1) U089	•	
				U413(2) 2FC3		
			,	U413 (5) 2FC3		
				U413 (7) 0000		4
	•			U413 (9) 0000		
				U413 (10) 1180		
				U413 (11) 0000 U413 (12) 790F		
				U413 (12) 790F U413 (13) 0P10		
				U413 (14) 64H9		
				U413 (15) 5271		
				<u> </u>		1
A111	Digital Filter Handshake	Logic	(AIII	U101 (1) 1180		
(3776 B)	Schematic Part 2)			U101 (2) 1180 U101 (3) 1U7C		
				U101 (4) 1U7C		
				U101 (5) H091		
				U101 (6) 64H9		
				U101 (7) 64H9		
				U101 (9) A7A2		
				U101(10) A7A2	•	
				U101 (11) 1180		[
				U101 (12) 108P		
				U101 (13) 108P		
				U101 (14) 1180		
1 1						

Note: To fully exercise U103, after obtaining the normal signatures, write A0 to Address 33 and check that the *signatures can be ob-	U102 (5) 0108 U102 (6) C6P4 U102 (7) 19F4 U102 (9) 1180 U102 (10) 91F0 U102 (11) 0CU7 U102 (12) 1100 U102 (13) 5342 U102 (14) 7406 U103 (1) 1CH5 U103 (2) 19F4 U103 (3) 91F0 U103 (4) 30P1 U103 (5) 108P U103 (6) 824P *AF68 U103 (7) C6P4 *0000 U103 (8) 0CU7 *0000 U103 (9) 7406 *0000 U103 (11) H199 *1180 U103 (12) AF68 U103 (13) 79F5 *1180 U103 (14) U49H *0000 U103 (15) AF68 U103 (17) 64H9 U103 (18) 1U7C U103 (19) 1180 *0000 U104 (2) A5A2 U104 (4) 79F5 U104 (5) AF68
the normal signatures, write A0 to Address	U103 (13) 79F5 *1180 U103 (14) U49H *0000 U103 (16) A7A2 U103 (17) 64H9 U103 (18) 1U7C U103 (19) 1180 *0000 U104 (2) A5A2 U104 (4) 79F5
	$ \begin{array}{r} \overline{U104 (12) H199} \\ U104 (13) U49H \\ U104 (15) UA4P \\ \overline{U201 (8) 1180} \\ U201 (9) 1180 \\ U201 (10) 1180 \\ U202 (1) 1180 \\ U202 (2) 1180 \\ U202 (3) 1180 clock \end{array} $

(37768) 2) U301 (2) 107C U301 (3) 108P U301 (4) 5342 U301 (12) 1040 U301 (12) 1180 U301 (12) 1042 U301 (12) 1044 U301 (13) 108P U302 (13) 018 U302 (13) 018 U302 (13) 0100 U302 (13) 0100 U302 (13) 0100 U302 (13) 0100 U302 (14) 052A U303 (13) 1180 U303 (13) 1180 U303 (13) 112A U303 (13) 112A <	A11	Peak Codes Detector (A111 Schematic Part	U301 (1) A7A2
U301 (6) 108P U301 (6) 5342 U301 (10) 1180 U301 (11) 0000 clock U301 (12) 052A U302 (11) 052A U302 (12) 017C U302 (13) 0108 U302 (14) 052A U302 (15) 0108 U302 (10) 1180 U302 (14) 052A U302 (15) 0170 U303 (11) 1180 U303 (14) 052A U303 (15) 0108 U303 (14) 052A U303 (15) 0170 U303 (15) 0170 U303 (15) 0170 U303 (15) 0170 U303 (16) 1180 U303 (17) PUPO U303 (17) PUPO U303 (17) PUPO U303 (18) PUPO U303 (17) 0108 U303 (18) 027U U303 (17) 0108 U303 (18) 027U U303 (19) 007U U303 (18) 027U U303 (19) 007U U303 (18) 0251 U303 (19) 007U<	(3776B)		
Note: The outputs from U405 and U406 can be made to toggle by setting Addresses 11 and 12 respectively (see A111 Schematic) u303 (11) 12 respectively (see A111 Schematic) u303 (11) 12 respectively (see A111 Schematic) u303 (11) 12 respectively (see A111 Schematic) u303 (11) PUPO U303 (11) 1180 Note: The outputs from U405 and U406 can be made to toggle by setting Addresses 11 and 12 respectively (see A111 Schematic) u303 (11) PUPO U303 (11) 1180 U303 (11) 2 respectively (see A111 Schematic) u303 (11) PUPO U303 (11) 1180 U405 (11) PUPO U405 (11) PUPO U405 (11) PUPO U405 (11) PUPO			
U301 (11) 0000 clock U301 (12) 5342 U301 (13) 102P U301 (14) A7A2 U301 (15) 1U7C U302 (15) 1U7C U302 (11) 0100 U302 (12) 017U U302 (13) 018 U302 (14) 8HPP U302 (15) 017C U302 (16) 1100 U302 (17) 12A4 U302 (19) 018 U302 (19) 018 U302 (10) 1180 U302 (11) 0000 clock U302 (12) 1000 U303 (11) 1180 U303 (12) 1007 U303 (12) 1007 U303 (15) 007U U303 (15) 007U U303 (16) 1180 U303 (17) 0108 U303 (18) A7A2 U303 (19) 1180 U303 (17) 0108 U303 (17) 0108 U303 (18) 8PPP U303 (14) 12A4 U303 (15) 1100 U303 (17) 0108 U303 (18) 0100 U303 (18) 0100 U303 (18) 0100 U303 (18) 0100 U303 (16) 1100 U303 (16) 100 U303 (16) 100 U303 (16) 100			U301 (6) 5342
Note: The outputs from U405 and U406 can U301 (12) 5342 U301 (12) 5342 U301 (13) 108P U301 (14) A7A2 U301 (15) 1U7C U302 (2) 007U U302 (2) 007U U302 (2) 017U U302 (2) 017U U302 (2) 017U U302 (3) A8H9 U302 (2) 1008 U302 (1) 100 U302 (1) 018 U302 (11) 0000 clock U302 (14) 052A U302 (14) 052A U302 (14) 052A U302 (14) 052A U303 (1) 1180 U302 (14) 052A U303 (2) 1U7C U303 (3) A7A2 U303 (3) A7A2 U303 (6) 5342 U303 (6) 5342 U303 (6) 5342 U303 (12) 4908 U303 (12) 4908 U303 (12) 4908 U303 (13) 8HPP U303 (13) 8HPP U303 (13) 8HPP U303 (14) A8H9 U303 (15) 1100 U303 (17) 0108 U303 (17) 0108 U303 (18) 052A U303 (19) 0U7U U405 (11) PUPO U405 (11) PUPO U405 (12) 0000			
U301 (13) 108P U301 (14) A7A2 U301 (15) 1UTC U302 (1) 552A U302 (2) 0UTU U302 (2) 0UTU U302 (3) A8H9 U302 (3) A8H9 U302 (3) 0108 U302 (1) 1180 U302 (1) 1180 U302 (13) 0108 U302 (14) 552A U302 (15) 0UTC U302 (16) 1180 U302 (17) 1000 U302 (18) 017U U303 (11) 1180 U303 (2) 107C U303 (3) A7A2 U303 (1) 1180 U303 (1) 1180 U303 (1) 1180 U303 (1) 1180 U303 (15) 5342 U303 (17) PUPO U303 (12) 4908 U303 (12) 4908 U303 (12) 4908 U303 (13) 8HPP U303 (14) A8HPP U303 (15) 5342 U303 (16) 100 U303 (17) 0108 U303 (18) 052A U303 (19) 0U7U U303 (18) 052A U303 (19) 0U7U U303 (19) 0U7U U303 (19) 0U7U U303 (19) 0U7U U303 (16) 1100			
W301 (14) A7A2 U301 (15) 1U7C U302 (1) 052A U302 (2) 0U7U U302 (3) A SH9 U302 (3) A SH9 U302 (3) A SHP U302 (1) 1008 U302 (1) 0000 clock U302 (13) 0108 U302 (14) 052A U302 (13) 0108 U302 (14) 052A U303 (11) 1180 U303 (2) 1U7C U303 (3) A7A2 U303 (12) 4908 U303 (12) 4908 U303 (12) 4908 U303 (12) 4908 U303 (13) 81PP U303 (14) A81P U303 (15) 1000 U303 (16) 1100	1		
Note: The outputs from U405 and U406 can U301 (15) 1U7C Note: The outputs from U405 and U406 can U302 (1) 052A U302 (1) 032A NHP U302 (2) 047U U302 (2) 047U U302 (3) A8H9 U302 (3) A8H9 U302 (4) 8HPP U302 (5) 1100 U302 (1) 018 U302 (1) 1180 U302 (1) 0000 clock U302 (11) 0000 clock U302 (12) 1100 U302 (11) 0000 clock U302 (13) 0108 U302 (14) 05A U303 (1) 1180 U303 (1) 1180 U303 (1) 1180 U303 (1) 12A4 U303 (1) 12A4 U303 (1) 12A4 U303 (1) 100 U303 (1) 12A4 U303 (1) 1018 U303 (1) 108 U303 (1) 100 U303 (
Note: The outputs from U405 and U406 can be made to toggle by setting Addresses 11 and 12 respectively (see All11 Schematic RUN/REPEAT. Press stop after performing this check. U302(1) 052A U302(2) 00/TU U302(3) 0108 U302(7) 12A4 U302(10) U302(11) 0000 clock U302(11) 0000 clock U302(12) 1100 U302(13) 0180 U302(14) 0180 U303(2) 1180 U300 U300 U300 U300 U300 U300 U300 U3			
Note: The outputs from U405 and U406 can U405 (11) U302 (2) 0UTU U302 (2) 0UTU U302 (3) A8H9 U302 (4) 8HPP U302 (6) 1100 U302 (10) 1180 U302 (10) 1180 U302 (11) 0000 clock U302 (12) 1100 U302 (13) 0108 U302 (13) 0108 U302 (14) 052A U303 (11) 1180 U303 (12) 117C U303 (3) A7A2 U303 (3) A7A2 U303 (3) A7A2 U303 (15) 5342 U303 (13) 1180 U303 (17) PUP0 U303 (11) 12A4 U303 (12) 49U8 U303 (12) 49U8 U303 (13) 8HPP U303 (16) 1100 U303 (14) A8H9 U303 (17) 0108 U303 (17) 0108 U303 (18) 052A U303 (18) 052A U303 (19) 0UTU U405 (11) PUP0 U405 (11) PUP0 U405 (11) PUP0 U405 (11) PUP0 U405 (11)			0301 (13) 107C
Note: The outputs from U405 and U406 can U405 (11) U302 (2) 0UTU U302 (2) 0UTU U302 (3) A8H9 U302 (4) 8HPP U302 (6) 1100 U302 (10) 1180 U302 (10) 1180 U302 (11) 0000 clock U302 (12) 1100 U302 (13) 0108 U302 (13) 0108 U302 (14) 052A U303 (11) 1180 U303 (12) 117C U303 (3) A7A2 U303 (3) A7A2 U303 (3) A7A2 U303 (15) 5342 U303 (13) 1180 U303 (17) PUP0 U303 (11) 12A4 U303 (12) 49U8 U303 (12) 49U8 U303 (13) 8HPP U303 (16) 1100 U303 (14) A8H9 U303 (17) 0108 U303 (17) 0108 U303 (18) 052A U303 (18) 052A U303 (19) 0UTU U405 (11) PUP0 U405 (11) PUP0 U405 (11) PUP0 U405 (11) PUP0 U405 (11)			U302 (1) 052A
U302 (3) A SH9 U302 (4) SHPP U302 (5) 0108 U302 (6) 1100 U302 (1) 1180 U303 (1) 1180 U303 (1) 1180 U303 (1) 1180 U303 (1) 1180 U303 (1) 1180 U303 (1) 1180 U303 (1) 1180 U303 (1) 1180 U303 (1) 1180 U303 (1) 1180 U303 (1) 1180 U303 (1) 12A U303 (1) 108			
Note: The outputs from U405 and U406 can be made to toggle by setting Addresses 11 and 12 respectively (see A111 Schematic) using the utilities, and pressing RUN/REPEAT. Press stop after performing this check.			
Note: The outputs from U405 and U406 can be made to toggle by setting Addresses 11 and 12 respectively (see A111 Schematic) using the utilities, and pressing RUN/REPEAT. Press stop after performing this check.			
Note: The outputs from U405 and U406 can be made to toggle by setting Addresses 11 and 12 respectively (see A111 Schematic) using the utilities, and pressing RUN/REFEAT. Press stop after performing this check.			
Note: The outputs from U405 and U406 can be made to toggle by setting Addresses 11 and 12 respectively (see A111 Schematic) using the utilities, and pressing RUN/REPEAT. Press stop after performing this check.			
Note: The outputs from U405 and U406 can be made to toggle by setting Addresses 11 and 12 respectively (see A111 Schematic) USOS (1)			
W302 (11) 0000 clock U302 (12) 1100 U302 (13) 0108 U302 (14) 052A U302 (15) 0U7U U303 (1) 1180 U303 (2) 1U7C U303 (3) A7A2 U303 (4) 108P U303 (5) 5342 U303 (5) 5342 U303 (7) PUP0 U303 (8) PUP0 U303 (11) 12A4 U303 (12) 49U8 U303 (13) 8HPP U303 (14) A8H9 U303 (17) 0108 U303 (17) 0108 U303 (18) 052A U303 (19) 0U7U U405 (11) PUP0 U405 (11) PUP0 U405 (12) 0000 U405 (11) PUP0 U405 (12) 0000 U405 (17) 1180 U405 (11) PUP0 U405 (11) PUP0 U405 (11) PUP0 U405 (11) PUP0			
Note: The outputs from U405 and U406 can be made to toggle by setting Addresses 11 and 12 respectively (see A111 Schematic) using the utilities, and pressing RUN/REPEAT. Press stop after performing this check. U302 (12) 1100 U302 (13) 0108 U302 (14) 052A U302 (15) 0U7U U303 (1) 1180 U303 (1) 1180 U303 (1) 1180 U303 (3) A7A2 U303 (4) 108P U303 (3) A7A2 U303 (4) 108P U303 (16) 932U U303 (7) PUPO U303 (17) PUPO U303 (11) 12A4 U303 (12) 49U8 U303 (12) 49U8 U303 (13) 8HPP U303 (16) 1100 U303 (17) 0108 U303 (17) 0108 U303 (18) 052A U303 (19) 0U7U			
W302 (13) 0108 U302 (14) 052A U302 (15) 0U7U U303 (1) 1180 U303 (2) 1U7C U303 (3) A7A2 U303 (4) 108P U303 (5) 5342 U303 (6) 932U U303 (7) PUP0 U303 (11) 12A4 U303 (12) 49U8 U303 (13) 8HPP U303 (14) A8H9 U303 (15) 1100 U303 (16) 1010 U303 (17) 0108 U303 (18) 052A U303 (19) 0U7U U303 (19) 0U7U U303 (19) 0U7U U405 (11) PUP0 U405 (11) PUP0 U405 (12) 0000 U405 (17) 1180 this check.			
Note: The outputs from U405 and U406 can be made to toggle by setting Addresses 11 and 12 respectively (see A111 Schematic) using the utilities, and pressing RUN/REPEAT. Press stop after performing this check. U302 (14) 052A U302 (15) 0U7U U303 (1) 1180 U303 (1) 1180 U303 (2) 1U7C U303 (2) 1U7C U303 (3) A7A2 U303 (4) 108P U303 (5) 5342 U303 (6) 932U U303 (6) 932U U303 (6) 932U U303 (12) 49U8 U303 (11) 12A4 U303 (12) 49U8 U303 (11) 12A4 U303 (12) 49U8 U303 (12) 49U8 U303 (13) 8HPP U303 (16) 1100 U303 (17) 0108 U303 (17) 0108 U303 (18) 052A U303 (19) 0U7U			
Note: The outputs from U405 and U406 can be made to toggle by setting Addresses 11 and 12 respectively (see A111 Schematic) using the utilities, and pressing RUN/REPEAT. Press stop after performing this check. U302 (15) 0U7U U302 (15) 0U7U U303 (1) 1180 U303 (1) 1180 U303 (2) 1U7C U303 (3) A7A2 U303 (3) A7A2 U303 (4) 108P U303 (5) 5342 U303 (5) 5342 U303 (6) 932U U303 (11) 12A4 U303 (12) 49U8 U303 (12) 49U8 U303 (13) 8HPP U303 (16) 1100 U303 (16) 1100 U303 (17) 0108 U303 (19) 0U7U			
Note: The outputs from U405 and U406 can be made to toggle by setting Addresses 11 and 12 respectively (see A111 Schematic) using the utilities, and pressing RUN/REPEAT. Press stop after performing this check. U303 (1) 1180 U303 (1) 112A U303 (1) 12A4 U303 (1) 12A4 U303 (12) 49U8 U303 (13) 8HPP U303 (14) A8H9 U303 (16) 1100 U303 (17) 0108 U303 (17) 0108 U303 (19) 0U7U			
Note: The outputs from U405 and U406 can be made to toggle by setting Addresses 11 and 12 respectively (see A111 Schematic) USO3 (2) U303 (2) U303 (3) A7A2 U303 (4) U303 (5) U303 (6) U303 (7) U2003 (8) U200 U303 (11) U303 (12) 4908 U303 (13) BHPP U303 (14) U303 (17) U303 (18) U303 (19) U303 (11) U405 (1) PUP0 U405 (11) U405 (12) U405 (17) U405 (17) U406 (1) PUP0			
Note: The outputs from U405 and U406 can be made to toggle by setting Addresses 11 and 12 respectively (see A111 Schematic) using the utilities, and pressing RUN/REPEAT. Press stop after performing this check. U303 (3) A7A2 U303 (3) A7A2 U303 (3) A7A2 U303 (4) 108P U303 (4) 108P U303 (5) S342 U303 (5) S342 U303 (6) 932U U303 (7) PUP0 U303 (11) 12A4 U303 (12) 49U8 U303 (12) 49U8 U303 (12) 49U8 U303 (12) 49U8 U303 (13) 8HPP U303 (16) 1100 U303 (17) 0108 U303 (16) 1100 U303 (17) 0108 U303 (17) 0108 U303 (18) 052A U303 (19) 0U7U			
Note: The outputs from U405 and U406 can be made to toggle by setting Addresses 11 and 12 respectively (see A111 Schematic) using the utilities, and pressing RUN/REPEAT. Press stop after performing this check. U303 (4) 108P U303 (5) 5342 U303 (5) 932U U303 (6) 932U U303 (6) 932U U303 (7) PUPO U303 (11) 12A4 U303 (12) 49U8 U303 (11) 12A4 U303 (12) 49U8 U303 (13) 8HPP U303 (16) 1100 U303 (17) 0108 U303 (16) 1100 U303 (17) 0108 U303 (18) 052A U303 (18) 052A U303 (19) 0U7U			
Note: The outputs from U405 and U406 can be made to toggle by setting Addresses 11 and 12 respectively (see A111 Schematic) using the utilities, and pressing RUN/REPEAT. Press stop after performing this check.U303 (5) 5342 U303 (6) $932U$ U303 (6) $932U$ U303 (1) $12A4$ U303 (11) $12A4$ U303 (12) $49U8$ U303 (13) $8HPP$ U303 (14) $A8H9$ U303 (16) 1100 U303 (17) 0108 U303 (18) $052A$ U303 (19) $0U7U$ Note: The outputs from U405 and U406 can be made to toggle by setting Addresses 11 and 12 respectively (see A111 Schematic) U405 (11) PUP0 U405 (12) 0000 U405 (17) 1180U406 (1) PUP0			1
Note: The outputs from U405 and U406 can U303 (6) 932U be made to toggle by setting Addresses 11 u303 (11) 12A4 u303 (12) 49U8 u303 (12) 49U8 U303 (14) A8H9 u303 (16) 1100 U303 (17) 0108 u303 (17) 0108 U303 (19) 0U7U u303 (19) 0U7U V405 (11) PUPO u405 (11) PUPO U303 (12) 49U8 u303 (16) 1100 U303 (17) 0108 u303 (18) 052A U303 (19) 0U7U u303 (19) 0U7U V405 (11) PUPO u405 (11) PUPO using the utilities, and pressing U405 (12) 0000 U405 (17) 1180 u406 (1) PUPO			1 7
Note: The outputs from U405 and U406 can be made to toggle by setting Addresses 11 and 12 respectively (see A111 Schematic) using the utilities, and pressing RUN/REPEAT. Press stop after performing this check. U303 (7) PUP0 U303 (1) 12A4 U303 (11) 12A4 U303 (12) 49U8 U303 (12) 49U8 U303 (13) 8HPP U303 (14) A8H9 U303 (16) 1100 U303 (17) 0108 U303 (17) 0108 U303 (18) 052A U303 (18) 052A U303 (19) 0U7U Note: The outputs from U405 and U406 can be made to toggle by setting Addresses 11 and 12 respectively (see A111 Schematic) U405 (11) PUP0 U405 (11) PUP0 U405 (12) 0000 U405 (17) 1180 U405 (17) 1180			
Note: The outputs from U405 and U406 can U405 (1) PUP0 Note: The outputs from U405 and U406 can U405 (1) PUP0 Note: The outputs from U405 and U406 can U405 (1) PUP0 U303 (12) 49U8 U303 (14) A8H9 U303 (16) 1100 U303 (16) 1100 U303 (17) 0108 U303 (17) 0108 U303 (19) 0U7U U405 (1) PUP0 U405 (1) PUP0 U405 (11) PUP0 U405 (12) 0000 U405 (17) 1180 RUN/REPEAT. Press stop after performing U406 (1) PUP0 U406 (1) PUP0 U406 (1) PUP0			
Note: The outputs from U405 and U406 can be made to toggle by setting Addresses 11 and 12 respectively (see A111 Schematic) using the utilities, and pressing RUN/REPEAT. Press stop after performing this check.U303 (11) 12A4 U303 (12) 49U8 U303 (13) 8HPP U303 (14) A8H9 U303 (16) 1100 U303 (17) 0108 U303 (18) 052A U303 (19) 0U7UNote: The outputs from U405 and U406 can be made to toggle by setting Addresses 11 and 12 respectively (see A111 Schematic) U405 (11) PUP0 U405 (12) 0000 U405 (17) 1180U406 (1) PUP0 U406 (1) PUP0			
Note: The outputs from U405 and U406 can be made to toggle by setting Addresses 11 and 12 respectively (see A111 Schematic) using the utilities, and pressing RUN/REPEAT. Press stop after performing this check. U303 (13) 8HPPU303 (16) 1100U303 (17) 0108U303 (18) 052AU303 (19) 0U7U			
Note: The outputs from U405 and U406 can be made to toggle by setting Addresses 11 and 12 respectively (see A111 Schematic) using the utilities, and pressing RUN/REPEAT. Press stop after performing this check.U303 (14) A8H9 U303 (16) 1100 U303 (17) 0108 U303 (19) 0U7UNote: The outputs from U405 and U406 can be made to toggle by setting Addresses 11 and 12 respectively (see A111 Schematic) U405 (12) 0000 U405 (17) 1180			
Note: The outputs from U405 and U406 can be made to toggle by setting Addresses 11 and 12 respectively (see A111 Schematic) using the utilities, and pressing RUN/REPEAT. Press stop after performing this check.U303 (16) 1100 U303 (17) 0108 U303 (19) 0U7UU405 (1) PUP0 U405 (11) PUP0 U405 (12) 0000 U405 (17) 1180U405 (1) PUP0 U405 (17) 1180			
Note: The outputs from U405 and U406 can be made to toggle by setting Addresses 11 and 12 respectively (see A111 Schematic) using the utilities, and pressing RUN/REPEAT. Press stop after performing this check.U303 (17) 0108 U303 (18) 052A U303 (19) 0U7UU405 (1) PUP0 U405 (12) 0000 U405 (17) 1180U405 (1) PUP0 U405 (17) 1180			
Note: The outputs from U405 and U406 can be made to toggle by setting Addresses 11 and 12 respectively (see A111 Schematic) using the utilities, and pressing RUN/REPEAT. Press stop after performing this check.U303 (18) 052A U303 (19) 0U7UU405 (1) PUPO U405 (11) PUPO U405 (12) 0000 U405 (17) 1180U405 (1) U405 (17) 1180			
Note: The outputs from U405 and U406 can be made to toggle by setting Addresses 11 and 12 respectively (see A111 Schematic) using the utilities, and pressing RUN/REPEAT. Press stop after performing this check.U303 (19) 0U7UU405 (1) PUP0 U405 (12) 0000 U405 (17) 1180U405 (1) PUP0 U405 (17) 1180			
Note: The outputs from U405 and U406 can be made to toggle by setting Addresses 11 and 12 respectively (see A111 Schematic) using the utilities, and pressing RUN/REPEAT. Press stop after performing this check. $U405(1)$ U405(11) U405(12) U405(17) U405(17) U406(1) U406(1)			
be made to toggle by setting Addresses 11 and 12 respectively (see A111 Schematic) using the utilities, and pressing RUN/REPEAT. Press stop after performing this check. $\frac{U405(11) PUP0}{U405(12) 0000}$ $\frac{U405(17) 1180}{U406(1) PUP0}$			
and 12 respectively (see A111 Schematic) using the utilities, and pressing RUN/REPEAT. Press stop after performing this check. $\frac{U405(12) 0000}{U405(17) 1180}$			
using the utilities, and pressing RUN/REPEAT. Press stop after performing this check. U406 (1) PUPO			
RUN/REPEAT. Press stop after performing this check. U406 (1) PUPO		- · ·	
this check. <u>U406 (1) PUP0</u>			<u>U4U5 (17) 1180</u>
		IIIIS UNTER.	
<u>U406 (12)</u> 0000			
$\frac{U}{U406(17)}$ $\frac{U}{2C6H}$			

G6-8 U-LAW EXPANDER TROUBLESHOOTING (3776B only)

- 1. Set the A13S2 switches to 00000 and press the A13S1 reset button.
- 2. Set the 3776 to DIG Tx/DIG Rx and ensure that the DIGITAL TRANSMIT output is connected to the DIGITAL RECEIVE input.
- 3. Set the 3776 to GAIN V LEVEL SYNC.
- 4. Press RUN and check that 2.00kHz REF 92 CODE is momentarily displayed followed by the following MEAS codes.

- 5. For each code transmitted between 127 and 15, check that the reading displayed in the RESULTS display is within 0 ±0.5dB. For code 1, the reading should be within 0 ±0.2dB.
- 6. If a result for any code is out of limit and the A111 Signature Analysis has been performed successfully, then fault is in either A111 PROM U409 or U408.

G6-9 A11 TROUBLESHOOTING PROCEDURE (3776A only)

1. With the power switched off, mount assembly A11 on the extender board.

- 2. Connect the DIGITAL TRANSMIT output to the DIGITAL RECEIVE input.
- 3. Connect the HP5005A Signature Multimeter as follows:

GND......A12 DIG GND CLOCK......A11 SA CLK, positive edge START......A11 SA START/STOP test point, positive edge STOP......A11 SA START/STOP test point, positive edge

4. Set the HP 5005A Signature Multimeter as follows:

FUNCTION	NORM
DATA	TTL
CLOCK	TTL
ST-SP-QL	TTL

5. Set the A13S2 switches to 10010 and switch the power on.

Note: Steps 6, 7 and 8 can be omitted by connecting an HP85 to the 3776, setting the HP-IB address to 02 and sending the following HP85 basic commands. Ignore any errors displayed when using the HP-IB commands to set up the Input/Output port addresses and data.

OUTPUT 702; "CA OFF" OUTPUT 702; "IO#H33, #HA4" OUTPUT 702; "IO#H32, #H40" OUTPUT 702; "IO#H31, #H00" OUTPUT 702; "IO#H30, #H05" OUTPUT 702; "IO#H3D, #H08"

6. Set the A13S2 switches to 10001 and press the A13S1 reset button.

7. Press AN Tx.

8. Write the following data to the corresponding addresses as shown:

A4 to address 33 40 to address 32 00 to address 31 05 to address 30 08 to address 3d

- See General Service Sheet G1 for Instrument Bus Access using the "utilities".

- 9. Check that the signature obtained on A11 U101 pin 14 (+5V) is 826P. This checks that counters U110, U210 and U310 used for SA START/STOP are correct. If this signature cannot be obtained, then check counter operation using a logic probe or an oscilloscope.
- 10. Check that the following signatures can be obtained. Use the A11 schematics in conjunction with the signatures to locate the fault.

Note: Where indicated, only signatures that are underlined need be checked to verify Logic Function operation.

Assembly	Logic Function	Signatures
A11	Timing Generator (See A11 Part 1 Schematic)	U110 (2) 0000 clock
(3776A)	,	U110 (9) 826P
		U110 (11) ICF0
		U110 (12) 925A
		U110 (13) H657
		U110 (14) UF4C
		U110 (15) 8A79
		U210(2) 0000 clock
		U210(7) 8A79
		U210 (9) 826P
		U210(10) 8A79
		U210(11) 1A77
		U210(12) UPUA
		U210(13) HAH5
		U210(14) 0446
		U210 (15) 30P8
		U310(2) 0000 clock
		U310(7) 30P8
		U310(9) 826P
		U310(10) 30P8
		U310(11) 7P61
		U310(12) 2F6A
		U310(13) 4UC2
		U310(14) 6HF9
		U310(15) F359
A11	Frame and Multi France All	
(3776A)	Frame and Multi-Frame Alignment Detector.	U101 (8) 826P
JIIUA)	(See All Part 1 schematic)	U101 (9) 6C36
		U101 (10) 826P

Note: Signatures marked ** should be	U103 (2) 826P	
checked with the HP5005A Signature		
Analyzer Multimeter connected as follows:	U103 (10) 0000 clock	
Analyzer Multimeter connected as follows.	U103 (11) 0000 clock	
	U103 (12) 0000 clock	
GND : A12 DIG GND	U103 (13) 0000 clock	
CLOCK : A12 CLK R x,	U105(1) 826P	
Polarity +ve edge	U105 (2) U6FA**	
	U105 (3) H657	
START : A12 SA START/STOP,	U105 (4) H657	
Polarity +ve edge	U105 (5) P1H4**	
I blainty the cage	U105 (6) UF4C	
	U105 (7) UF4C	
STOP A12 SA START/STOP,		
Polarity +ve edge	U105 (9) ICF0	
	U105 (10) ICF0	
	U105 (11) FP66**	
	U105 (12) 925A	
	U105 (13) 925A	
	U105 (14) 0000	
	U106 (1) 1A77	
	U106 (4) FHU3	
	U106 (6) UPUA	
	U106 (7) 1974	
	U106 (10) 826P	
	U106 (11) 0000 clock	
	U106 (12) UPUA	
	U106 (12) UPDA U106 (14) 1A77	
	0106 (14) 1777	
	U107 (1) 1A77	
	U107 (2) 9819	
	U107 (3) 7P61	-
	U107 (4) UF0U	
	U107 (5) AAU3	
	U107 (6) 289H	
	U107 (8) C6PU	
	U107 (9) 3481	
	U107(10) 0000	
	U107 (11) 826P	
	U107 (11) 820F	
	U107 (13) 826P	

.

	: Signatures marked ** should be	U111 (3) UF4C
	ked with the HP5005A Signature	U111 (4) H657
Ana	yzer Multimeter connected as follows:	U111 (5) 925A
		U111 (6) UNSTABLE
		U111 (8) 68P8
GNI	D : A12 DIG GND	U111 (9) HAH5
		U111 (10) ICF0
	CK : A12 CLK Rx,	U111 (11) 0446
	Polarity +ve edge	
CTT A		U112 (4) P1H4**
51A	RT : A12 SA START/STOP,	U112 (5) 102P**
	Polarity +ve edge	U112 (6) U6FA**
		U112 (8) 1A77
STO:	,	U112 (9) 1A77
	Polarity +ve edge	U112 (10) 826P
		U112 (11) 3481
		U112 (12) 68P8
		U112 (13) 7F94
		U205 (1) UF4C
		U205 (2) H657
		U205 (3) 925A
		U205 (4) ICF0
		U205 (5) 0446
		U205 (6) 5965
		U205 (7) 6C36
		U205 (8) 1974
		U205 (9) FHU3
		U205 (11) HCU2
		U205 (12) C5PA
		U205 (13) 3655
1		U205 (14) UA59
		U205 (15) 0000
		U205 (16) HAH5
		U205 (17) UPUA
		U206 (1) 0446
	ý	U206 (4) 5965
		U206 (5) HAH5
		U206 (7) 826P
		U206 (9) 826P
		U206 (10) 826P
		U206 (11) 0000 clock
		U206 (12) 826P
		U206 (12) U201 U206 (13) HAH5
		U206 (14) 0446
		U207 (4) HH63
		U207 (5) UF0U

 •		
	U207 (6) F3PF	
	<u>U211 (1) H579</u>	
	U211 (2) 68P8	
	U211 (3) UF0U	
	U211 (4) FF61	
	U211 (5) HH63	
	U211 (6) H72A	
	U211 (8) FF61	
	U211 (9) 08PC	
	U211 (10) H579	
	U211 (11) 68P8	
	U211 (12) 1874	
	U211 (13) 747U	
	U212 (1) 0000	
	U212 (2) 826P	
	U212 (3) 1874	
	U212 (4) 0000 clock	
	U212 (5) 826P	
	U212 (6) H72A	
	U212 (8) 0000	
	U212 (9) 0000	
	U212 (10) 826P	
	U212 (11) FF61	
	U212 (12) 826P	
	U212 (13) 0000	
	U302 (1) UF4C U302 (2) H657	
	U302 (8) 0000	
	U302 (9) 0000	
	U302 (10) 7P61	
	U302 (11) 826P	
	U302 (12) AAU3	
	U302 (13) 925A	
	U305 (4) UA59	
)	U305 (5) 6HF9	
	U305(7) 3655	
	U305 (9) HCU2	
	U305(10) 826P	
	U305 (11) 0000 clock	
	U305 (12) 826P	
	U305(13) 6HF9	
	U305 (14) 826P	
	U305 (15) 0000	

Note: Signatures marked ** should be checked with the HP5005A Signature	U311 (1) 1A77 U311 (2) UPUA
Analyzer Multimeter connected as follows:	U311 (3) 6HF9 U311 (4) 4UC2
GND : A12 DIG GND	U311 (5) 2F6A U311 (6) HH63
	U311 (8) 08PC
CLOCK A12 CLK Rx,	U311 (9) 0000
Polarity +ve edge	U311 (10) 9819
START : A12 SA START/STOP,	U311 (12) 747U
Polarity +ve edge	U311 (13) 0000
STOP : A12 SA START/STOP,	U312(1) 0000
Polarity +ve edge	U312 (2) 0000 clock
	U312 (3) 0000 clock
	U312 (4) 0000
	U312 (5) 0000 clock U312 (6) 0000 clock
	U312 (8) 826P
	U312 (9) C5PA
	U312 (10) 826P
	U411 (9) 0000
	U411 (10) 4AC9**
	U411(11) **
	U411(12) 826P
	U411 (13) FP66**
	U412 (1) UPUA
	U412 (2) 0000
	U412 (3) 7F94
	U412 (8) 6HF9
	U412 (9) UPUA U412 (10) 115H
	U511(2) H3UC**
	U511 (3) 69UH**
	U511 (4) 826P U511 (5) A7U7**
	U511 (6) F95H**
	U511 (7) 102P**
	U511 (9) P1H4**
	U511(10) A46A**
	U511 (11) FP66**
	U511 (12) 826P
	U511 (13) 1A7U**
<i>ì</i>	U511 (14) 34UP**
	U512(1)69UH**
	U512 (2) 34UP**

		U512 (4) A (C ⁻³ * U512 (5) F95H** U512 (6) 4AC9**
A11 (3776A)	Test Timeslot Selector. (See A11 Schematic Part 1).	U102 (7) 4H18 U102 (9) FU76 U102 (11) FU76 U102 (12) 4H18 U102 (13) 0000
	Note: Signatures marked ** should be checked with the Signature Multimeter connected as follows:	U201 (1) 6H18 U201 (2) PUA7 U201 (10) 4H18 U201 (11) FU76 U201 (12) 7F94
	GND : A12 DIG GND CLOCK : A12 CLK Rx, Polarity +ve edge	U201 (13) UPUA U203 (1) 6HF9 U203 (2) F3PF
	START : A12 SA START/STOP, Polarity +ve edge	U203 (5) F3PF U203 (7) 0000 U203 (9) 0000 U203 (10) 826P
	STOP : A12 SA START/STOP, Polarity +ve edge	U203 (10) 8207 U203 (11) 0000 U203 (12) 7F94 U203 (13) UPUA U203 (14) F3PF U203 (15) PUA7
		U207 (1) 7P48 U207 (2) F3PF U207 (3) FU76 U207 (8) 0000 clock U207 (9) 4H18 U207 (10) FU76
		U 303 (1) 2F6A U 303 (6) F3PF U 303 (9) 6HF9 U 303 (10) 0000 U 303 (11) 4UC2 U 303 (12) 0000 U 303 (13) 0000
		U303 (14) 7P61 U303 (15) 0000 U304 (1) HAH5 U304 (3) 9819 U304 (6) 7P48 U304 (9) 1CF0

	U208 (5) 826P U208 (6) HAH5 U208 (7) HAH5 U208 (9) 4UC2 U208 (10) 4UC2 U208 (11) 826P U208 (12) 6HF9 U208 (13) 6HF9 U208 (14) FU76
	<u>U307 (2) P63A</u> U307 (4) 4AF7 U307 (5) 5714 <u>U307 (7) 2C8A</u> U307 (9) 826P <u>U307 (10) 172P</u> U307 (12) 2P5H U307 (13) C7HC
Note: To fully exercise PROM U308 after obtaining the normal signatures, write A0 to Address 33, using the utility, and check that the *signatures, can be obtained. After ob- taining the *signatures, write A4 to Address 33 and continue with the procedure.	U307 (15) 5CPH U308 (1) A872 U308 (2) 0A74 U308 (3) FPC9 U308 (4) 417A U308 (5) HAH5 U308 (6) 5AP5 *2P5H

	·	
		U308 (7) F534 ±0000 U308 (8) AFUA ±0000 U308 (9) 8849 ±0000 U308 (11) 5714 ±826P U308 (12) 2P5H U308 (13) 4AF7 ±826P U308 (14) C7HC ±0000 U308 (16) UPUA U308 (17) 6HF9 U308 (18) 4UC2 U308 (19) 826P 0000
A11 (3776A)	Peak Codes Detector. (See A11 Schematic Part 2)	U108 (1) 826P U108 (2) 4UC2 U108 (3) UPUA U108 (4) HAH5 U108 (5) 0446 U108 (6) 4663 U108 (7) H370 U108 (8) CA1F U108 (11) 90U3 U108 (12) 5P37 U108 (12) 5P37 U108 (16) 1CF0 U108 (17) 925A U108 (18) H657 U108 (19) UF4C U109 (1) H657 U109 (2) UF4C U109 (3) 755F U109 (4) U161 U109 (5) 925A U109 (6) 1CF0 U109 (7) 90U3 U109 (9) 5P37 U109 (10) 826P U109 (11) 0000 clock U109 (13) 925A U109 (14) H657 U109 (15) UF4C
		U209 (1) UPUA U209 (2) 4UC2 U209 (3) FU76 U209 (4) Toggles U209 (5) HAH5 U209 (6) 0446

~	
Ser	vice
	1100

		U209 (7) 3A4H U209 (9) 0HPP U209 (10) 826P U209 (11) 0000 clock U209 (12) 0446 U209 (13) HAH5 U209 (14) UPUA U209 (15) 4UC2 U405 (1) CA1F U405 (9) 826P U405 (11) 4663 U405 (12) 0000 clock U405 (17) 0HPP
	Note:- The outputs from U405 and U406 can be made to toggle by setting Address 12 and 11 respectively, using utilities, and press- ing RUN/REPEAT. Press STOP after doing this check.	U406 (11) CA1F U406 (9) 826P U406 (11) H370 U406 (12) 0000 clock U406 (17) 3A4H
A11 (3776A)	ADI Control (See A11 Part 2 Schematic)	U412 (4) Toggles U412 (5) 7P25 U412 (6) Toggles U512 (8) 7P25 U512 (10) UF4C

Model 3776A/B

G6-10 A-LAW EXPANDER TROUBLESHOOTING (3776A only)

- 1. Set the A13S2 switches to 00000 and press the A13S1 reset button.
- 2. Set the 3776 to DIG Tx/DIG Rx and ensure that the DIGITAL TRANSMIT output is connected to the DIGITAL RECEIVE input.
- 3. Set the 3776 to GAIN V LEVEL SYNC.
- 4. Press RUN and check that 2.00kHz REF 92 CODE is momentarily displayed followed by the following MEAS codes.

127 111	
95	
79	
63	
47	
31	
15	
0	

- 5. For each code transmitted between 127 and 15, check that the reading displayed in the RESULTS display is within 0 ± 0.5 dB. For code 0, the reading should be within 0 ± 0.2 dB.
- 6. If a result for any code is out of limit and the A11 Signature Analysis has been performed successfully, then the fault is in either A11 PROM U409 or U408.

GENERAL SERVICE SHEET G7 ANALOG TRANSMITTER/RECEIVER

•

Paragraph	•	INTRODUCTION Page	8-G7- 1
	G7-4	ANALOG TRANSMITTER ATTENUATORS AND ANALOG RECEIVER	
		AUTORANGING TROUBLESHOOTING	8-G7- 1
	G7-7	TROUBLESHOOTING PROCEDURE	8-G7- 2
	G7-8	A6 LEVEL DETECTOR CHECK	
	G7-9	TYPICAL CALIBRATION RESULTS AND LIMITS	

G7

GENERAL SERVICE SHEET G7 ANALOG TRANSMITTER/RECEIVER

G7-1 INTRODUCTION

G7-2 This service sheet covers troubleshooting for the following assemblies.

A3 Analog Transmitter (03776-60003)

A6 Analog Receiver (03776-60006)

A7/A107 Secondary Autoranging, A/D Converter and Digital Output Stage (03776-60007/60107)

G7-3 The calibration routines 2 to 10 of the 3776 Self Test are used to troubleshoot the above assemblies. A routine for checking the A6 Level Detector is also provided. Therefore, troubleshooting consists of the following:

- 1. Analog Transmitter Attenuators and Analog Receiver Autoranging (Paragraphs G7-4 to G7-7).
- 2. A6 Level Detector Check (Paragrah G7-8).
- 3. Typical Calibration Results and Limits (Paragraph G7-9).

G7-4 ANALOG TRANSMITTER ATTENUATORS AND ANALOG RECEIVER AUTORANGING TROUBLESHOOTING

G7-5 Introduction

Troubleshooting is performed by running the 3776 SELF-TEST calibration routine (ie Calibration Points 2 to 10) and checking for Calibration Point FAILS. The results of calibration points can be obtained by connecting an 80 column printer (eg HP2671G) to the HP-IB connector and setting the HP-IB switch to TO (Talk Only) and PRINT FORMAT to 2. The troubleshooting procedure can be performed without the printed results but they are useful in quickly determining the faulty stage. Typical Calibration results are given in Paragraph G7-9 with associated maximum and minimum limits.

When a FAIL has been detected, the appropriate Calibration Point can be run continuously in the WAIT state, see Paragraph G7-6. This enables troubleshooting to be performed with a test signal available and the faulty stage selected. When a FAIL appears on a Sub-Point of a calibration point, always complete the Sub-Point sequence noting any other failures occurring. This will help determine the location of the fault.

G7-6 Continuously Running a Calibration Point

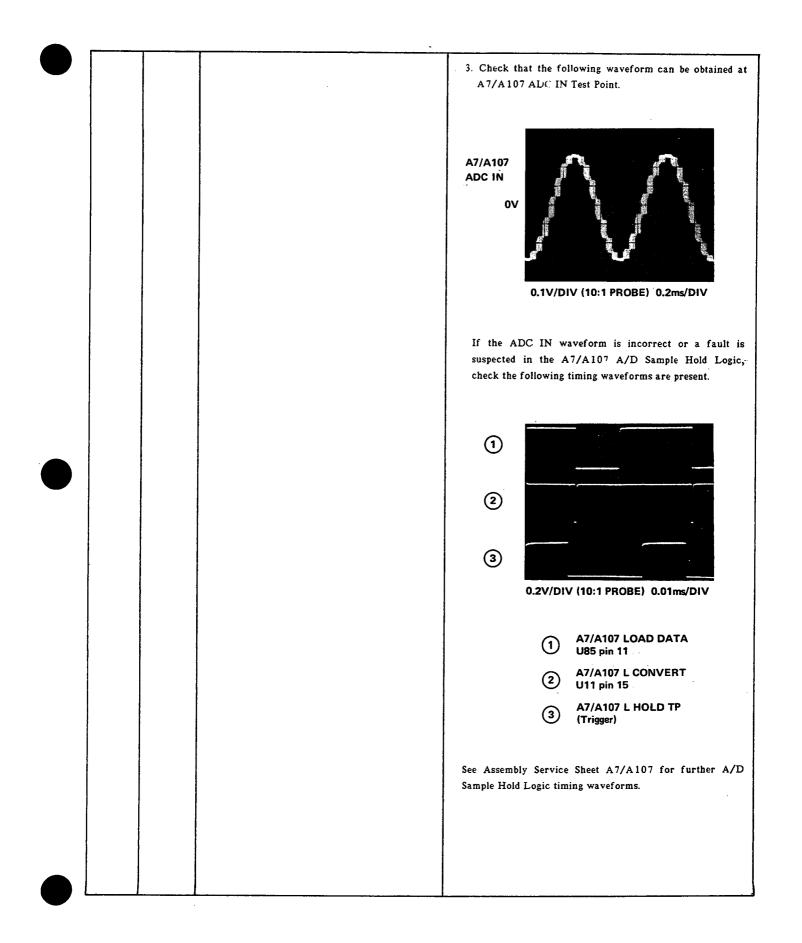
A calibration point automatically halts when an error occurs. To continually run the calibration point, press RUN/WAIT. Unfortunately, sub-point identification may be lost due to an error code being displayed. To select a CAL Sub-Point, carry out the following procedure:

- 1. If a printer is connected, switch the Printer power off.
- 2. Use the NEXT PARAM key to select the desired CAL Pt.
- 3. When the CAL Pt selected is displayed, use the S/STEP key to increment through the sub-points. If the sub-point number is not displayed, the sub-point number reached can only be determined by the number of times the S/STEP key is pressed.

Example: To select CAL Pt 5, Sub-Pt 3.

- a. Use the NEXT PARAM key to select the CAL Pt.
- b. Press the S/STEP key 3 times then press RUN/WAIT. CAL Pt 5, Sub-Pt 3 is now available for troubleshooting.

G7-7 TROUBLESHOOTING PROCEDURE


1. If available, connect an 80 column printer (eg HP2671G) to the 3776 HP-IB connector. Set the 3776 HP-IB switches to T0 (TALK ONLY) and PRINT FORMAT to 2.

Note: Troubleshooting can be performed without the printer connected, but the printed results obtained are useful in quickly determining the out-of-limit or nearly out-of-limit calibration sub points and sections. See Paragraph G7-9.

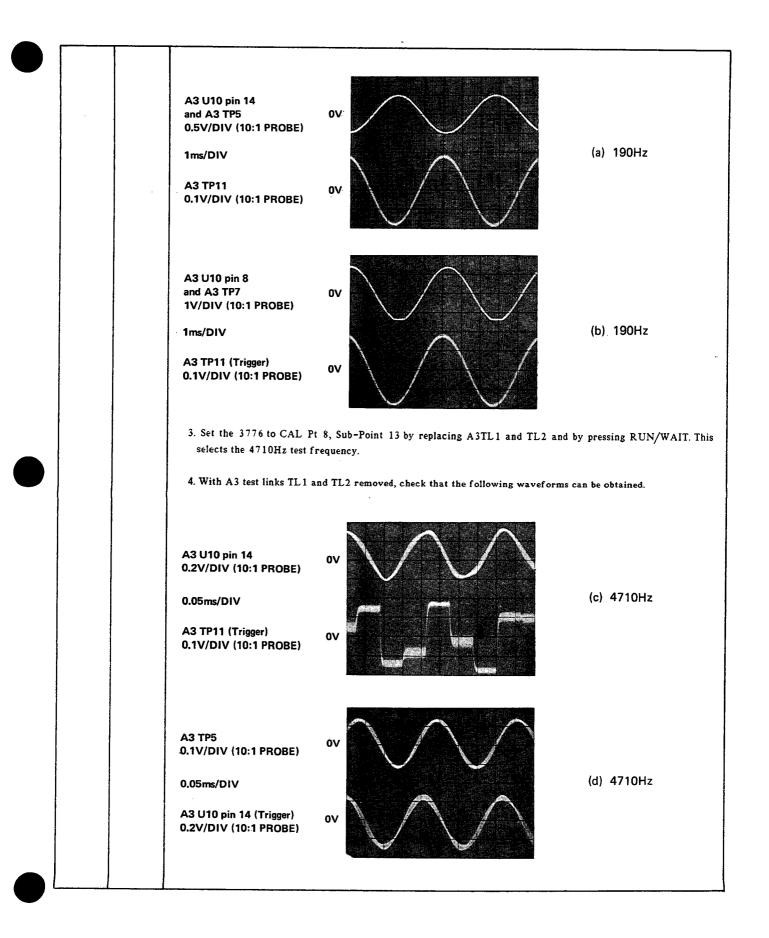
- 2. Press SELF-TEST then NEXT PARAM. Pt2 should now appear on the LEVEL display.
- 3. Press RUN at each calibration point and check if PASS or FAIL is displayed (or printed if the printer is connected). Use the NEXT PARAM key to step to the next Calibration Point. If a Calibration Point fails, continuously run the failed point for troubleshooting (see Paragraph G7-6 Continuously Running a Calibration Point). The following Table lists the stages tested and suspected faulty components for failed calibration points.
 - Note 1. Calibration Points 2 to 10 need only be run to check the Analog Transmitter Attenuators and Analog Receiver Autoranging.
 - 2. Typical Calibration results are given in Paragraph G7-9 with associated maximum and minimum limits.
 - 3. Some Calibration Points are inter-related. If the troubleshooting is performed successfully for a failed Calibration Point move on to the next failed Calibration Point.

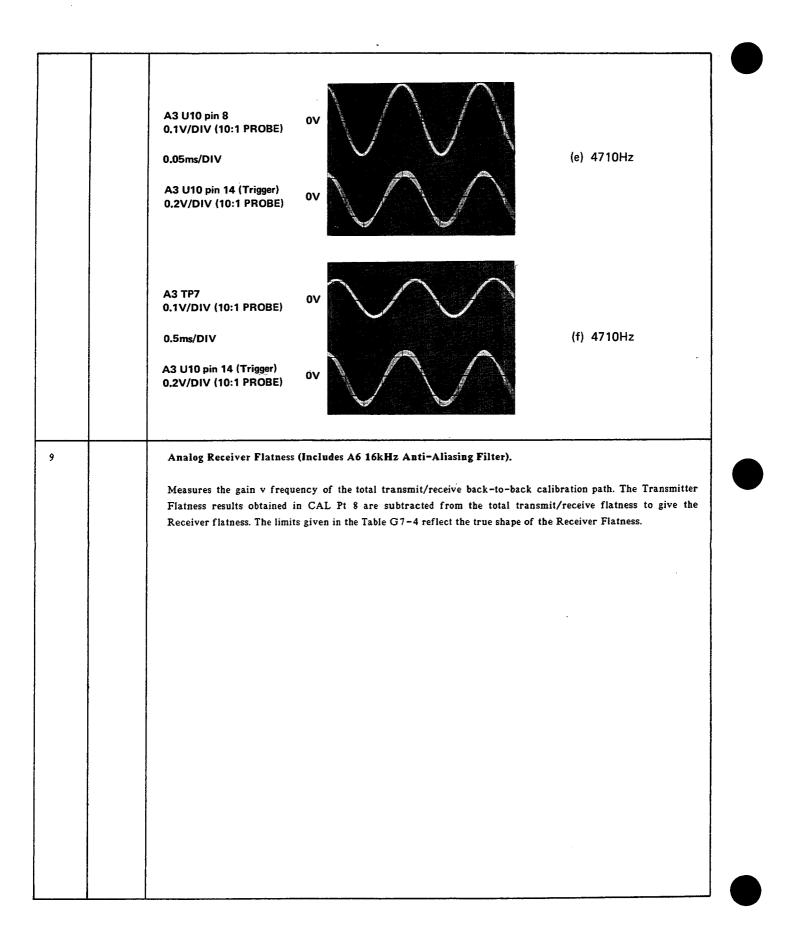
SUB Pt	Stages Tested	Troubleshooting
	A3 Analog Transmitter Unity Gain. The Receiver Section is bypassed and the Transmitter Output is fed directly into the Receiver A to D Converter. The Transmitter is connected to the Receiver via the CAL2	 Continuously run this CAL Pt (refer to Paragraph G7-6 and check that the output from the A3 D to A Converter is present on A3TP11 as shown.
	path.	0V 0V 0.05V/DIV (10:1 PROBE) 0.2ms/DIV
		If the waveform on A3TP11 is not present check opera- tion of the D to A Converter Data Latches. TP8 and TP10 should be at +10V. Check that the Data Latcher Clock and Enable signals are shown with a 16kHz rep rate.
	Note: If the waveform at A3TP11 is not present and the A3 D/A Converter Clock and Enable waveforms are correct, check operation of the Digital Signal Synthesiser (General Service Sheet G5) before replacing the DAC A3U33.	A 3TP9 sometimes =
		A3TP9 CLOCK OV A3TP4 ENABLE OV
	Pt	A3 Analog Transmitter Unity Gain. The Receiver Section is bypassed and the Transmitter Output is fed directly into the Receiver A to D Converter. The Transmitter is connected to the Receiver via the CAL2 path. Note: If the waveform at A3TP11 is not present and the A3 D/A Converter Clock and Enable waveforms are correct, check operation of the Digital Signal Synthesiser (General Service Sheet G5) before replacing

2. Check that the waveform on A3TP12 and A3TP13 is as shown. A3TP12. A3TP13 0V 0.05V/DIV (10:1 PROBE) 0.2ms/DIV In this mode, the A3 16kHz Anti-Aliasing Filter is selected. If A3TP12 waveform is not present, check for obvious type failures in the 16kHz filter or the Phase. Correction circuit. These circuits are checked in more detail when calibration point 8 is run. 3. All amplifiers in the A3 Attenuator stage are set to unity gain. Check the Attenuator path using the waveform obtained on A3TP12. The 3/6dB Amplifier is set to 6dB of gain. 1. Continuously run this CAL Pt (refer to Paragraph G7-6 A6/A7 Analog Receiver Unity Gain. 3 and check that A3TP14 and A6TPINPT waveforms are Same as calibration point (CAL Pt) 2 except the Receiver Section is inserted with all as shown. main path amplifiers set to unity gain. The signal is routed though the A6 16kHz Anti-Aliasing Filter. A3TP14 or A6TPINPT θV 0.1V/DIV (10:1 PROBE) 0.2ms/DIV 2. Check that the waveform at A6TPINT is routed through the A6 Primary Autoranging, 16kHz Anti-Aliasing Filter, Equaliser, A7/A107 Secondary Autoranging, Attenuator and A7/A107 Analog B switch. The signal is attenuated slightly by R42/R41 on A7/A107.

4	0-9	Always passe Point 5. If re Error 26 is	Auto-Range as, results are use sults are exessiv flagged. Each s -1, has a limit of	ed in calibra ely out of l stage, show f ±1dB.	imit,	8101250	» Pathe				
					smitter (d				R	eceiver (d	IB)
		Path* No	DIGITAL ATTEN	0/36 ATTEN	0/42 ATTEN	3/6 GAIN	PAR B	PAR A	SAR D	SAR C	ATTEN
		0	-12 -12	-6 -6	0 0	6 6	0 10	0 0	0 0	0 0	0 0
		2 3	-10 -10	-18 -18	0	6 6	10 20	0 0	0	0	0
		4 5	-10 -12	-18 -6	0 0 0	6 6 6	0 0 0	20 0 0	0 10 20	0	0
		6 7 8	-10 -14 -14	-18 -24 -24	0	6 6	0	0	20 20 0	0 30	0
	-	9	-12 ers correspond to	-6	0	6	0	0	0	0	-4
		-Path Numbe	ers correspond to		1 Sub-rom	n number	».				
5		autorange gai give the gain them in the Sub-Point fai	itorange Gains. in paths results s for all used pa e relevant CAI ils, then troubles the paths set up	in CAL Pt aths, and st L Table. I shooting is p	4 to ores f a per-						
5	0		Auto-Range (P = 0 ± 100mB.	AR) OdB t	est.	Always	passes.				
5	1		10dB test. Error h 0 = -6.3 ± 100 hs selected.			Conti (refe	nuously r	un this CA graph G7	AL pt by -6). This	pressing H	subpoint0. RUN/WAIT Path 0 (see
						2 an		check th	e A3 Q1,	/Q9 6dB	nd CAL Pts Attenuator. r.
							he 3776 /WAIT. Ti				by pressing -1.

			4. Check the operation of the 10dB PAR gain, A6 Q4 R13/R12.
5	2	A6 PAR B 20dB test. Error PAR B 20 = Path 3 - Path 2 + Error PAR B 10 = 11.7 \pm 100mB. See Table G7-1 for paths selected.	1. Set the 3776 to CAL Pt 4, Sub-Point 2 by pressin RUN/WAIT. This selects path 2 in Table 7-1.
			2. Check the operation of A3 Q1/Q9, Q4/Q10 an Q3/Q11 18dB attenuator.
			3. Set the 3776 to CAL Pt 4, Sub-Point 3 by pressin RUN/WAIT. This selects path 3 in Table G7-1.
			4. Check the operation of A6 Q2/Q4, R14/R13/R12 PA B 20dB gain.
5	3	A6 PAR 30dB test. Error PAR 30 = Path 4 - Path 2 + 2 (Error PAR A 10) = 9.1 ±100mB. See Table G7- for paths selected.	1. Assuming CAL Pts 5-1 and 5-2 pass, set the 3776 t CAL Pt 4 Sub-Point 4 by pressing RUN/WAIT. This selects path 4 in Table G7-1.
			2. Check operation of A6Q6, R10/R9 PAR A 20dB gain.
5	4	A6 PAR 40dB test. Error PAR 40 = Path 4 - Path 2 + Error PAR A 10 + Error PAR A 20 = 14.5 \pm 100mB. See Table G7-1 for paths selected.	Always passes if CAL Pts 5-1, 5-2 and 5-3 pass.
5	5	A7 SAR 0dB test. Error SAR 0 = 0 ±100mB.	Always passes
5	6.	A7 SAR D 10dB test. Error SAR D 10 = Path 5 - Path 0 = -4.2 ± 100 mB. See Table G7-1 for paths selected.	1. Set the 3776 to CAL Pt 4, Sub-Point 5 by pressin RUN/WAIT. This selects path 5 Table G7-1.
			2. Check operation of A7 Q15, R24/R23 SAR D 10d gain stage.
5	7	A7 SAR D 20dB test. Error SAR D 20 = Path 6 - Path 2 + Error PAR B $10 = -8.9$ ± 100 mB. See Table G7- for paths selected.	1. Assuming calibration Pt 5 Sub-Point 2 passes, set the 3776 to CAL Pt 4 Sub-Point 6 in by pressing RUN/WAIT This selects path 6 Table G7-1. If $5-2$ and $5-7$ both fait then use troubleshooting procedure in $5-2$.
			2. Check operation of A7 Q16/Q15 and R25/R24/R2 SAR D 20dB gain stage.
5	8	A7 SAR C 30dB test. Error SAR C 30 = Path 8 - Path 7 + Error SAR D 20 = +16.1 \pm 100mB. See Table G7-1 for paths selected.	1. Set the 3776 to CAL Pt 4, Sub-Point 7 by pressin, RUN/WAIT. This selects Path 7, see Table G7-1.
			2. If 5-7 passes, then check operation of A3 Q2/Q7/Q 24dB Attenuator. If 5-7 fails then use troubleshooting procedure in 5-7.
			3. Set the 3776 to CAL Pt 4 Sub-Point 8 by pressing RUN/WAIT. This selects path 8, see Table G7-1.


					4. sta		eration of	A7 Q19, 1	R36/R34	SAR C 30	dB gain
5	9	A7 SAR 40dB ta SAR D 10 + E ±100mB.				ways pass	ses if CAL	Pts 5-6 a	nd 5-8 pa	ss.	
5	10	A7 SAR 50dB te SAR D 20 + 1 ±100mB.				ways pass	es if CAL	Pts 5-7 a	nd 5-8 pa	SS.	
5	11	A7 SAR 4dB A SAR -4 = Pati ±100mB.See Tab	n 9 - Path O	+12.2	37	76 to CA	; CAL Pt L Pt 4, St path 9, see	ub-Point	9 by press		
					2. 0	beck ope	eration of A	A7 Q17/Q	18, R 39 4	4dB Attenu	lator.
	0-9	Transmitter Att in calibration Poi limit, Error 26 is shown below, has	nt 7 tests. If resu flagged). Each	ults are exc stage in th	essively ou	it of					
	0-9	in calibration Poi limit, Error 26 is	nt 7 tests. If resu flagged). Each	ults are exc stage in th Tabl	essively ou le Table G e G7-2 A	tt of 7-2 ttenuatio	on Paths	Receiv	ver (dB)		ł
	0-9	in calibration Poi limit, Error 26 is	nt 7 tests. If resu flagged). Each	ults are exc stage in th Tabl Tran 0/36	essively ou le Table G	tt of 7-2 ttenuatio	on Paths		er (dB)	SAR C	
	0-9	in calibration Poi limit, Error 26 is shown below, has Path* No 0	nt 7 tests. If resus flagged). Each a limit of ±1dB. DIGITAL ATTEN -8	ults are exc stage in th Tabl Tran 0/36 ATTEN 0	essively ou le Table G e G7-2 A smitter (d 0/42 ATTEN 0	tt of 7-2 ttenuatio B) 3/6 GAIN 6	PAR B	PAR A	SAR D	0	
	0-9	in calibration Poi limit, Error 26 is shown below, has Path* No 0 1	nt 7 tests. If resu flagged). Each a limit of ± 1dB. DIGITAL ATTEN -8 -8 -8	ults are exc. stage in th Tabl Tran 0/36 ATTEN 0 0	essively ou le Table G e G7-2 A smitter (d 0/42 ATTEN 0 0	tt of 7-2 ttenuatio B) 3/6 GAIN 6 3	PAR B 0 0	PAR A 0 0	SAR D 0 0	0 0	
	0-9	in calibration Poi limit, Error 26 is shown below, has Path* No 0 1 2	nt 7 tests. If resus flagged). Each a limit of ± 1dB. DIGITAL ATTEN -8 -8 -8 -8 -8	ults are exc. stage in th Tabl Tran 0/36 ATTEN 0 0 -6	essively ou le Table G e G7-2 A smitter (d 0/42 ATTEN 0 0 0 0	tt of 7-2 ttenuatio B) 3/6 GAIN 6 3 6	PAR B 0 0 0 0	PAR A 0 0 0 0	SAR D 0 0	0 0 0	
	0-9	in calibration Poi limit, Error 26 is shown below, has Path* No 0 1 2 3	nt 7 tests. If resu flagged). Each a limit of ±1dB. DIGITAL ATTEN -8 -8 -8 -8 -8 -8 -8	ults are exc stage in th Tabl Tran 0/36 ATTEN 0 0 0 -6 -12	essively ou le Table G e G7-2 A smitter (d 0/42 ATTEN 0 0 0 0 0	tt of 7-2 ttenuatio B) 3/6 GAIN 6 3 6 6	PAR B 0 0 0 10	PAR A 0 0 0	SAR D 0 0 0 0	0 0 0 0	
	0-9	in calibration Poi limit, Error 26 is shown below, has Path* No 0 1 2	nt 7 tests. If resus flagged). Each a limit of ± 1dB. DIGITAL ATTEN -8 -8 -8 -8 -8	ults are exc. stage in th Tabl Tran 0/36 ATTEN 0 0 -6	essively ou le Table G e G7-2 A smitter (d 0/42 ATTEN 0 0 0 0	tt of 7-2 ttenuatio B) 3/6 GAIN 6 3 6	PAR B 0 0 0 10 0	PAR A 0 0 0 0 0	SAR D 0 0 0 0 0	0 0 0 0 0	
	0-9	in calibration Poi limit, Error 26 is shown below, has Path* No 0 1 2 3 4	nt 7 tests. If resu flagged). Each a limit of ±1dB. DIGITAL ATTEN -8 -8 -8 -8 -8 -14	ults are exc stage in th Tabl Tran 0/36 ATTEN 0 0 -6 -12 0	essively ou le Table G e G7-2 A smitter (d 0/42 ATTEN 0 0 0 0 0 0 0	tt of 7-2 ttenuatio B) 3/6 GAIN 6 3 6 6 6 6	PAR B 0 0 0 10	PAR A 0 0 0	SAR D 0 0 0 0	0 0 0 0	
	0-9	in calibration Poi limit, Error 26 is shown below, has Path* No 0 1 2 3 4 5	nt 7 tests. If resu flagged). Each a limit of \pm 1dB. DIGITAL ATTEN -8 -8 -8 -8 -8 -14 -14	ults are exc. stage in th Tabl Tran 0/36 ATTEN 0 0 -6 -12 0 -18	essively ou le Table G e G7-2 A smitter (d 0/42 ATTEN 0 0 0 0 0 0 0 0	tt of 7-2 ttenuatio B) 3/6 GAIN 6 3 6 6 6 6 6	PAR B 0 0 0 10 0 20	PAR A 0 0 0 0 0 0	SAR D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	
	0-9	in calibration Poi limit, Error 26 is shown below, has Path* No 0 1 2 3 4 5 6	nt 7 tests. If resus flagged). Each a limit of ± 1dB. DIGITAL ATTEN -8 -8 -8 -8 -8 -14 -14 -14 -8	ults are exc. stage in th Tabl Tran 0/36 ATTEN 0 0 -6 -12 0 -18 -24	essively ou le Table G e G7-2 A smitter (d 0/42 ATTEN 0 0 0 0 0 0 0 0 0 0 0	tt of 7-2 ttenuatio B) 3/6 GAIN 6 3 6 6 6 6 6 6 6	PAR B 0 0 0 10 0 20 20 20	PAR A 0 0 0 0 0 0 0 0	SAR D 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	
	0-9	in calibration Poi limit, Error 26 is shown below, has Path* No 0 1 2 3 4 5 6 7	nt 7 tests. If resu flagged). Each a limit of ± 1dB. DIGITAL ATTEN -8 -8 -8 -8 -8 -14 -14 -14 -8 -8 -8	ults are exc. stage in th Tabl Tran 0/36 ATTEN 0 -6 -12 0 -18 -24 -30	essively ou le Table G e G7-2 A smitter (d 0/42 ATTEN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tt of 7-2 ttenuatio B) 3/6 GAIN 6 3 6 6 6 6 6 6 6 6	PAR B 0 0 0 10 0 20 20 20 20	PAR A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SAR D 0 0 0 0 0 0 0 0 0 10	0 0 0 0 0 0 0 0 0	


7		Transmitter Attenuation combines the at- tenuation path results in CAL pt 6 to give the attenuation for all used paths, and stores them in the relevant CAL Table. If a Sub-Point fails, then troubleshooting is per- formed using the paths set up in CAL pt 6.	
7	0	A3, -3dB Attenuation test. Error -3dB = Path 0 - Path 1 = 32.9 \pm 100mB. See Table G7-2 for paths selected.	1. Assuming that CAL Pts 2 and 3 pass (ie Path 0 is okay), set the 3776 to CAL Pt 6, Sub-Point 1. Continuously run the CAL Pt by pressing RUN/WAIT (refer to Paragraph $G7-6$). See Table $G7-2$.
			2. Check operation of the A3 3/6dB Amplifier. Amplifier is set to 3dB ie Q14 off).
7	1	A3, -6dB Attenuation test. Error -6 = Path 0 - Path 2 = -14.5 \pm 100mB. See Table G7-2 for paths selected.	1. Assuming that CAL Pt 2 and 3 pass (ie Path 0 is okay), set the 3776 to CAL Pt 6, Sub-Point 2 by passing RUN/WAIT. This selects path 2, see Table G7-2.
			2. Check operation of the A3 6dB Attenuator Q9/R18.
7	2	A3, -12dB Attenuation test. Error -12 = Path 0 - Path 3 + Error PAR B 10 = 12.2 \pm 100mB See Table G7-2 for paths selected.	1. Assuming that CAL Pts 2, 3 and 5-1 pass, set the 3776 to CAL Pt 6, Sub-Point 3 by pressing RUN/WAIT. This selects path 3, see Table G7-2.
			2. Check operation of A3 12dB Attenuator Q9/R18, Q10/R19.
7	3	A3, -18dB Attenuator test. Error -18 = Path 4 - Path 5 + Error PAR B $20 = -3.4$ ± 100 mB. See Table G7-2 for paths selected.	1. Assuming that CAL Pts 2, 3 and 5-2 pass, set the 3776 to CAL Pt 6, Sub-Point 5 by pressing RUN/WAIT. This selects path 5, see Table G7-2.
			2. Check the operation of the A3 18dB Attenuator Q9/R18, Q10/R19, Q11/R20.
7	4	A3, -24dB Attenuator test. Error -24 = Path 0 - Path 6 + Error PAR B 20 = 9.3 ± 100 mB. See Table G7-2 for paths selected.	1. Assuming that CAL Pts 2, 3 and 5-2 pass, set the 3776 to CAL Pt 6, Sub-Point 6 by pressing RUN/WAIT. This selects path 6, see Table G7-2.
			2. Check operation of the A3 24dB Attenuator Q7/Q8, R14/R15/R16.
7	5	A3, -30dB Attenuator test. Error -30 = Path 0 - Path 7 + Error PAR B 20 + Error SAR D 10 = -4.2 \pm 100mB. See Table G7-2 for paths selected.	1. Assuming that CAL Pts 2, 3, 5-2 and 5-6 pass, set the 3776 to CAL Pt 6, Sub-Point 7 by pressing RUN/WAIT. This selects path 7, see Table G7-2.
			2. Check the operation of the A3 30dB Attenuator Q10/R19, Q7/Q8, R14/R15/R16.
7	6	A3, -36dB Attenuator test. Error -36 = Path 4 - Path 8 + Error PAR B 20 + Error SAR D 20 = -5.1 \pm 100mB.	1. Assuming that CAL Pts 5-7 and 7-3 pass, set the 3776 to CAL Pt 6, Sub-Point 8 by pressing RUN/WAIT. This selects path 8, see Table G7-2.

•

		ing RUN/WAIT. This selects path 9, f A3 42dB Attenuator Q12/Q13,
Analog Transmitter Flatness (With 7	R22/R23/R24.	Filter selected)
In this mode the Analog Transmitter frequency of the Analog Transmitter points. At each point, the gain is te Sub-Points and test limits are given i respond to the actual shape of the 161 roll-off.	16 kHz path is measured relative to sted against a predefined limit. The n Table G7-3. It is important to not	1010Hz at a number of frequency frequency points with Calibration te that the limits given do not cor-
T	able G7-3	
T Cal Sub-point	able G7-3 Test Freq (Hz)	Test Limits (mB)
	T	5.2 ± 50
Cal Sub-point	Test Freq (Hz)	5.2 ± 50 9.4 ± 50
Cal Sub-point 0	Test Freq (Hz) 190	$5.2 \pm 50 \\ 9.4 \pm 50 \\ 0 \pm 50$
Cal Sub-point 0 1	Test Freq (Hz) 190 610 1010 (ref) 1440	$5.2 \pm 50 \\ 9.4 \pm 50 \\ 0 \pm 50 \\ -12.6 \pm 50$
Cal Sub-point 0 1 2	Test Freq (Hz) 190 610 1010 (ref) 1440 1810	$5.2 \pm 50 \\ 9.4 \pm 50 \\ 0 \pm 50 \\ -12.6 \pm 50 \\ -23.6 \pm 50$
Cal Sub-point 0 1 2	Test Freq (Hz) 190 610 1010 (ref) 1440 1810 2140	5.2 ± 50 9.4 ± 50 0 ± 50 -12.6 ± 50 -23.6 ± 50 -32.1 ± 50
Cal Sub-point 0 1 2	Test Freq (Hz) 190 610 1010 (ref) 1440 1810 2140 2510	5.2 ± 50 9.4 ± 50 0 ± 50 -12.6 ± 50 -23.6 ± 50 -32.1 ± 50 -39.4 ± 50
Cal Sub-point 0 1 2 3 4 5 6 7	Test Freq (Hz) 190 610 1010 (ref) 1440 1810 2140 2510 2740	5.2 ± 50 9.4 ± 50 0 ± 50 -12.6 ± 50 -23.6 ± 50 -32.1 ± 50 -39.4 ± 50 -42.5 ± 50
Cal Sub-point	Test Freq (Hz) 190 610 1010 (ref) 1440 1810 2140 2510 2740 3110	5.2 ± 50 9.4 ± 50 0 ± 50 -12.6 ± 50 -23.6 ± 50 -32.1 ± 50 -39.4 ± 50 -42.5 ± 50 -46.1 ± 50
Cal Sub-point	Test Freq (Hz) 190 610 1010 (ref) 1440 1810 2140 2510 2740 3110 3340	5.2 ± 50 9.4 ± 50 0 ± 50 -12.6 ± 50 -23.6 ± 50 -32.1 ± 50 -39.4 ± 50 -42.5 ± 50 -46.1 ± 50 -48.7 ± 50
Cal Sub-point	Test Freq (Hz) 190 610 1010 (ref) 1440 1810 2140 2510 2740 3110 3340 3610	5.2 ± 50 9.4 ± 50 0 ± 50 -12.6 ± 50 -23.6 ± 50 -32.1 ± 50 -39.4 ± 50 -42.5 ± 50 -46.1 ± 50 -48.7 ± 50 -54.3 ± 50
Cal Sub-point	Test Freq (Hz) 190 610 1010 (ref) 1440 1810 2140 2510 2740 3110 3340	5.2 ± 50 9.4 ± 50 0 ± 50 -12.6 ± 50 -23.6 ± 50 -32.1 ± 50 -39.4 ± 50 -42.5 ± 50 -46.1 ± 50 -48.7 ± 50

.

Γ		
CAL SUB-POINT	Test Frequency (Hz)	Test Limits (mB
0	190	8.2 ± 50
1	610	-4.9 ± 50
2	1010	0 ± 50
3	1440	3.2 ± 50
4	1810	2.5 ± 50
5	2140	-0.4 ± 50
6	2510	-5.2 ± 50
7	2740	-3.9 ± 50
8	3110	-1.8 ± 50
9	3340	0.1 ± 50
10	3616	-5.4 ± 50
11	4110	-9.8 ±50
12	4440	-1.2 ± 50
13	4710	

A6 16kHz Anti-Aliasing Filter Troubleshooting

0V

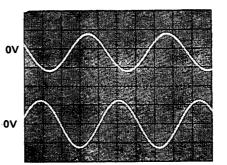
٥v

1. Catastrophic component failures can probably be detected using a single 4710Hz sinewave as given below.

2. Set the 3776 to CAL Pt 9, sub-point 13 by pressing RUN/WAIT. This selects the 4710Hz test frequency. Remove A6 TL2 and check that the following waveform can be obtained.

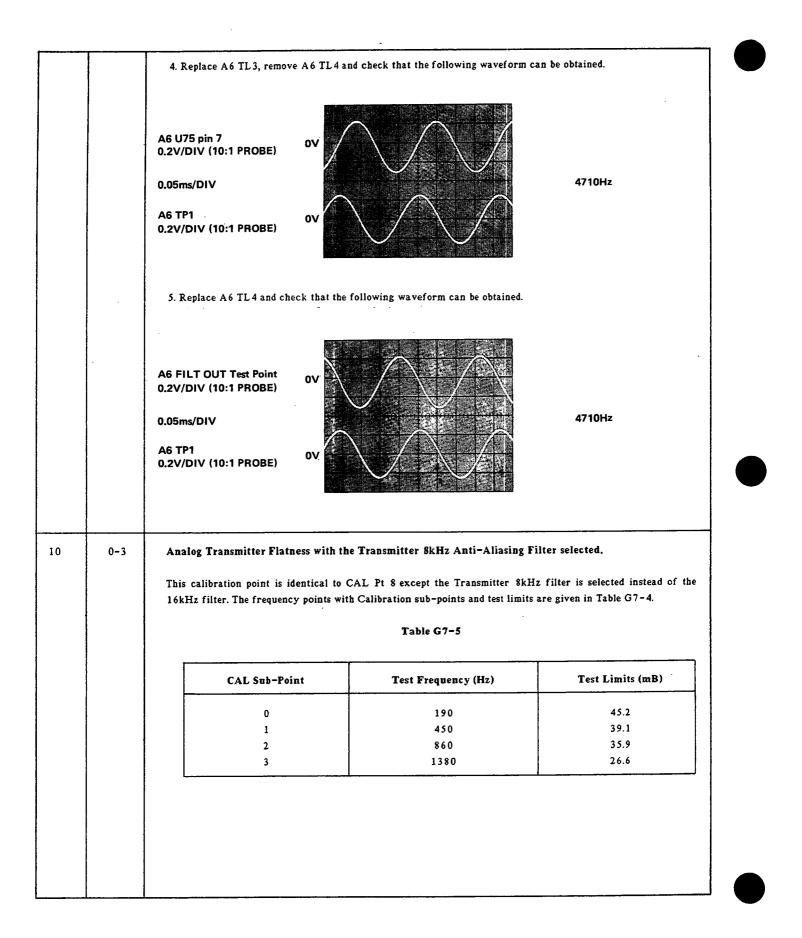
A6 U65 pin 7 0.1V/DIV (10:1 PROBE)

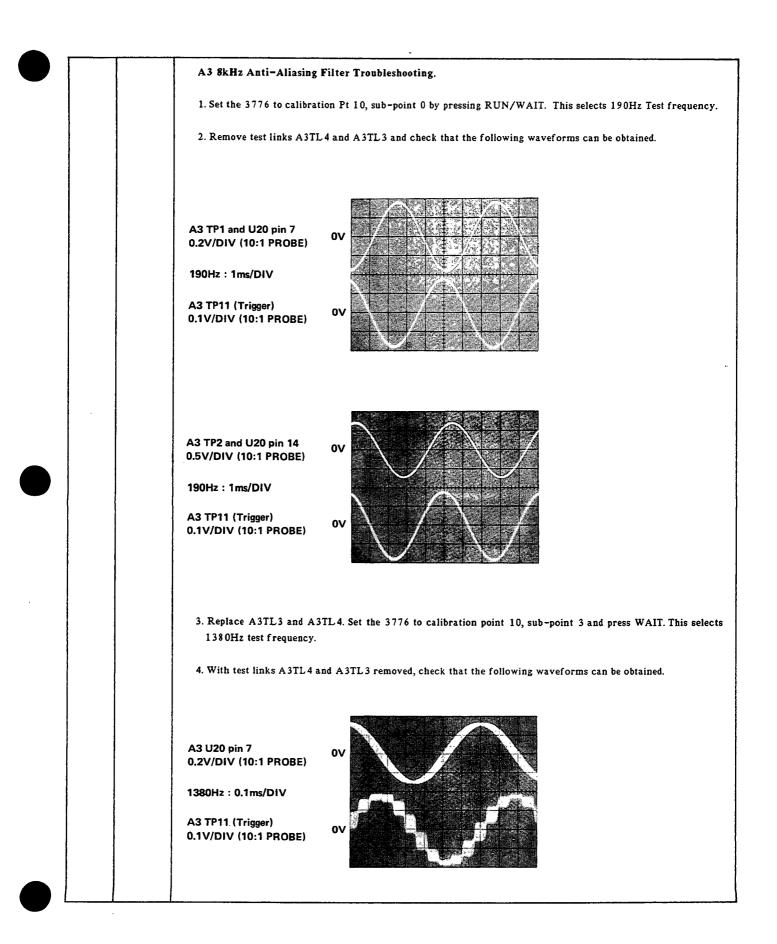
0.05ms/DIV

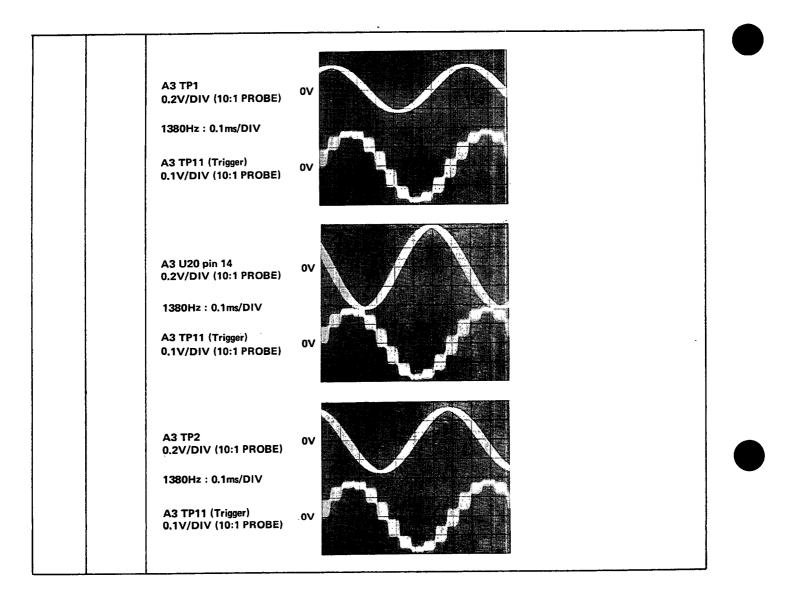

A6 TP1 0.2V/DIV (10:1 PROBE)

3. Replace A6 TL2, remove A6TL3 and check that the following waveform can be obtained.

A6 U65 pin 1 0.1V/DIV (10:1 PROBE)


0.05ms/DIV


A6 TP1 0.2V/DIV (10:1 PROBE)



4710Hz

4710Hz

G7-8 A6 LEVEL DETECTOR CHECK

- 1. Remove the top cover and set A13S2 switches to 10001 and press A13S1 reset button.
- 2. Press the 3776 AN Tx button.
- 3. Connect a 600 ohm output Test Oscillator to the 3776 ANALOG RECEIVE input and connect an AC Voltmeter to A6 ANA A test point.
- 4. Using the Utilities (see General Service Sheet G1) write 00 to Data Input Buffer Address 34 and write 03 to Data Input Buffer Address 35. This selects the ANALOG RECEIVE Input, terminates in 600 ohms, applies 10dB gain and resets the Level Detector.
- 5. Set the Test Oscillator output level to give 0.70V displayed on the AC Voltmeter.
- 6. Write 03 then 0b to Data Input Buffer Address 35.

- 7. Select Data Output Buffer Address 16 and press REPEAT.
- 8. Check that X0 is displayed. (X = Don't Care). In most instances X will be 0.
- 9. Gradually increase the Test Oscillator output level and check that when the following voltages on ANA A Test Point are reached that the corresponding codes are displayed.

Approx Voltages On ANA A Test Point	Code Displayed
0.73V	X2 or X4
0.84V	X6
3.30V	X7 or XE
3.43V	XF

Note: Care must be taken when increasing the voltage level on ANA A test point. If a threshold level is exceeded by applying too high a voltage (eg using the Test Oscillator 10dB stepped attenuator output), step 6 of the procedure must be repeated to reset and enable the Level Detector.

10. If the displayed codes can be obtained but at the wrong voltage levels, check that the Level Detector REF voltages at U22 are as follow:

U22 pin 14 REF 1 = +1.30V ±0.1V U22 pin 2 RF 2 = +0.30V ±0.1V U22 pin 9 -VE REF 1 = -1.34V ±0.1V U22 pin 7 -VE REF 2 = -0.33V ±0.1V

11. If the displayed code never changes, check that voltage on U32B pin 14 varies proportionally with that on ANA A Test Point and that the REF thresholds are exceeded. Check operation for U32, U22, U21 and Data Output Buffer U82.

G7-9 TYPICAL CALIBRATION RESULTS AND LIMITS

G7-10 The following Lists are typical Calibration results printed using the HP2671G 80 column printer. Results are obtained by setting the 3776 to Talk Only mode and Print Format 2 and running Calibration Points 2 to 10. If a FAIL is printed, refer to the appropriate CAL Pt in the Troubleshooting Procedure G7-5. Maximum and Minimum Limits stored in the 3776 are provided for failure analysis. The limits, which apply to all instruments, are not printed by the 80 column printer.

Note 1. Results and limits are given as 1/3200 of a dB. For example: 500 = 500/3200 = 0.156 dB.

Note 2. The printed Sections are the Calibration Sub-Points referred to in text.

Pt 2 ATX GAIN		Max	Min	HP3776A
Section: 0	PASS	-2112		·
Pt 3 ARX GAIN		Max	Min	HP3776A
Section: 0	PASS	3021		

Pt4 ARX AUTORANGE GAIN		•	Max	Min	HP3776A
Section: 0	PASS	451	3200	-3200	
Section: 1	PASS	180	3200	-3200	
Section: 2	PASS	563	3200	-3200	
Section: 3	PASS	412	3200	-3200	
Section: 4	PASS	821	3200	-3200	
Section: 5	PASS	347	3200	-3200	
Section: 6	PASS	558	3200	-3200	
Section: 7	PASS	941	3200	-3200	
Section: 8	PASS	1651	3200	-3200	
Section: 9	PASS	811	3200	-3200	

Pt5 ARX AUTORANGE CAL			Max	Min	HP3776A
Section: 0	PASS	0	3200	-3200	
Section: 1	PASS	-272	2998	-3401	
Section: 2	PASS	-422	2825	-3574	
Section: 3	PASS	-286	2908	-3491	
Section: 4	PASS	-436	3664	-2736	
Section: 5	PASS	0	3200	-3200	
Section: 6	PASS	-105	3065	-3334	
Section: 7	PASS	-276	2915	-3484	
Section: 8	PASS	433	3715	-2684	
Section: 9	PASS	328	3211	-3188	
Section: 10	PASS	157	3207	-3192	
Section: 11	PASS	360	3590	-2809	

Pt 6 ATX ATTER	NUATOR GAIN		Max	Min	HP3776A
Section: 0	PASS	909	3200	-3200	
Section: 1	PASS	1960	3200	-3200	
Section: 2	PASS	471	3200	-3200	
Section: 3	PASS	287	3200	-3200	
Section: 4	PASS	905	3200	-3200	
Section: 5	PASS	404	3200	-3200	
Section: 6	PASS	803	3200	-3200	
Section: 7	PASS	226	3200	-3200	
Section: 8	PASS	44	3200	-3200	
Section: 9	PASS	-200	3200	-3200	

Pt 7 ATTX ATTENUATOR CAL		<u> </u>	Max	Min	HP3776A
Section: 0	PASS	1050	4252	-2147	
Section: 1	PASS	-438	2736	-3664	
Section: 2	PASS	-351	2809	-3590	
Section: 3	PASS	-78	3091	-3308	
Section: 4	PASS	315	3497	-2902	
Section: 5	PASS	-157	3065	-3334	
Section: 6	PASS	-161	3036	-3363	
Section: 7	PASS	-412	2812	-3587	

Pt 8 ATX FLATNESS (16kHz PATH)			Max	Min	HP3776A
Section: 0	PASS	477	2086	-1113	
Section: 1	PASS	292	1900	-1299	
Section: 2	PASS	-1	1600	-1600	
Section: 3	PASS	-390	1196	-2003	
Section: 4	PASS	-731	844	-2355	
Section: 5	PASS	-995	572	-2627	
Section: 6	PASS	-1217	339	-2860	
Section: 7	PASS	-1311	240	-2960	
Section: 8	PASS	-1420	124	-3075	
Section: 9	PASS	-1501	41	-3138	
Section: 10	PASS	-1679	-137	-3337	
Section: 11	PASS	-2662	-1113	-4313	
Section: 12	PASS	-4246	-2688	-5888	
Section: 13	PASS	-6432	-4864	-8064	

				Service
	-	Max	Min	HP3776A
DASS				
PASS	-229	1862	-1337	
PASS	-129	1443	-1756	
PASS	2	1600	-1600	
PASS	72	1702	-1497	
PASS	26	1680	-1520	
PASS	-83	1587	-1612	

		20	1000	-1320	
Section: 5	PASS	-83	1587	-1612	
Section: 6	PASS	-210	1433	-1766	
Section: 7	PASS	-246	1475		
Section: 8	PASS	-193		-1724	
Section: 9	PASS		1542	-1657	
Section: 10	PASS	-107	1603	-1596	
Section: 11		-20	1427	-1772	
	PASS	-118	1286	-1913	
Section: 12	PASS	-177	1561	-1638	
Section: 13	PASS	185			

Pt 9 ARX FLATNESS

Section: 0

Section: 1

Section: 2

Section: 3

Section: 4

Pt 10 ATX FLATNESS (8kHz PATH)			Max	Min	HP3776A
Section: 0	PASS	1198	1446	_	
Section: 1	PASS	1001	1251	-	
Section: 2 Section: 3	PASS PASS	863 633	1148 851	-	

Model 3776A/B

.

•-

GENERAL SERVICE SHEET G8 DIGITAL FILTER

.

Paragraph	G8-1 G8-3 G8-5 G8-6 G8-7 G8-8	INTRODUCTION	8-G8-1 8-G8-1 8-G8-4 8-G8-5
-----------	--	--------------	--------------------------------------

G8

GENERAL SERVICE SHEET G8 DIGITAL FILTER

G8-1 INTRODUCTION

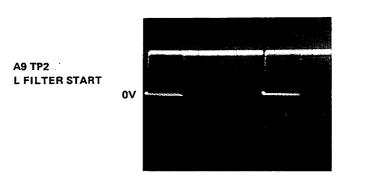
G8-2 This service sheet covers troubleshooting of the Digital Filter Assembly A9 (03776-60009). Troubleshooting is performed using Self-Test Point 20, Sub-Points 0 to 7.

G8-3 SELF-TEST Pt 20 DESCRIPTION

G8-4 Self-Test Pt 20 has eight-Sub-Points (ie 0 to 7).

- Sub-Point 0: The Digital Filter program from the Processor (A13/A14) is written into and read back from the A9 Digital Filter Program RAM.
- Sub-point 1: Operation of LDATA READY checked. The following filter operation times, with associated data sources are checked:

AN Rx data with H ENABLE DIVIDE = 1; 1ms AN Rx data with H ENABLE DIVIDE = 0; 62us DIG Rx data with H ENABLE DIVIDE = 1; 2ms DIG Rx data with H ENABLE DIVIDE = 0; 125us


- Sub-Point 2: Filter Input Bus (ie FD8 to FD23) is checked with data applied from the AN Rx (ie Assembly A7/ A107).
- Sub-Point 3: As Sub-Point 2 but with DIG Rx selected (ie Assembly A11/A111).
- Sub-Point 4: Checks Digital Filter (U65) internal RAM reset operation.
- Sub-Point 5: Tests the Digital Filter's ability to integrate (add function). Also checks the carry-out accumulated in U13 and transferred to the least significant 4-bits (ie D0, D1, D2, D3) of U22 Status Register.
- Sub-Point 6: Checks the ability of the Digital Filter to generate 24 and 28 bits overflows. Checks 0VR24 (TP4) and 0VR28 (TP3) overflows via Status Register U22. The 24 bit field is used for Secondary Autoranging on Assembly A7/A107.
- Sub-Point 7: Program loaded into the Filter Program RAM (U34) with every filter instruction in sequence. A check is performed at the Detector Output. The program loaded is used for signature analysis (see Paragraph G8-8).

G8-5 TROUBLESHOOTING PROCEDURE

1. (a) Connect an oscilloscope to A9 TP2 (L FILTER START). Set the 3776 to DIG Tx to DIG Rx GAIN-TONE and press RUN then REPEAT. Check that the following waveform can be obtained. If

the waveform cannot be obtained go to General Service Sheet G6 Digital Output Stage and Digital Receiver Troubleshooting.

(b) Set the 3776 to AN Tx to AN Rx GAIN-TONE and press RUN then REPEAT. Check that the waveform at TP2 can be obtained. If the waveform cannot be obtained go to General Service Sheet G7 Analog Transmitter/Receiver Troubleshooting.

0.2V/DIV (10:1 PROBE)

0.01ms/DIV

Note: The waveform at A9TP2 is a 16kHz stable clock with pulse width of approximately 1us changing to a pulse width of approximately 20us when in the RUN/REPEAT mode.

- 2. If available, connect an 80 column printer (eg HP2671G) to the 3776 HP-IB connector and set the 3776 HP-IB switch to TALK ONLY and PRINT FORMAT to 2. The Troubleshooting procedure can be performed without the printer but it is useful in detecting filter bus faults if Self-Test Point 20 Sub-Points 2 or 3 fail.
- 3. Ensure the A13S2 switches are set to 00000. Press SELF TEST then press NEXT PARAM until "Pt 20" is displayed.
- 4. Press S/STEP and check that PASS 0 is displayed on the 3776 display. Record if FAIL and continue. If a printer is connected, the appropriate response will be printed.
- 5. Continually press the S/STEP key checking SELF TEST 20 Sub-Points 1 to 7. If all Sub Points pass, then the Digital Filter assembly is operating correctly.

Print-Out Example with Sub Points or Sections 2 and 3 Failed

DIGITAL FILTER CHECK

----.

Section: 0	PASS	0
Section: 1	PASS	0
Section: 2	FAIL	9
Section: 3	FAIL	9
Section: 4	PASS	0
Section: 5	PASS	0
Section: 6	PASS	0
Section: 7	FAIL	137

- Notes: 1. Numbers at the right hand column indicate the appropriate Error Codes with the exception of Section 2 and Section 3.
 - 2. Numbers at the right hand column opposite Section 2 and Section 3 indicate the faulty Filter Bus (ie FD8 to FD23) line(s) in binary. In the example given the lines corresponding to binary weighting 1 and 8 (ie FD8 and FD11) are faulty.

G8-6 SELF-TEST SUB-POINT FAILURE

Use the following information to determine the next troubleshooting step.

Sub-Point Failed	Troubleshooting	
0	Possible A9U34 RAM failure, go to Paragraph G8-7.	
*1	Possible A9 Interrupt Rate Control fault, go to Paragraph G8-8.	
*2	Filter Input Bus fault (ie FD8 to FD23) from the AN Rx (ie Assembly A7/A107). If an 80 column printer has been used in the Troubleshooting Procedure, Paragraph G8-5, then Filter Bus fault location can be computed from the print-out (see Print-Out example). Go to Paragraph G8-8.	
*3	Filter Input Bus fault (ie FD8 to FD23) from the DIG Rx (ie Assembly A11/A111). Troubleshoot as per Sub-Point 2 Failed.	
*4	Possible Digital Filter A9U65 fault, go to Paragraph G8-8.	
*5	Possible A9U65 filter or U13/U22 Status Register fault, to to Paragraph G8-8. If Paragraph G8-8 is performed successfully then fault is in the U13/U22 Status Register.	
*6	Possible A9U65 filter, U22 Status Register or Detector Output fault. Go to Paragraph G8-8. If Paragraph G8-8 is performed successfully then fault is in the U13/U22 Status Register.	
*7	Possible Detector Output fault. Go to Paragraph G8-8.	

.

*Note: Sub-Point 0 must PASS before troubleshooting in Paragraph G8-8 can be used.

G8-7 SUB-POINT 0 FAIL TROUBLESHOOTING

- 1. Switch the instrument power off, then switch the power on. Check that Error 107 with port addresses 02 to 07 and 20 to 27 is NOT displayed. This ensures that the A9 Address Decoder and Handshake Circuit operate correctly.
- 2. Switch the power off, remove the top cover, place A9 assembly on the extender board and check that the test link between U52 and U62 is in the N (Normal) position.
- 3. Connect an oscilloscope to A9TP6 and check that a 4.096MHz clock is present if the instrument is a 3776A and a 4.632MHz clock if the instrument is a 3776B.
- 4. The following A9 Logic Circuits can now be checked using the Utilities. (See General Service Sheet G1 Instrument Bus Access Using the Utilities).
- (a). A9 U14 Control Register Troubleshooting.
- (b). Program RAM Read/Write Control Troubleshooting.
- (c). A9U23 Input/Output Buffer Troubleshooting.
- (d). A9 U33/U43/U44 Program RAM Address Counter Troubleshooting.

Note: The following Troubleshooting must be performed in the sequence given.

5. A9U14 Control Register Troubleshooting

- (a) Set the A13S2 switches to 00001 and press A13S1 reset button.
- (b) Press SELF TEST then AN Tx. "Util 00" should now be displayed.
- (c) Press PHASE JITTER then FRAMING + SIG BITS. "21" should now be displayed on the LEVEL display
- (d) Press SET FREQ and then press the SPEAKER key twice to give 00 displayed on the left hand side of the RESULTS display.
- (e) Press REPEAT and check using a logic probe or oscilloscope that a clock 15 present at U14 pins 3 and 11 (negative-going ≈0.25us pulse, rep rate ≈28kHz). Check also that U14 pins 5 and 9 are held low and the DIS PC led is off.
- (f) Press STOP press SET FREQ and then press GAIN v FREQ twice to give "FF" displayed on the left hand side of the RESULTS display.
- (g) Press REPEAT and check that a clock is present at U14 pins 3 and 11. Check also that U14 pins 5 and 9 are held high and that the DIS PC led is on.

(h) Press STOP. The DIS PC led should remain on.

6. Program RAM Read/Write Control Troubleshooting

- (a) With the DIS PC led on (ie Disable Program Counter), check that the output of gate U52A(8) is held low. Check also that U41(13) LRAM EN is high, U36B(8) BUF EN is high and that U41D(10) L READ is high.
- (b) Press PHASE JITTER then I/MOD (3776A) or QUAN DIST (3776B); "27" should now be displayed on the LEVEL display.
- (c) Press SET FREQ then press SPEAKER twice to give 00 displayed on the left hand side of the RESULTS display.
- (d) Press REPEAT and check that a ≈0.25us negative going pulse is present with a clock rate of ≈28kHz (3776A) or 31.8kHz (3776B) at U41(13) LRAM EN, U36(8) BUF EN and U41(10) LREAD.

7. A9 U23 Input/Output Buffer Troubleshooting

- (a) With 00 repeatedly written to address 27, check that an approximately 28kHz (3776A) or 31.8MHz (3776B) clock is present at U23 Pin 1. Check also that U23 pins 11 to 18 are held low.
 Note: The clock present at U23 pin 1 may have a peculiar shape. This is normal.
- (b) Press STOP, then press SET FREQ.
- (c) Press GAIN v FREQ twice to give "FF" displayed on the left hand side of the RESULTS display.
- (d) Press REPEAT and check that U23 pins 11 to 18 are head high.

8. A9 U33/U43/U44 Program RAM Address Counter Troubleshooting

- (a) Press STOP.
- (b) Set the LEVEL display to 26. This can be performed using the DECR and INCR keys or by pressing PHASE JITTER then QUANT DIST (3776A), I/MOD (3776B).
- (c) Press SET FREQ.
- (d) Write "FF" to address 26. This appears automatically if FF was used in previous test, otherwise press GAIN v FREQ twice.

(e) Press REPEAT

- (f) Check that approximately 28kHz (3776A) or 31.8kHz (3776B) clock is present at U44 pin 9 and U43 pin 9. Check also that U44 and U43 pins 11 to 15 are held high.
- (g) Press STOP then press SET FREQ.
- (h) Press SPEAKER twice to give "00" displayed on the left hand side of the RESULTS display.
- (i) Press REPEAT and check that approximately 28kHz (3776A) or 31.8kHz (3776B) clock is present at U44 pin 9 and U43 pin 9. Check that U44 and U43 pins 11 to 15 are held low.
- (j) Press STOP.

•

- (k) Set the LEVEL display to 25. This can be achieved using the DECR key or by pressing PHASE JITTER then TRANSIENTS.
- (1) Press SET FREQ. "00" should be displayed on the left-hand side of the RESULTS display.
- (m) Press REPEAT and check that approximately 28kHz (3776A) or 31.8kHz (3776B) clock is present at U33(9). Check also that U33 pins 13 and 14 are held low.
- (n) Press STOP then SET FREQ.
- (o) Press the GAIN v FREQ key twice to give "FF" displayed on the left hand side of the RESULTS display.
- (p) Press REPEAT and check that approximately 28kHz (3776A) or 31.8kHz (3776B) clock is present at U33(9). Check that U33 pins 13 and 14 are held high.
- 9. If Sub-Point 0 failed and Steps 1 to 8 have been performed successfully, then Filter Program RAM U34 is faulty.

G8-8 DIGITAL FILTER SIGNATURE ANALYSIS

Note: The following procedure can only be performed if Self-Test Pt 20, Sub-Point 0 passes.

- 1. Switch the power off and mount Assembly A9 on the extender board. Switch the power on.
- 2. Ensure that A13S2 switches are set to 00000.
- 3. Press A13S1 Reset button.
- 4. Press SELF TEST and continually press the NEXT PARAM key until Pt 20 is displayed.
- 5. Set A13S2 switches to 00101.
- 6. Connect an oscilloscope or logic probe to A9TP2. This is used to check that the Digital Filter is in the cycle mode when Step 7 has been performed.

Note: In order to set the Digital Filter in the cycle mode for Signature Analysis, the SELF TEST key must be pressed immediately following the PASS/FAIL display for Sub-Point 7 in Step 7.

- 7. Press RUN and the instant PASS or FAIL is displayed for Sub-Point 7, press SELF TEST.
- 8. Check that approximately 16kHz (3776A) or 8kHz (3776B) clock is present at A9TP2. If this clock is not present then repeat Steps 2 to 7 until a clock is obtained.
- 9. Press Tx dBr/CHAN if the instrument is a 3776A or Tx TLP/T-SLOT if the instrument is a 3776B.
- 10. Press RUN. If Sub-Point 7 passes then XX00bFCE should be displayed. It is not necessary for the display to be correct for signatures analysis.
- 11. Set A9 Test link (located between U52 and U62) to the T(Test) position.
- 12. Connect and set the HP5005A Signature Multimeter as follows:

Set FUNCTION to QUAL

CLOCK	.A9TP6; TTL positive edge
START	A9TP7; TTL positive edge
	A9TP1; TTL QUAL positive level, STOP negative edge
GND	

13. Check that the following signatures can be obtained.

Note: Where indicated, only signatures that are underlined need be checked to verify the appropriate Logic Function Operation.

Assembly	Logic Function	Signatures
А9	Program RAM Address Counter	U33 (1) 1013 clock U33 (2) 0000 clock U33 (7) 1013 U33 (9) 1013 U33 (10) AH50 <u>U33 (13) 0000</u> <u>U33 (14) PF29</u> U43 (1) 1013 clock U43 (2) 0000 clock U43 (7) 1013

		·	
		-	U43 (9) 1013 U43 (10) 3H8F <u>U43 (11) 6P71</u> <u>U43 (12) 3194</u> <u>U43 (13) 0739</u> <u>U43 (14) 9F62</u> U43 (15) AH50
			$\begin{array}{cccc} U44 (1) & 1013 \ clock \\ U44 (2) & 0000 \ clock \\ U44 (2) & 1013 \\ U44 (7) & 1013 \\ U44 (9) & 1013 \\ U44 (10) & 1013 \ clock \\ \underline{U44 (11) & 9092} \\ \underline{U44 (12) } & A988 \\ \underline{U44 (13) } & 5UU4 \\ \underline{U44 (14) } & P01H \\ U44 (15) & 3H8F \end{array}$
A 9	SYNC Note: 1 of 3 signatures can be obtained at the *ASYNC nodes.	*ASYNC	U11 (5) C6H6, 207C, 8UP4 U11 (6) A6F5, 3068, 9UU7 U11 (12) 1013 clock U11 (13) 0000 clock
	the ASTITE houes.		U13 (1) 0000 clock U13 (3) 0000 clock
		*ASYNC	U15 (4) 0000 clock U15 (5) F4C2, P9P9, C6H6 U15 (6) A6F5, 3068, 9UU7
			U16 (1) 0000 clock U16 (2) 1013 clock U16 (3) 1013 clock U16 (4) 1013 clock U16 (5) 0000 clock
		*ASYNC	U21 (4) 207C, 7AFF, F4C2 U21 (5) F4C2, P9P9, C6H6 U21 (6) F4C2, P9P9, C6H6 U21 (7) C6H6, 207C, 8UP4 U21 (9) 0000 clock
			U36 (4) 0000 clock U36 (5) 1013 U36 (6) 1013 clock
			U63 (1) 0000 clock <u>U63 (2) 1013 clock</u> U63 (3) 1013 clock

		U63 (4) 0000 clock U63 (12) 0000 clock U63 (13) 1013 clock
А9	Filter Program RAM	U34 (1) 6P71 U34 (2) 3194 U34 (3) 0739 U34 (4) 9F62 U34 (5) 9092 U34 (6) A988 U34 (7) 5UU4 U34 (8) P01H U34 (9) 01AU U34 (10) HHF6 U34 (11) 15C8 U34 (13) A2CA U34 (14) 68FH U34 (15) 6P99 U34 (16) 0F5F U34 (17) U4F3 U34 (18) 0000 U34 (20) 0000 U34 (21) 1013 U34 (22) 0000 U34 (23) PF29
А9	Instruction Decoder	$\begin{array}{c} U15(1) & C2A9\\ U15(2) & A2CA\\ U15(3) & HHF6\\\\\\ U24(1) & 15C8\\ U24(2) & 68FH\\ U24(2) & 68FH\\ U24(3) & 6P99\\ U24(4) & 01AU\\ U24(5) & 9H74\\ U24(6) & C2A9\\ U24(10) & 8PAP\\\\\\ U24(10) & 8PAP\\\\\\ U24(11) & H981\\ \underline{U24(14)} & 1013 \text{ clock}\\ U24(15) & 3659\\\\\\\\ \underline{U25(2)} & 8336\\ U25(3) & 3659\\\\\\ U25(3) & 3659\\\\\\ U25(5) & 5U4H\\ \underline{U25(5)} & 5U4H\\\\\\ \underline{U25(7)} & C7CF\\\\\end{array}$
	Interrupt rate control	U25 (11) 0540 U25 (12) F3F4 U25 (13) C7CF

A9 Digital Filter and output gating. U15 (9) 18HA U15 (10) 08F9 U52 (11) 1013 U52 (2) 70FA U52 (12) 60H9 U52 (13) 1013 *Note: For these signatures, set the Signature Analyzer as follows: U63 (8) AU13 U53 (10) 0000 clock U53 (10) 0000 clock U53 (10) 0000 clock U53 (11) 1013 clock FUNCTIONNORM CLOCKA9TP6 positive edge *TARTA9TP1 positive edge *Tagative edge for 3776B moding to the 3776A and 3776B. Signatures for the 3776B are in brackets. *U65 (2) 84U5 (84U5) *U65 (10) 68FH U55 (10) 68FH U55 (11) 6000 clock U55 (11) 699 U55 (12) 0000 clock *U65 (20) 0000 clock *U65 (20) 0000 clock *U65 (20) 0000 clock *U65 (20) 0000 clock *U65 (20) 0000 clock *U65 (21) 0000 clock *U65 (22) 0000 (84U5) *U65 (22) 0000 (84U5) *U65 (24) 0000 (84U5) *U65 (24) 0000 (84U5) *U65 (22) 0000 (84U5) *U65 (23) 0000 (84U5) *U65 (24) 0000 (84U5) *U65 (23) 0000 (84U5) *U65 (23) 0000 (84U5) *U65 (24) 0000 (84U5) *U65 (25) 0000 (84U5) *U65 (23) 0000 (84U5) *U65 (23) 0000 (84U5) *U65 (23) 0000 (84U5) *U65 (23) 0000 (84U5) *U65 (23) 0000 (84U5) *U65 (23) 0000 (84U5) *U65 (23) 0000 (84U5) *U65 (23) 0000 (84U5) *U65 (23) 0000 (84U5) *U65 (23) 0000 (84U5) *U65 (23) 0000 (84U5)			25 (14) H981 25 (15) U4HA	
*Note: For these signatures, set the Signature Analyzer as follows: U63 (9) CU00 U63 (10) 0000 clock U63 (11) 1013 clock FUNCTION	Digit	U13 U52 U52 U52 U52 U52	15 (10) 08F9 52 (1) 1013 52 (2) 70FA 52 (3) 60H9 52 (11) 70FA 52 (12) 60H9	
CLOCKA9TP6 positive edge *U65 (3) 0000 (0000) STARTA9TP1 positive edge *U65 (3) 0000 (0000) *STOPA9TP1 positive edge *U65 (6) 01AU *negative edge for 3776B U65 (7) HHF6 Two signatures are given corressoponding to the 3776A and 3776B. Signatures for the 3776B U65 (10) 68FH are in brackets. U65 (11) 6P99 U65 (13) U4F3 *U65 (13) U4F3 *U65 (14) 0000 (0000 clock) U65 (12) 0F5F U65 (12) 0000 clock *U65 (20) 0000 clock *U65 (20) 0000 (84US) *U65 (20) 0000 (84US) *U65 (21) 0000 (84US) *U65 (23) 0000 (84US) *U65 (24) 0000 (84US) *U65 (25) 0000 (84US) *U65 (25) 0000 (84US) *U65 (26) 0000 (84US) *U65 (25) 0000 (84US) *U65 (26) 0000 (84US) *U65 (25) 0000 (84US) *U65 (26) 0000 (84US) *U65 (23) 013 U65 (30) 1013 U65 (23) 1013 U65 (33) F7P4 (F7P4)	the	tures, set U63 yzer as <u>U63</u>	63 (9) CU00 63 (10) 0000 clock	
Two signatures are given corres-sponding to the 3776A and 3776B. Signatures for the 3776B are in brackets. U65 (10) 68FH U65 (11) 6P99 U65 (12) 0F5F U65 (13) U4F3 *U65 (14) 0000 (0000 clock) U65 (16) 18HA U65 (17) CU00 U65 (18) 60H9 U65 (19) 0000 clock *U65 (19) 0000 clock *U65 (19) 0000 clock *U65 (20) 0000 (84U5) *U65 (22) 0000 (84U5) *U65 (22) 0000 (84U5) *U65 (23) 0000 (84U5) *U65 (23) 0000 (84U5) *U65 (25) 0000 (84U5) *U65 (26) 0000 (84U5) *U65 (26) 0000 (84U5) *U65 (26) 0000 (84U5) *U65 (26) 0000 U65 (29) 1013 U65 (30) 1013 U65 (30) 1013 U65 (30) 1013 U65 (30) 1013 U65 (30) 1013 U65 (30) F7P4 (F7P4)	CLOC STAR *STO	itive edge*U6sitive edgeU65sitive edgeU656BU65	J65 (3) 0000 (0000) 65 (6) 01AU 65 (7) HHF6 65 (8) 15C8	
$\frac{1065(17) - CU00}{1065(18) - 60H9}$ $\frac{1065(19) - 0000 - clock}{1065(22) - 0000(84U5)}$ $\frac{1065(22) - 0000(84U5)}{1065(23) - 0000(84U5)}$ $\frac{1065(24) - 0000(84U5)}{1065(26) - 0000(84U5)}$ $\frac{1065(26) - 0000(84U5)}{1065(28) - 0000(84U5)}$ $\frac{1065(28) - 0000}{1065(29) - 1013}$ $\frac{1065(31) - 1013 - clock}{1065(32) - 1013}$ $\frac{1065(33) - F7P4(F7P4)}{1013}$	spond 37761	n corres- U65 76A and U65 he 3776B U65 U65 *U6	65 (10) 68FH 65 (11) 6P99 65 (12) 0F5F 65 (13) U4F3 J65 (14) 0000 (0000 clock)	
*U65 (23) 0000 (84U5) *U65 (24) 0000 (84U5) *U65 (25) 0000 (84U5) *U65 (26) 0000 (84U5) U65 (26) 0000 (84U5) U65 (28) 0000 U65 (29) 1013 U65 (30) 1013 U65 (31) 1013 clock U65 (32) 1013 *U65 (33) F7P4 (F7P4)		U65 U65 U65 *U6	<u>65 (17) CU00</u> <u>65 (18) 60H9</u> 65 (19) 0000 clock J65 (20) 0000 (0000)	
U65 (30) 1013 <u>U65 (31) 1013 clock</u> U65 (32) 1013 *U65 (33) F7P4 (F7P4)		*U6 *U6 *U6 *U6 U65	J65 (23) 0000 (84U5) J65 (24) 0000 (84U5) J65 (25) 0000 (84U5) J65 (26) 0000 (84U5) J65 (26) 0000 (84U5) 55 (28) 0000	
I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		U65 <u>U65</u> U65 *U6	55 (30) 1013 55 (31) 1013 clock 55 (32) 1013 55 (33) F7P4 (F7P4)	
*U65 (36) 84U5 (0000 clock) *U65 (37) 0000 (0000) *U65 (38) 84U5 *U65 (39) 84U5 *U65 (40) 0000		*U6 *U6 *U6	J65 (36) 84U5 (0000 clock) J65 (37) 0000 (0000) J65 (38) 84U5 J65 (39) 84U5	

	·····	
A9	Interrupt Rate Control	U11 (1) 2876 U11 (2) 3865 clock
		U15(11) 3865 U15(12) 60H9 U15(13) 1553
		U21 (9) 0000 clock U21 (14) 60H9 U21 (15) 2876
		U25 (9) 0000 clock U25 (10) 1ACA U25 (11) 0540
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		U46 (2) 0000 clock U46 (7) 1553 U46 (9) 0000 U46 (15) 1013
А9	Detector Output *Note: If these signatures are correct, then this should give a high confidence level that the Detector Output is okay.	U32 (1) 60H9 U32 (2) 1013 U32 (1) 9669 U32 (12) 0000 clock *U32 (17) 4C25
	Detector Galpat is okay.	U42 (1) 60H9 U42 (2) 1013 U42 (11) 276A U42 (12) 0000 clock *U42 (17) 9669
		U53 (1) 60H9 U53 (2) 1013 U53 (11) 08F9 U53 (12) 0000 clock * <u>U53 (17) 276A</u>

14. When Signature Analysis has been completed remember to set A9TL back to the N (Normal) position.

GENERAL SERVICE SHEET G9 (OPTION 001) ENVELOPE DELAY, GROUP DELAY, ABSOLUTE DELAY, PHASE JITTER AND TRANSIENTS

•

Paragraph	G9-1 G9-6	INTRODUCTION Page DROPOUTS (3776B)/INTERRUPTIONS (3776A)	8-G9- 1
		AND GAIN HITS TROUBLESHOOTING	8-G9- 3
	G9-7	PHASE JITTER TROUBLESHOOTING	
	G9-8	PHASE HITS TROUBLESHOOTING	8-G9-16
	G9-9	GROUP DELAY TIMING, IMPULSE NOISE	
		AND FREQUENCY DETECTOR TROUBLESHOOTING	8-G9-22
	G9-10	ENVELOPE DELAY DISTORTION	
		AND ABSOLUTE DELAY TROUBLESHOOTING	8-G9-28

G9

GENERAL SERVICE SHEET G9 (OPTION 001) ENVELOPE DELAY, GROUP DELAY, ABSOLUTE DELAY, PHASE JITTER AND TRANSIENTS

G9-1 INTRODUCTION

G9-2 This service sheet provides troubleshooting information for assemblies A4 (03776-60004), A204 (03776-60204), A5 (03776-60005) and A8 (03776-60008).

G9-3 Signal Routing

G9-4 The following diagrams illustrate the signal routing for the appropriate measurement. The G9 troubleshooting procedures assume that assemblies A6, A7/A107 and A9 operate correctly.

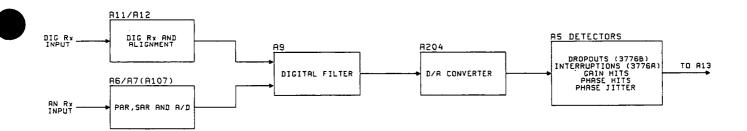
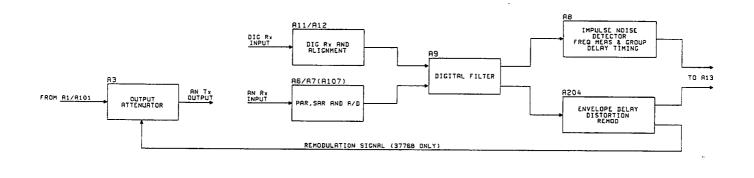
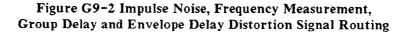




Figure G9-1 Dropouts/Interruptions, Gain Hits Phase Hits and Phase Jitter Signal Routing

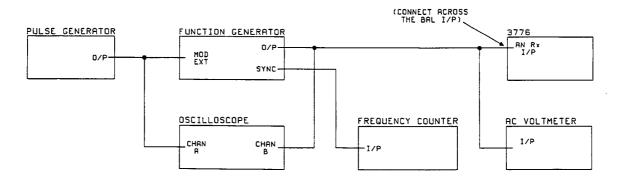
G9-5 General Service Sheet G9 is divided into five subsection. If the fault is peculiar to a specific measurement mode, then select the corresponding subsection for troubleshooting. If the fault appears on more than one measurement mode and "Selftest 11" fails, then perform the troubleshooting using the Subsections in the order given. The five Subsections are as follows:

Note: The continuity of the signal path through Assembly A204 is best checked using Subsection 1 (ie Dropouts (3776B), Interruptions (3776A) and Gain Hits Troubleshooting).

- 1. Dropouts (3776B), Interruptions (3776A) and Gain Hits Troubleshooting
- 2. Phase Jitter Troubleshooting
- 3. Phase Hits Troubleshooting
- 4. Group Delay Timing, Impulse Noise and Frequency Detector Troubleshooting
- 5. Envelope Delay Distortion and Absolute Delay Troubleshooting

G9-6 DROPOUTS (3776B)/INTERRUPTIONS (3776A) AND GAIN HITS TROUBLESHOOTING

Equipment Required


Pulse Generator	HP8005B
Function Generator	
Oscilloscope	HP 1740A
Frequency Counter	HP5328A
AC Voltmeter	HP3455A

Dropouts/Interruptions Troubleshooting Procedure

1. Set the 3776 as follows:

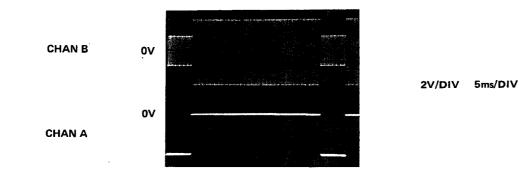
Operating Mode	AN Rx
Measurements	Transients
Analog Receive	
Rx TLP/Rx dBr	

- 2. Use the PARAMETER and SET keys to set the 3776 transient parameters to FAST count, Cont hr and -12dB d.out (3776B) or -10dB Irpt (3776A). Press STORE to store the parameters in the 3776. The stored parameter are recalled when the RECALL led is lit.
- 3. Connect the test circuit as shown in Figure G9-3.

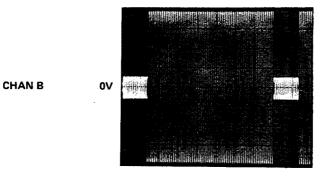
Figure G9-3 Dropouts and Interruptions

4. Adjust the Pulse Generator to display a signal on the oscilloscope with the following parameters.

25Hz (nominal)
4V (nominal)
ve
.7ms ±1ms


- 5. Set the Pulse Generator operating mode to GATED. The level displayed on the oscilloscope should be OV ac.
- 6. Set the Function Generator to sinewave and adjust the frequency (if using an HP3312A see the following settings) to display 1010Hz ±10Hz on the Frequency Counter. Adjust the Function Generator amplitude control for a reading of 2.450V ±0.005V (+10dBm into 600Ω) as displayed on the AC Voltmeter.

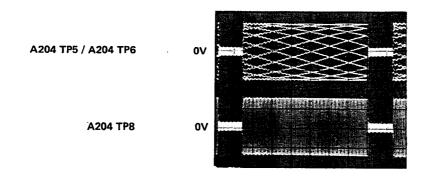
3312A settings


MODULATION	EXT, AM, % control to mid-range
FUNCTION	
TRIGGER PHASE	FREE RUN
RANGE HZ	100 Hz
OFFSET	CAL
SYM	CAL

- 7. Set the 3776 CONTROL to RUN and press the NEXT PARAM key to display -12dB d.out (3776B) or -10dB Irpt (3776A).
- 8. Set the Pulse Generator operation to NORMAL. With the oscilloscope triggered from CHAN A the following approximate waveform should be obtained.

Note: The Function Generator % MOD control affects the depth of the dropout.

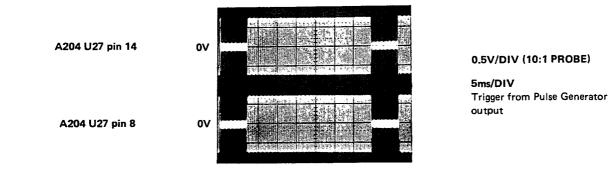
- 9. Monitor only the Function Generator output on the oscilloscope (ie CHAN B).
- 10. Adjust the Oscilloscope VOLTS/DIV control so that the waveform occupies 8 divisions on the oscilloscope vertical graticule. (See waveform in Step 11).
- 11. Adjust the Function Generator % MOD control to obtain the waveform given.

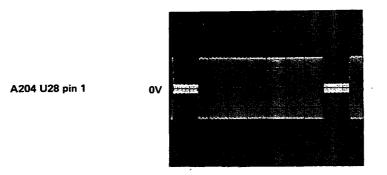

0.5V/DIV approx Adjust CAL control so that waveform occupies 8 divisions

5ms/DIV Trigger from Pulse Generator output

12. Check that the dropout counts register on the 3776 display. If counts do not register then perform the following procedure.

Note: Always set the Pulse Generator output to GATED (ie 0V outputs) to establish a holding time before running the dropout measurement. After approximately 5 seconds after the 3776 RUN key is pressed, the Pulse Generator output can be set to NORM. This procedure must be performed every time a dropout measurement has to be re-run.

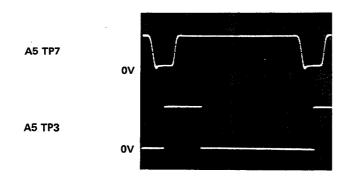

- a. Switch the 3776 power off and mount assembly A204 on the extender board.
- b. Switch the 3776 power on and re-run the dropout measurement. See the Note at the beginning of Step 12.
- c. Check that the following waveforms can be obtained. Ensure that the oscilloscope Volts/DIV is set to CAL.


0.2V/DIV (10:1 PROBE)

5ms/DIV Trigger from Pulse Generator output

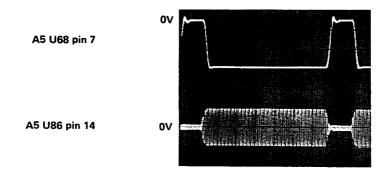
- d. If the waveform at A204TP5 cannot be obtained, then the fault is in A204U47 the D/A Convertor or the A4 Serial and Parallel Input Data Latch. Use a logic probe and check that BITS 1 to BIT 12 toggle. Also check that A204U35, 45 and U55 are in the serial shift mode (ie pin 9 high) with their outputs toggling.
- e. If waveform A204TP5 can be obtained, and A204TP8 cannot be obtained then the fault is in the Low Pass Filter. The following waveform should help troubleshoot the Low Pass Filter.
- f. Remove A204TL2 and check that the following waveforms can be obtained.

g. Replace A204TL2, remove A204TL1 and check that the following waveform can be obtained.



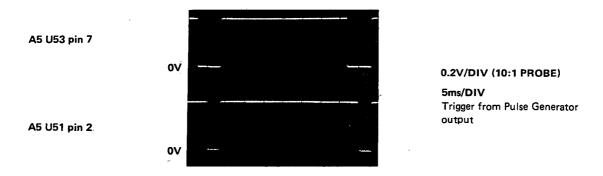
0.5V/DIV (10:1 PROBE)

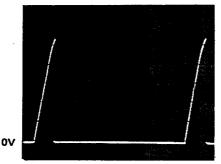
5ms/DIV Trigger from Pulse Generator output


- h. Replace A204TL1. Ensure that both A204TL1 and A204TL2 are inserted.
- i. Switch the 3776 power off and mount assembly A5 on the extender board.
- j. Switch the 3776 power on and re-run the dropout measurement. See the Note at the beginning of Step 12.

k. Check that the following waveforms can be obtained.

0.2V/DIV (10:1 PROBE) 5ms/DIV Trigger from Pulse Generator output

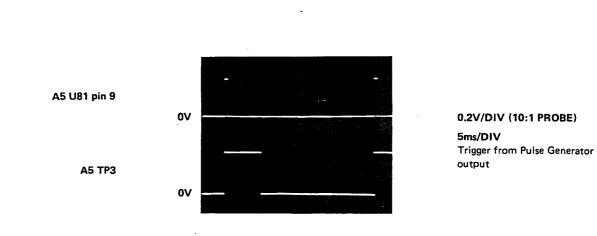

- If the waveform at A5TP7 cannot be obtained, then the fault is in the Temperature Compensated Log Converter, proceed to Step m. If the waveform at A5TP3 cannot be obtained then fault is in either the Dropouts D/A Converter, Dropouts Threshold Comparator, Qualification Period Compensation Logic or the Qualification Period Monostable circuitry, proceed to Step 0. If both A5TP7 and A5TP3 waveforms are correct, proceed to Step i.
- m. Waveform at A5TP7 (see Step k) cannot be obtained. Check that the following waveforms can be obtained.


Upper Trace : 0.2V/DIV Lower Trace : 0.5V/DIV (both with 10:1 PROBE)

5ms/DIV Trigger from Pulse Generator output

n. If the waveform at U86 pin 14 cannot be obtained then the fault is in the Transient Input Bandpass Filter. If the waveform at U68 pin 7 cannot be obtained then the fault is in the Temperature Compensation Log Converter Full Wave Rectifier or the Low Pass Filter. If the waveform at U68 pin 7 is correct and the A5TP7 waveform (see Step K waveform) is incorrect then check the signal routing through the Summing Amplifier, Switch and Low Pass Filter using an oscilloscope. o. Waveform at A5TP3 (see Step k) cannot be obtained. Check that the following waveforms can be obtained.

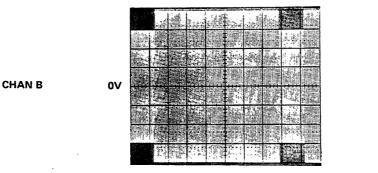
- p. If A 5U53 pin 7 waveform cannot be obtained, check that A 5U85 pin 1 output is approximately 2V below TP7 level if the instrument is a 3776B or approximately 1.7V if the instrument is a 3776A. Operation of the Data Input Latch and D/A Converter can be checked by setting the Pulse Generator output to GATED and by reducing the carrier level. The difference between TP7 level and the D/A Converter should always be ≈2V (3776B) or ≈1.7V (3776A). The status of the Data Input Latch U93 can also be changed using the Utilities Instrument Bus Access (see General Service Sheet G1).
- q. If A5U51 pin 2 waveform cannot be obtained, check that the output from the Qualification Period Compensation circuitry is as shown.



0.2V/DIV (10:1 PROBE)

5ms/DIV Trigger from Puise Generator output

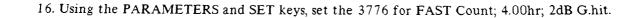
A5 U43 pin 12


- r. The Qualification Period Monostable can be checked by varying the width of the Pulse Generator output pulses. With the pulse width set to less than 2.5ms, Dropouts on Interruptions should be inhibited. With the pulse width set to 4ms or greater, Dropouts or Interruption should be enabled.
- s. If the waveform at A5TP3 (see Step k) is correct and Dropouts/ Interruptions do not register, check operation of A5 TRANSIENT LATCHES, the following waveform should be obtained.

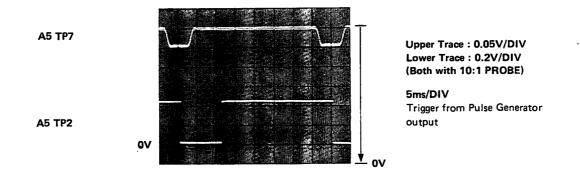
Gain Hits Troubleshooting

13. With CHAN B of the oscilloscope connected to the Function Generator, adjust the Function Generator % MOD control to obtain the waveform given.

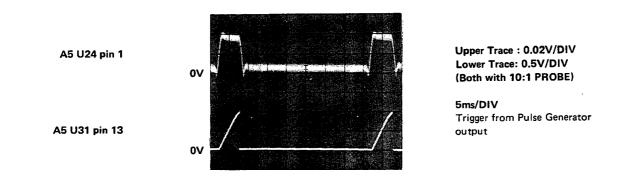
Note: $2.5dB = 20 \log 4DIV/3DIV$.



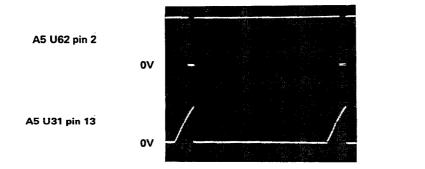
0.5V/DIV approx Adjust CAL control so that waveform occupies 8 divisions


5ms/DIV Trigger from Pulse Generator output

- 14. If assembly A5 is not already mounted on the extender board, switch the power off, mount A5 on the extender board and switch the power on.
- 15. Ensure that the 3776 is set as follows:


OPERATING MODE	AN Rx
RxTLP/RxdBr	0.0dB
ANALOG RECEIVE	600Ω (Terminated)
MEASUREMENTS	TRANSIENTS

- 17. Set the Pulse Generator to GATED output (ie 0V output).
- 18. Set the 3776 CONTROL to RUN and press the NEXT PARAM key to display 2dB G.hit.
- 19. Set the Pulse Generator operation to NORMAL (ie modulation now present on the carrier at the Function Generator output).
- 20. Check that Gain Hits register on the 3776 display. If counts do not register, then perform the following procedure. If counts do register, then go to Step 21.
 - a. Check that the following waveforms can be obtained. Ensure that the oscilloscope Volts/DIV is set to CAL.


b. If the waveform at A5TP7 is not correct, repeat the assembly A204 troubleshooting section of the Dropouts on Interruption troubleshooting to locate the fault. If the waveform at A5TP2 cannot be obtained then the fault is in GAIN HITS detection circuitry. The following waveforms should help troubleshoot the GAIN HITS detection circuitry.

c. If the A5U24 pin 1 waveform cannot be obtained, the fault is in the Full Wave Rectifier circuit. If the A15U31 pin 13 waveform cannot be obtained, then the fault is in either the Gain Hit Thresholds Multiplexer, Gain Hits Threshold Comparator or possibly the Qualification Period Compensation logic. The Gain Hit Threshold Multiplexer output level versus the thresholds set on the 3776 are as follows:

Gain Hit Threshold	Mux. Output Level (U64 pin 8)
6dB	≃1.0V
4dB	≃ 10.7
3dB	≃0.5V
2dB	≃0.3V

d. The Qualification Period Compensation logic can be checked by varying the width of the Pulse Generator output pulses. With the pulse width set to less than 3.5ms, Gain Hits should be inhibited. With the pulse

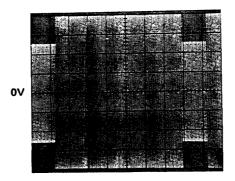
Upper Trace : 0.2V/DIV Lower Trace : 0.5V/DIV (Both with 10:1 PROBE)

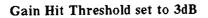
5ms/DIV Trigger from Pulse Generator output

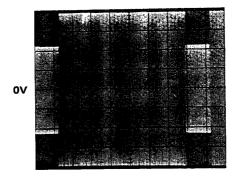
5ms/DIV, EXT TRIG (Pulse Gen. O/P)

A5 U71 pin 9

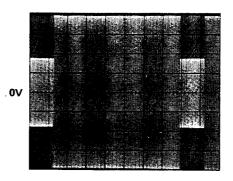
A5 TP2


e. If the waveform at A 5U62 pin 2 cannot be obtained, check the reference voltage (6.6V) at U62 pin 5.


ov ov


0.2V/DIV (10:1 PROBE)

5ms/DIV Trigger from Pulse Generator output


- f. If the waveform at A5U71 pin 9 cannot be obtained check TRANSIENTS latch A5U71A.
- 21. If counts register with the Gain Hit Threshold set to 2dB, the 3dB, 4dB and 6dB thresholds can be checked by setting the 3776 to the appropriate threshold and adjusting the modulation on step 12 waveform as shown.

Gain Hit Threshold set to 4dB

Gain Hit Threshold set to 6dB

G9-7 PHASE JITTER TROUBLESHOOTING

Equipment Required

Two Test Oscillators (A and	B) HP651B
Frequency Counter	HP5328A
AC Voltmeter	HP3455A
Three 200Ω Resistors	HP0757-0407

Procedure

1. Connect the test circuit as shown with the 3776 Assembly A5 mounted on the extender board.

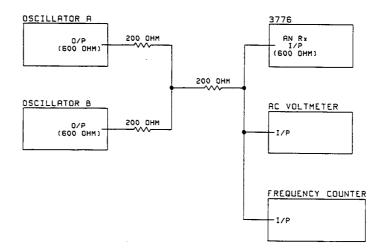
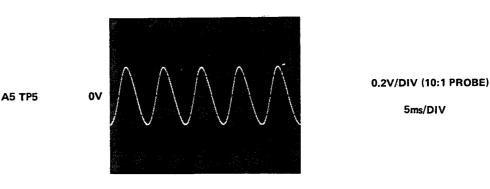
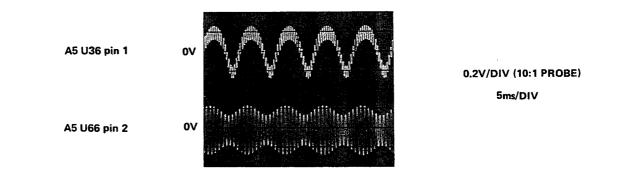


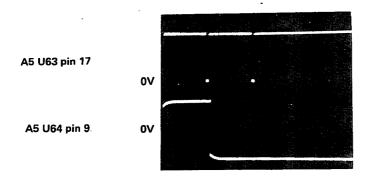
Figure G9-4 Phase Jitter Test Set up


2. Set the 3776 as follows:

3. Adjust the controls of Oscillator A to give an output frequency of 1010Hz ±1Hz displayed on the Frequency Counter and a voltage of 0.7745V ±0.0005V displayed on the AC Voltmeter.


Note: To set the output voltage or frequency from either Oscillator accurately and also maintain the circuit impedances, the output voltage from the other Oscillator must be set to a minimum level. If HP651B Oscillators are used, the OUTPUT ATTENUATOR switch should be adjusted to reduce the output voltage to its minimum.

- 4. With Oscillator A output level set to a minimum level, set Oscillator B to give an output frequency of 910Hz ±1Hz displayed on the Frequency Counter and a voltage of 0.201V ±0.001V displayed on the AC Voltmeter.
- 5. Return Oscillator A OUTPUT ATTENUATOR switch to the position set in Step 3. The combined outputs from Oscillator A and Oscillator B should now be applied to the 3776 ANALOG RECEIVE input.
- 6. Press the 3776 RUN key and check after approximately 5 seconds that the phase jitter displayed on the 3776 is between 28 degrees to 32 degrees. If the phase jitter reading is incorrect, perform the following troubleshooting procedure.
 - a. Check that the following waveform can be obtained.


Note: Because of the jitter present on the analog signals, triggering the oscilloscope is difficult. The following waveforms were obtained from a single sweep trace.

- b. If the waveform at A5TP5 is correct then go to step g.
- c. If the waveform at A5TP5 cannot be obtained, then the fault is in the Phase Jitter Bandpass Filter Limiter, Frequency to Voltage Converter and Low Pass Filter or the Bandpass Filter (LO/ Normal Centre Frequency). The following waveforms should help locate the fault.

- d. If the waveform at A5U66 pin 2 cannot be obtained, the fault is in U66B Analog Switch (S2 selected) on the Phase Jitter Bandpass Filter.
- e. If the waveform at A5U36 pin 1 cannot be obtained, the fault is in the Frequency to Voltage Converter and Low Pass Filter.
- f. If both waveforms A5U66 pin 2 and A5U36 pin 1 are correct and ATP5 is incorrect then the fault is in the Bandpass Filter (LO/ Normal Centre Frequency) circuit.
- g. Check that the output of the Positive Peak Detector is approximately +3V DC and the output of the Negative Peak Detector is approximately -3V DC. Check that the following waveform can be obtained.

0.2V/DIV (10:1 PROBE)

0.5ms/DIV Trigger positive edge U64 pin 9

- h. If the waveform at A5U63 pin 17 cannot be obtained then check the operation of the Input/Output Port A5U72.
- i. If waveform A5U64 pin 9 cannot be obtained and the output levels from the Peak Detectors are correct, then the fault is in Mux A5U64B. Check that the output of the sample and Hold IC A5U55 pin 5 is identical to the waveform at A5U64 pin 9.
- j. If the waveforms at A5U63 pin 17 and A5U64 pin 9 are correct and the output of the A5U55 Sample and Hold IC is correct then the fault is in the A5U63 A/D Converter or Output Buffer A5U73.

G9-8 PHASE HITS TROUBLESHOOTING

Equipment Required

Pulse Generator	HP 8005B
Function Generator	HP3312A
Oscilloscope	HP1740A
Frequency Counter	

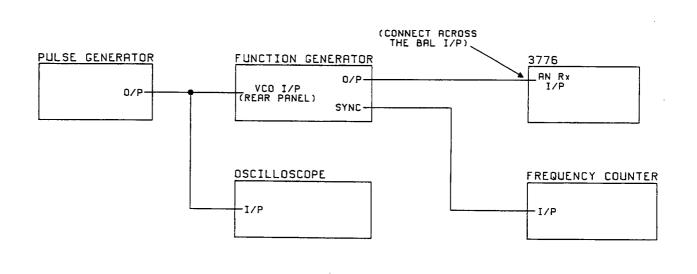
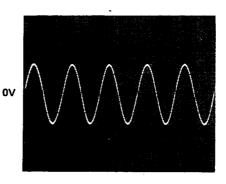


Figure G9-5 Phase Hits Test Set-Up

Procedure

- 1. Connect the test circuit as shown in Figure G9-5 with 3776 Assembly A5 mounted on the extender board.
- 2. Set the Pulse Generator to give -1.0V ±0.1V negative-going pulses with a repetition rate of approximately 1kHz and a pulse width of exactly 0.2ms. The oscilloscope timebase should be set to 20us/DIV for best resolution.
- 3. Set the Pulse Generator repetition rate to approximately 10Hz.
- 4. Set the Pulse Generator to EXT-MAN or GATED mode (ie sets the Pulse Generator output to 0V, with no DC offsets). Check that the Pulse Generator output is 0V on the Oscilloscope.
- 5. Adjust the frequency control of the Function Generator to give 1010Hz ±5Hz displayed on the Frequency Counter. When a HP3312A Function Generator is used, the front panel controls should be set as follows:

MODULATION	~ , 🔨 , 💪 switches all out
FUNCTION	~ switch depressed
TRIGGER PHASE	
RANGE Hz	100
OFFSET	CAL
SYM	CAL
AMPLITUDE	10

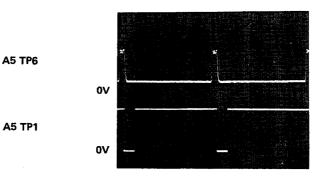

6. Set the 3776 as follows:

- 7. Press the 3776 NEXT PARAM key, set the MEAS frequency to 1.01kHz and press RUN/REPEAT.
- 8. Adjust the output amplitude of the Function Generator to give 0dBm ±0.1dBm displayed on the 3776 RESULTS display.
- 9. Press the 3776 STOP key.
- 10. Set the 3776 as follows:

OPERATING MODE	AN Rx
ANLOG RECEIVE	600Ω (Terminated)
MEASUREMENT	TRANSIENTS

- 11. Scroll the Transient parameters using the NEXT PARAM key and set as follows:
 - FAST Count 4-00 hr 5 deg P.hit
- 12. Press the 3776 RUN key and press the NEXT PARAM key to display 5 deg P.hit.
- 13. Set the Pulse Generator to NORMAL mode (ie 0.2ms, -1V negative- going pulse at approximately 10Hz).
- 14. Check that Phase Hits register on the 3776 display. If the hits do not register, then perform the following procedure.

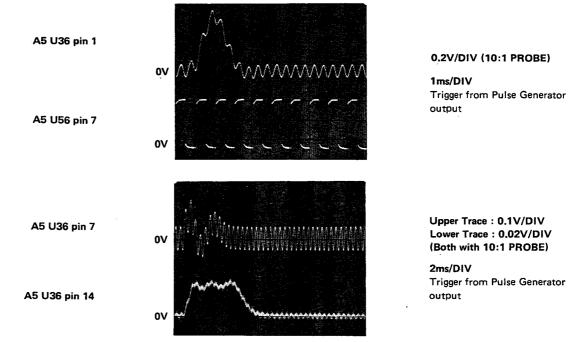
a. Check that the following waveform can be obtained.

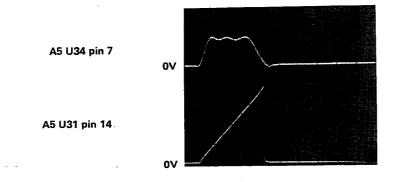


0.1V/DIV (10:1 PROBE)

0.5ms/DIV (Note: a small amount of jitter will be visible on the signal)

- b. If the waveform at A5U66 pin 2 is not present, then check the signal routing through the Transients Input Bandpass Filter (ie S1 selected on U66B Analog Switch) and A204 D/A Converter and Low Pass Filter.
- c. Check that the following waveforms can be obtained.


A5 U66 pin 2

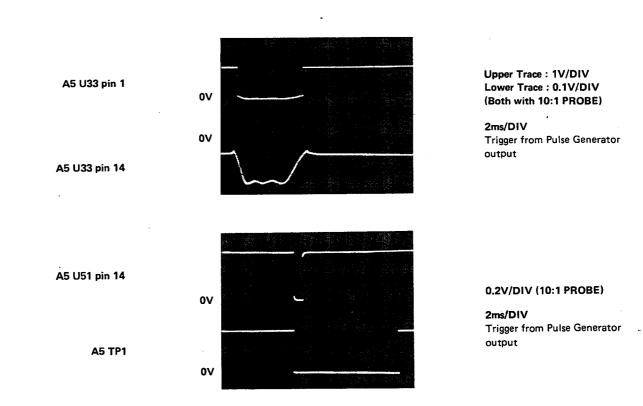

Upper Trace: 0.1V/DIV Lower Trace: 0.2V/DIV (Both with 10:1 PROBE)

0.02ms/DIV Trigger from Pulse Generator output

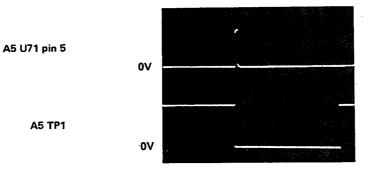
d. If the Waveform at A5TP6 cannot be obtained, then the fault is in the Limiter U56A, Frequency to Voltage Converter & Low pass Filter or the Phase Hit Filter. The following waveforms should help locate the fault.

e. If the waveform at A5TP1 cannot be obtained then the fault is in the Loop Recovery circuit, Full Wave Rectifier, Phase Hits Threshold Comparator or the Phase Hit Qualification Period Compensation and Monostable circuit. The following waveforms should help locate the fault.

Upper Trace : 0.1V/DIV Lower Trace : 0.2V/DIV (Both with 10:1 PROBE)


2ms/DIV Trigger from Pulse Generator output

2ms/DIV EXT TRIG (Pulse Gen O/P)


f. If the waveform A5U34 pin 7 cannot be obtained, then check the Loop Recovery circuit and the Full-Wave Rectifier. If waveform A5U31 pin 14 cannot be obtained, check that the level at U84 pin 8 is 0.2V. The Phase Hit Thresholds versus U84 output levels are as follows:

Phase Hit Threshold degs	U84 Input Selected	U84 Output Level V (DC)
40	0	1.6
35	1	1.4
30	2	1.2
25	3	1.0
20	4	0.8
15	5	0.6
10	6	0.4
5	7	0.2

g. Check that the following Qualification Period Compensation and Monostable circuit waveforms can be obtained.

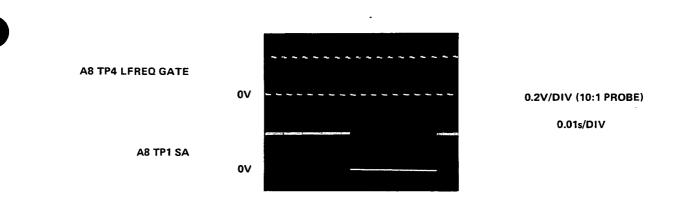
h. Check that the following Phase Hit Transient Latches output waveform can be obtained.

0.2V/DIV (10:1 PROBE)

2ms/DIV Trigger from Pulse Generator output

G9-9 GROUP DELAY TIMING, IMPULSE NOISE AND FREQUENCY DETECTOR TROUBLESHOOTING

Equipment Required


Signature Analyzer.....HP5005A Oscilloscope.....HP1740A

Procedure

- 1. Switch the 3776 power off and mount assembly A8 on the extender board.
- 2. Connect and set the HP5005A Signature Analyzer as follows:

FUNCTION	NORMAL
CLOCK	A 8 TP2;TTL positive edge
START	A 8TP1(SA);TTL negative edge
STOP	.A 8TP1(SA);TTL positive edge
GND	A 8GND TP

- 3. Set A 8TL1 to the TEST position.
- 4. Switch the 3776 power on.
- 5. Set A13S2 switches to 10001 and press A13S1 reset button.
- 6. Press AN Tx.
- 7. Write 02 (hex) to Status Register address 2d (hex). See General Service G1, Instrument Bus Access using the utilities.
- 8. Check that the +5V signature is 12A5. If this signature cannot be obtained, check operation of the Timing Chain/Frequency Gate Counter using an oscilloscope. Check that the following waveform can be obtained.

9. Check that the following signatures can be obtained.

Note: Only signatures underlined need	be checked to verify correct
Logic Function operation.	

Assembly	Logic Function Threshold Detector	Signatures	
A8 Part 1		U22(1) 8C43 U22(2) 5U90 U22(3) 20U0 U22(4) 0000 clk	U31(12) 20U0 U31(13) 86CP U32(2) 0000 clk
		$\begin{array}{c} U22(4) \ 0000 \ Clk \\ U22(5) \ P050 \\ U22(6) \ AH3A \\ \underline{U22(7) \ A64P} \\ \underline{U22(9) \ 549P} \\ \underline{U22(10) \ 7111} \\ \underline{U22(11) \ 29PC} \\ \\ U31(1) \ 12A \ 5 \\ U31(2) \ 86CP \\ U31(3) \ 941C \\ U31(8) \ P050 \\ U31(9) \ 12A \ 5 \\ U31(10) \ U2U5 \\ U31(11) \ A64P \end{array}$	U 32(7) 941C U 32(9) A64P U 32(11) 5U90 U 32(12) 8C43 U 32(13) AH 3A U 32(14) U 2U 5 U 32(15) 86CP
			U43(1) 0000 U43(2) 20U0 U43(4) 20U0
A8 Part 1	Fast/Slow Detector	*U11(3) 2PFF(3F69) U31(4) 3255 U31(5) 12A5 U31(6) 20U0	*U44(1) 2PFF/3F69 <u>U44(8) 0345</u> U44(9) 942F U44(10) 12A5 U44(11) 20U0 U44(12) 20U0 U44(13) 0000

r	T	r	
			U54(8) 0000 clk U54(10) 3255 U54(13) P865 *Signatures in brackets are obtained in a 3776B only.
A8 Part 1	Impulse Reset Note: Connect a shorting link between the A8 GND Test Point and A8U42 pin 6 for these signatures. Remove link after checking this Logic Function.	U42(1) A64P U42(2) 12A5 U42(3) A64P U42(4) A64P U42(5) 12A5 U42(6) 0000	U43(1) 0000 U43(12) A64P U43(14) A64P U44(2) 12A5 U44(3) 0000 U44(4) A64P U44(5) 12A5/C4PC U44(6) C4PC/12A5
A8 Part 2	Frequency Counter	U4 3(1) 0000 U4 3(5) 0000 clk U4 3(6) 0000 U4 3(7) 0000 clk *U53(1) 3365(HA05) U53(2) 0000 clk *U53(3) 284A(5A1P) *U53(4) F95A(HC67) *U53(5) F656(1CU3) *U53(6) 33HU(AH91) *U53(8) 3365(HA05) *U53(9) A751(3A2C) *U53(10) P107(C653) *U53(11) 17AA(PA23) U53(12) 0000 clk U53(13) 8H97	*U54(1) 33HU(AH91) U54(2) 0000 clk *U54(3) 635C(4127) *U54(4) 496P(UP8U) *U54(5) 3P34(PH74) U55(8) 0000 U55(9) 0000 U55(9) 0000 *U56(1) 0000 *U56(2) H0FC(P865) *U56(3) H0FC(P865) *U56(4) H0FC(P865) U56(5) 61U1 U56(6) 8H97 U66(2) 0000 U66(3) 61U1 U66(4) 0000 U66(6) 0000 U66(11) 12A5 U66(12) 12A5 U66(13) 0000 *Signatures in brackets are obtained in a 3776B only.

10. Write OC (hex) to Status Register address 2d (hex). See General Service Sheet G1, Instrument Bus Access using Utilities.

-

•

11. Check that the following signatures can be obtained.

Assembly	Logic Function	Sig	gnatures
A 8	Timing Chain Sync Generator	U11(9) 61U1	U16(11) 12A5
Part 3		<u>U11(11)</u> UFC6	U16(12) 0000
		U11(12) 20U0	U16(13) 82FP
		U12(11) 3255	<u>U24(9) 12A5</u>
		U12(12) 20U0	U24(10) UFC6
		U12(13) 12A5	U24(12) U8H6
		<u>U15(4) 20U0</u>	U26(4) FH19
			U26(5) 82FP
		U15(5) 0000	<u>U26(6)</u> <u>U8H6</u>
		U15(6) 3255	
			U52(4) 20U0
			U52(5) 12A5
			U52(6) 20U0
A 8		U11(5) 3F34	U15(1) 1A73
Part 3	Timing Chain	U11(7) 866F	U15(2) 20U0
		U11(9) 61U1	U15(3) 2826
		U11(13) P4HC	U15(11) H68P
		U11(15) H68P	U15(12) 20U0
			U15(13) P4HC
		U12(1) 0247	
		U12(2) 4UUU	U34(9) H629
		U12(3) 9CHP	U34(10) 0247
		U12(8) 3255	U34(11) 4UUU
		U12(9) 20U0	U34(12) 3F34
l		U13(2) 61U1	<u>U34(13)</u> 82FP U34(14) 20U0
		U13(7) H68P	U34(14) 2000 U34(15) H629
		U13(9) 3255	034(13) 1027
		U13(10) H68P	U418(8) HUCF
		U13(15) 6516	U41(9) FH19
		U14(2) 61U1	U41(11) 866F
		U14(4) 20U0	U41(12) 9CHP

Note: Only signatures underlined need be checked to verify correct Logic Function operation.

		U14(7) 6516 U14(9) 1A73 U14(10) 6516 U14(11) 3F34 U14(15) 2826	U41(13) 12A5
A8 Part 3	Sync Loss Detector	U12(4) HUCF U12(5) 82FP U12(6) 276A U15(8) 0000 U15(9) U8H6 U15(10) PA73 U16(1) 35FU U16(2) PA73 U16(3) 12A5	U16(4) 12A5 U16(5) 0000 <u>U16(6) 12A5</u> <u>U16(8) 0000</u> U16(9) 12A5 U16(10) 12A5 U24(5) 3255 U24(6) 276A <u>U24(7) 35FU</u>

Self-Blocking Timers (LO, MID, HI) Troubleshooting

12. Set the A13S2 switches to 00000.

13. Set A8 TL1 to the NORM position.

14. Press SELF TEST. CAL should be displayed.

15. Press PREVIOUS PARAM until Pt 20 is displayed (ie Digital Filter Self Test).

16. Press RUN and when PASS 7 is displayed on the RESULTS display, press REPEAT.

17. Set A13S2 switches to 00101.

18. Press SELF TEST to access the Utilities.

Note: The 3776 should now be in the middle of its Digital Self test routine, with the A8 assembly being driven at an 8kHz rate (ie not the usual 16kHz rate).

19. Check that the following waveforms can be obtained.

20. Press Rx dBr/CHAN (Rx TLP/T SLOT).

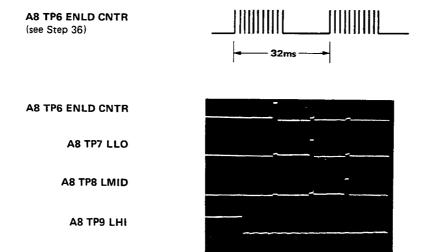
21. Press OTHER MEAS then PHASE JITTER. "042" should be displayed on the LEVEL display.

22. Press RUN. "t 5t" should be displayed on the RESULTS display.

23. Press TRANSIENTS then PHASE JITTER. "052" should be displayed on the LEVEL display.

24. Press RUN. "noP" should be displayed on the RESULTS display.

25. Press SET FREQ, then GAIN v FREQ. SPEAKER "F0" should be displayed on the RESULTS display.

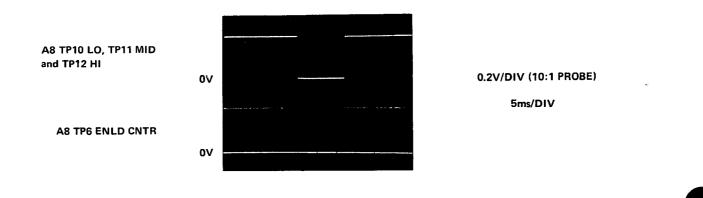

26. Press RUN. "t5t" should be displayed on the RESULTS display.

27. Press DECR. "051" should be displayed on the LEVEL display.

28. Press SET FREQ, then OTHER MEAS. FRAMING + SIG BITS. "41" should be displayed on the RESULTS display.

29. Press RUN. "Sub 1" should be displayed on the RESULTS display.

30. Check that the following waveforms can be obtained.


0.5V/DIV (10:1 PROBE)

0.5µs/DIV (Note: Trigger on positive edge of A8 TP6)

31. Press AN Tx, then PHASE JITTER, STORE. "2d" should be displayed on the LEVEL display.

32. Press SET FREQ, then TRANSIENTS. INCR. "06" should now be displayed on the RESULTS display.

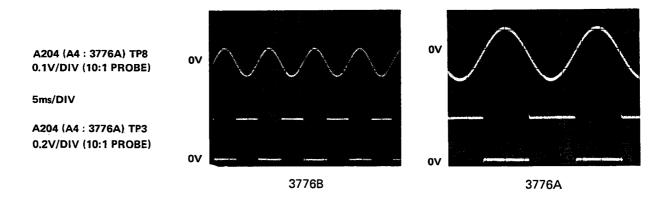
- 33. Press RUN. This sets A8 for Fast Count (ie 10ms Self-Blocking).
- 34. Press NOISE + TONE (3776A)/NOTCHED NOISE (3776B). "OC" should be displayed on the LEVEL display.
- 35. Press REPEAT. This action repeatedly clears any recorded impulses, enabling further impulses to be recorded.
- 36. Check that the following waveforms can be obtained.

37. If the above waveform can be obtained on A8TP10, TP11 and TP12 then this verifies the operation of the Self-Blocking Timers. If a waveform cannot be obtained at one of the test points, use the waveforms obtained on a working Self-Blocking Timer to compare against the faulty Self-Blocking Timer.

Note: The reset input to latches U24B, U25B and U25D is a very narrow (ie approximately 50ns) negative-going pulse.

G9-10 ENVELOPE DELAY DISTORTION AND ABSOLUTE DELAY TROUBLESHOOTING

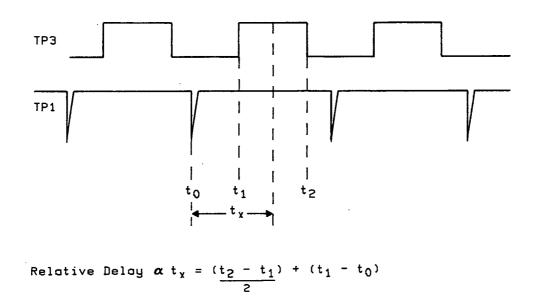
Equipment Required


Oscilloscope......HP1740A Logic Probe......HP545A

Procedure

- 1. Switch the 3776 power off and mount assembly A204 on the extender board.
- 2. Connect the ANALOG TRANSMIT output to the ANALOG RECEIVE input.
- 3. Switch the power on and set the 3776 as follows:

OPERATING MODE...... AN Tx, AN Rx ANALOG TRANSMIT and ANALOG RECEIVE...... 600Ω terminated Rx TLP/Rx dBr and Tx TLP/Rx dBr......0.0dB MEASUREMENT......OTHER MEAS/ENVEL DELAY


- 4. Set the REF frequency to 1.81kHz and the LEVEL to -5.0dBm0.
- 5. Press RUN then REPEAT. The Transmitter should now repeatedly generate a 1.81kHz, -5.0dBm0 carrier with 41 2/3Hz (3776A) or 83 1/3Hz (3776B) amplitude modulation.
- 6. Check that the following waveforms can be obtained. Note: Repetition Rate is 41 2/3Hz (3776A) and 83 1/3Hz (3776B). If the waveform A204TP3 cannot be obtained, check operation of Limiter U38A.

- 7. Check that the signal at A204 TP1 is an approximately 0.2us negative-going pulse with a repetition rate of 41 2/3Hz (3776A) or 83 1/3Hz (3776B). Use an oscilloscope with a viewing hood or storage facilities. If the signal at A204TP1 cannot be obtained check the operation of the A204 Reference Phase Counter (+192). The DA CONV WRITE signal should be approximately 2.5us negative-going pulses with a 16kHz repetition rate. The 41 2/3Hz SELECT signal should be held high if the instrument is a 3776A or low if the instrument is a 3776B.
- 8. Use a logic probe or an oscilloscope to check the Phase Comparator, Decoder, Measurement Cycle Counter and the Initializing Circuit.

Note that the output of the Measurement Cycle Counter U20 pin 7 and Initializing Circuit Flip-Flops should toggle at a very low repetition rate (ie approximately 1Hz).

9. Check that LCLK present at the input to the divide by 1/2 Counter switches between 4MHz and 2MHz depending on the phase relationship between the signal at A204 TP3 and A204 TP1. For example, if the signals are as follows; the 4MHz clock is enabled between t0 and t1 and the 2MHz clock enabled between t2 and t1.

- 10. Set A204 TL3 to the Test position and check the operation of the Up/Down Phase Counter using an oscilloscope or logic probe. Setting TL3 to the Test position inhibits LCLR PH CNT line. Set A204 TL3 to the NORMAL position after performing the Phase Counter Troubleshooting.
- 11. Ensure that the 3776 is in the RUN/REPEAT mode.
- 12. Using a logic probe, check that the negative-going signals L BYTE 1 and L BYTE 2 enable Output Buffers U33 and U43 at an approximately 1 second rate. If L BYTE 1 or L BYTE 2 cannot be obtained, check the operation of the Address Decoder A204 U50 using the "Instrument Bus Access using the Utilities" given in General Service Sheet G1.

TROUBLESHOOTING ASSEMBLY SERVICE SHEETS

8-A1-1
8-A2-0
8-A3-0
8-A4-0
8-A5-0
8-A6-0
8-A7-0
8-A8-0
8-A9-0
8-A11-0
8-A12-0
8-A13-0
8-A14-0
8-A15-0
8-A16-0
8-A20-0
8-A21-0
8-A22-0
8-A23-0
8-A24-0

A1 ETC

ASSEMBLY SERVICE SHEET A1/A101 DIGITAL SYNTHESIZER & PCM GENERATOR A1 (3776A)/A101 (3776B)

A1-1 INTRODUCTION

A1-2 Assembly A1/A101 generates the following test signals for 3776 measurements;

- 1 sinewave,
- 2 2 Tones,
- 3 4 Tones,
- 4 Group Delay (3776A), Envelope delay (3776B),
- 5 350Hz to 550Hz Band Limited Noise (3776A),
- 6 Echo Return Loss ERL (3776B),
- 7 Dual Tone Multifrequency (DTMF) Dialling.

These signals digitally synthesized on A1/A101 are converted to an analog form on Assembly A3 for A to A and A to D measurements. In their digital form, these signals are inserted into a PCM frame structure on A1/A101, for D to A and D to D measurements. Before insertion into the PCM frame structure the digital signals are attenuated and compressed as if on an actual digital transmission system.

A1-3 It is the A1/A101 software along with data from the processor on A13 which allows the A1/A101 hardware to be so versatile. The A1/A101 software is a linear program which repeats every 125us. Stored in software are routines to perform all the following operations:

3776A signal generation (see Para A1-2) digital attenuation routine A-LAW compression PCM Frame Structure: CCITT G.732	3776B signal generation (see Para A1-2) digital attenuation routine u-LAW compression					
	PCM Frame Structure: Bell std 24 Channel/ Extended Frame (FE) (Selections from A13)					

A1-4 The PCM Frame structures conforming to CCITT G.732 and the BELL Std and the Extended Bell structure are illustrated in APPENDIX A.

A1-5 The main signal flow of Assembly A1/A101 is illustrated in Figure A1-1.

A1-6 The Bit Slice Processor shown in Figure A1-1, is fundamental to the operation of Assembly A1/A101. Under the control of the processor on A13 and the software stored in the Program Constant ROMs and Microcode Instruction ROMs, the Bit Slice Processor processes all data (test signals, attenuation, compression and PCM Frame structure) fed to it from the Control RAM Memory.

A1-7 The Program Counter sequentially addresses the software contained in the Program Constant ROMs and Microcode Instruction ROMs. The Program Constant ROMs contain address information and program constants used in the A1/A101 software. The Microcode Instruction ROMs contain the instructions and timing information which make up the A1/A101 software. During the 125us cycle time of the Program Counter 512 address words are produced for the 3776A and 386 for the 3776B. The 125us cycle time equals the length of 1 frame in a PCM frame structure.

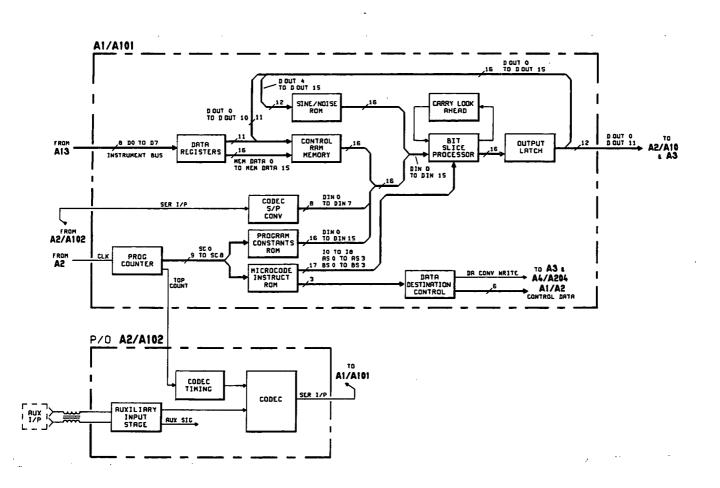


Figure A1-1 A1/A101 Block Diagram

A1-8 With the Bit Slice Processor being made up of 4 individual bit slice devices a circuit comprising U805 and U806 (see schematic A1/A101 PART 2) is necessary. This circuit allows the shifting of instructions between devices. Instructions include arithmetic right, logic left as well as rotation. The 4 bit slice devices form a processor with a 16 bit ALU, a 32 bit shift register and 16 X 16 shift registers.

A1-9 The Carry Look Ahead circuit, shown in Figure A1-1, is used along with the 4 bit slice devices during add and subtract instructions.

A1-10 Generating a Sinewave

A1-11 Sinewaves in the range 50Hz to 4.6kHz are digitally synthesized on A1/A101. A simplified illustration of digital sinewave synthesis is given here, followed by a description of how the A1/A101 assembly performs this function.

A1-12 Basic Concept

A1-13 A stepped sinewave can be generated by presenting a series of sinusoidally-varying binary words representing a full 350 degree cycle to a digital-to-analogue converter (see Figure A1-2). Band Limited Noise is produced in a similar manner.

A1-14 Good spectral purity of the stepped waveforms is easily obtained by low-pass filtering. This is the technique employed by the 3776.



Figure A1-2 D/A Function

A1-15 The 3776 uses a SINE ROM to produce a sequence of sinusoidally-weighted binary words from a sequence of linearly-weighted words (see Figure A1-3). The SINE ROM is programmed such that when its input is addressed by a sequence of linearly-varying binary words, then its output is a sequence of sinusoidally-varying binary words.

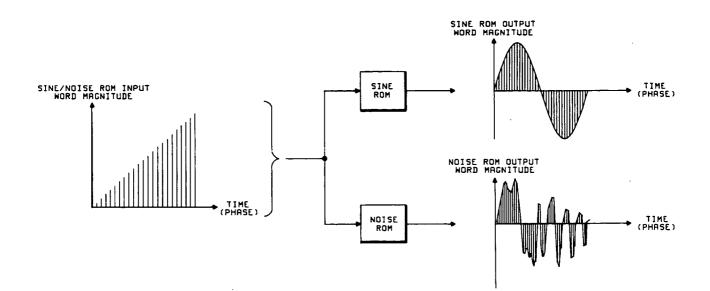


Figure A1-3 ROM Function

A1-16 The linearly-varying binary word sequence is generated by an ACCUMULATOR. This consists of an adder and a register, connected as shown in Figure A1-4 (a). Imagine the register contents (and output word) to be initially all zeros. A binary word (the INCREMENT) is input to the adder, and will be clocked through to the register output. The output is added to the INCREMENT, and becomes the new value of-fered to the register. This new value will be clocked into the register on the next clock pulse, and the process will be repeated. Thus the accumulator output will, on each clock pulse, increase by an amount equal to the INCREMENT (see Figure A1-4 (b)). This gives the linearly-weighted binary sequence required to drive the ROM.

A1-17 Different frequencies are obtained by altering the size of the INCREMENT. The smallest INCREMENT steps through the maximum number of sinewave values stored in SINE ROM (see Figure A1-3), to define the lowest frequency. If the INCREMENT size is doubled the number of steps required to define one cycle of the sinewave halves, and so the frequency doubles.

A1-18 Band limited noise is produced in an identical way to the sinewave except that the NOISE ROM addresses are accessed on A1/A101.

A1-19 The "basic concept" described in the previous paragraphs is implemented on A1/A101 under the control of the processor on A13 and the A1/A101 software.

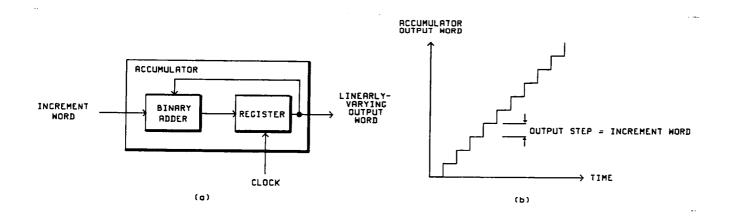
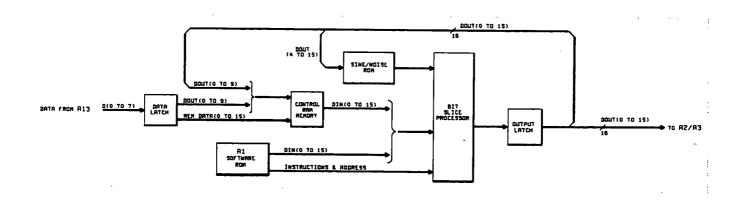



Figure A1-4 The Accumulator

A1-20 When the frequency of a test signal is keyed in via the front panel, the processor on A13 reads the frequency and produces a 16 bit binary word representing the INCREMENT described in paragraph A1-17. This INCREMENT is stored in a specific address in the Control RAM Memory (see Figure A1-5). When the Bit Slice Processor is not busy, the A13 assembly applies the INCREMENT and address word to the Control RAM Memory via the Data Latch.

A1-21 When the A1/A101 software starts its routine for sinewave generation, it first produces the address required to access the INCREMENT in RAM. This address applied to the DIN (0 to 15) bus, is fed via the Bit Slice Processor and Output Latch to the Control RAM Memory. The INCREMENT, accessed by the address word, is added to the register holding the accumulated phase in the Bit Slice Processor. The result addresses the sinewave locations on the Sine/Noise ROM. The output of the ROM is thus a sinusoidally-weighted binary word, see Paragraph A1-15. This action continually repeats, producing a sequence of sinusoidally varying words as per Paragraph A1-16. The frequency is altered by changing the size of the INCREMENT (see Paragraph A1-17).

Figure A1-5 Sinewave Generation

A 1-22 The Bit Slice Processor also digitally attenuates the sinusoidally varying words according to the level. set via the front panel. Attenuation is provided in coarse 6dB steps and fine 0.1dB steps over a sinewave range of 3.1dBm0 to -60dBm0.

A1-23 Multiple tones (i.e. 4 sinewaves in the 3776B) are generated in a similar manner to the previously described sinewave. Each of the 4 sinewaves has its own INCREMENT register in the Bit Slice Processor and the routine previously described repeats for each of the 4 frequencies. The 4 sinewaves are combined in the Bit Slice Processor to produce a 4 Tone Complex Signal.

A1-24 Group Delay (GD) Echo Return Loss (ERL) and Envelope Delay Distortion (EDD) signals are also produced by the Bit Slice Processor. A typical example of a GD signal is illustrated in Figure A1-6.

A1-25 If the 3776 is operating as an analog transmitter (ANTx) the output of the Data Latch will be applied to the Analog Transmit Assembly A3.

A1-26 However if the 3776 operates as a digital transmitter (DIGTx) the digitally synthesized signal must be inserted into a PCM frame structure.

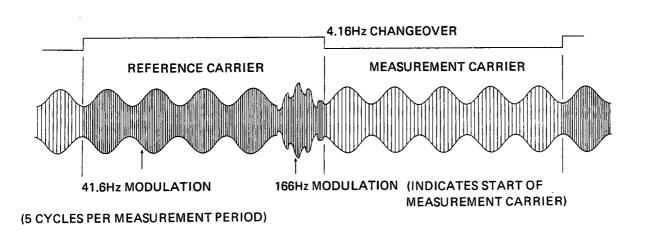


Figure A1-6 Example of Group Delay CCITT 0.81 Waveform (3776A)

A1-27 PCM Frame Structure

A1-28 The PCM Frame Structures for the 3776A and 3776B are illustrated in APPENDIX A. For this description consider the structure for the 3776A.

A1-29 The A1/A101 software program and a PCM frame run for the same length of time 125us.

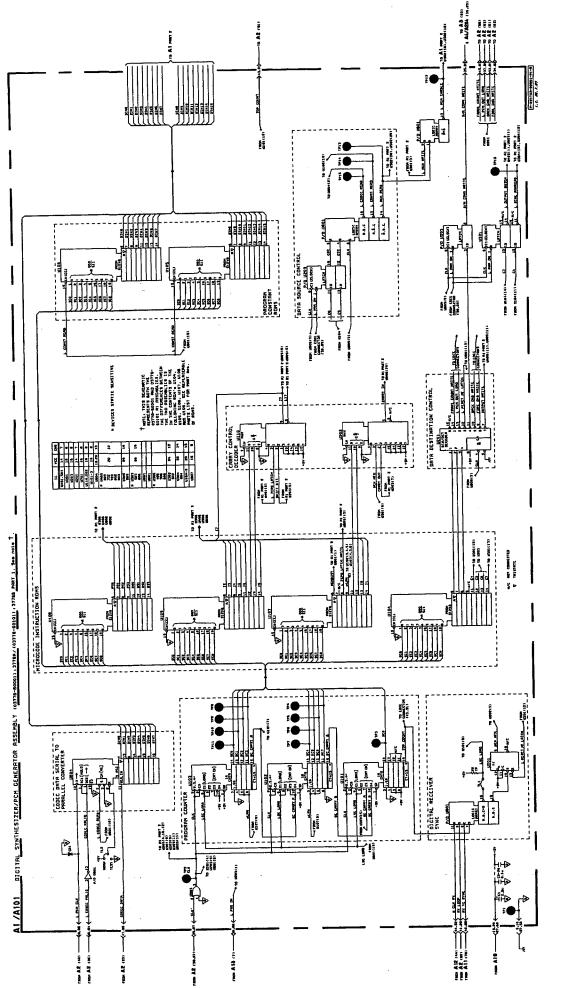
A1-30 When the 3776A operates as a digital transmitter (DIGTx), the processor on A13 provides framing and signalling information etc associated with the CCITT 2,048kb/s PCM System (3776A). The A13 assembly also supplies the addresses in the Control RAM Memory into which the framing and signalling information is to be stored. The Control RAM Memory is loaded when the Bit Slice Processor is not busy. Framing, signalling and Frame Word Bit Error Rate data can be programmed into a PCM frame structure via the front panel.

A1-31 The A1/A101 software contains the CCITT PCM Frame Structure - the basic frame comprises 32 timeslots (TS). The PCM Frame Structure is constructed by accessing the framing and signalling information stored in RAM at the appropriate time e.g. the FRAME ALIGNMENT WORD stored in RAM is addressed by the A1/A101 software at a time equivalent to TSO every alternate frame. The address information is fed to the Control RAM Memory via the Bit Slice Processor and Output Latch (see Figure A1-5).

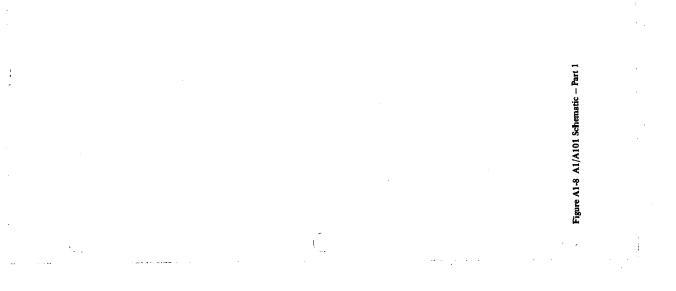
A1-32 Transmitting a test signal digitally, requires the test signal (Foreground PCM) to be allocated a timeslot within a frame. This is done via the front panel DIGITAL Tx TIMESLOT key. All other timeslots except for the framing and signalling timeslots are allocated a reference (Background PCM) binary sequence, which is set up by "storing" the DIG Tx-Rx parameters.

A1-33 Test signals are generated as per the previous section, Paragraph A1-19 to 24. However in addition to being attenuated test signals are compressed (A-LAW compression for 3776A and U-LAW for 3776B) by the Bit Slice Processor before being inserted into the selected timeslot.

A1-34 The Foreground PCM (test, framing and signalling) and the Background PCM signals are applied to ... the Control RAM Memory from A13. As the A1/A101 software performs its program the Foreground and Background PCM signals are accessed and allocated their appropriate timeslots. The Foreground PCM test signals vary, while the Background PCM, and the framing and signalling Foreground PCM signals are sequences of constants. A1-35 The output of the Bit Slice Processor is applied to an 8 bit bus. The PCM data is converted to a serial form on A2/A102.


A1-36 On A2/A102 the Foreground and Background PCM are stored in their respective latches (see A2/A102 schematic) prior to being converted to an 8 bit serial word, ready for HDB3/AMI Encoding.

A1-37 An external audio signal may be inserted into the PCM Frame Structure. The signal is applied to the A2 Assembly via the AUXILIARY INPUT on the rear panel, where it is converted to a binary form. From A2 the binary signal is stored in the Bit Slice Processor on A1/A101 ready for insertion to the PCM frame structure.


A1-38 Signature Analysis is used in the troubleshooting of the A1/A101 Assembly (see GENERAL SERVICE SHEET G 5).

. Cs C18 Ċ11 C14 U807 ⊃ĝ C7— U306 U406 **U506** U606 ⊐ç U806 <u>C6</u> ∪ 80 <u>C17</u> å^t C5 03776-60001 ŝ ⊐ç **U805** U605 U405 U 505 **U305** C4 ာစ္ခ်ီ C13 C10 **U804** C3 •<u></u> ⊐ŝ စ္တိ U504 U304 រដ្ឋ ⊃Ş⊂ Ē . 20 2**6** U703 ₽.¥ U803 ∍õ ⊃§ **§**• ÿ● TP13 0TP12 U203 U103 ్టి U 502 **ن**و U302 U702 U 802 **₿**● ě, U202 U 102 C12 ●∰ C9 C1 -C16 •<u>2</u> 918 16 ●TL1● Ċ2 —R2 -C15 R1 , U801 1010 U201 **U**301 U401 U501 U601 U701 -____

Figure A1-7 A1/A101 Component Location

8-A1-9

. N. . ·····

· ,

and the second solution of the solution of the second solution of the solution of the second s

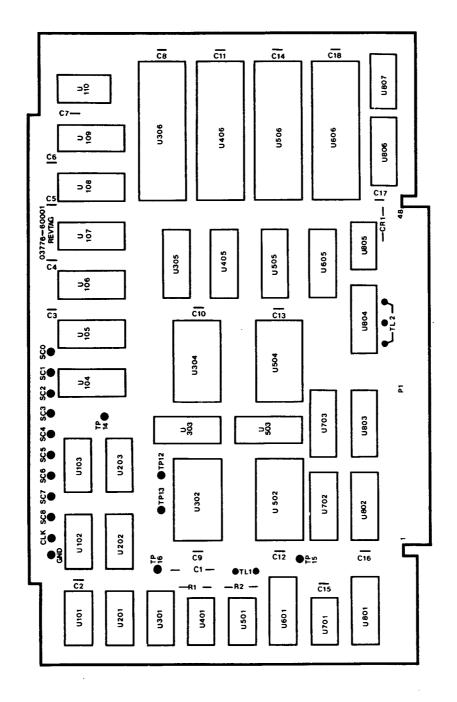
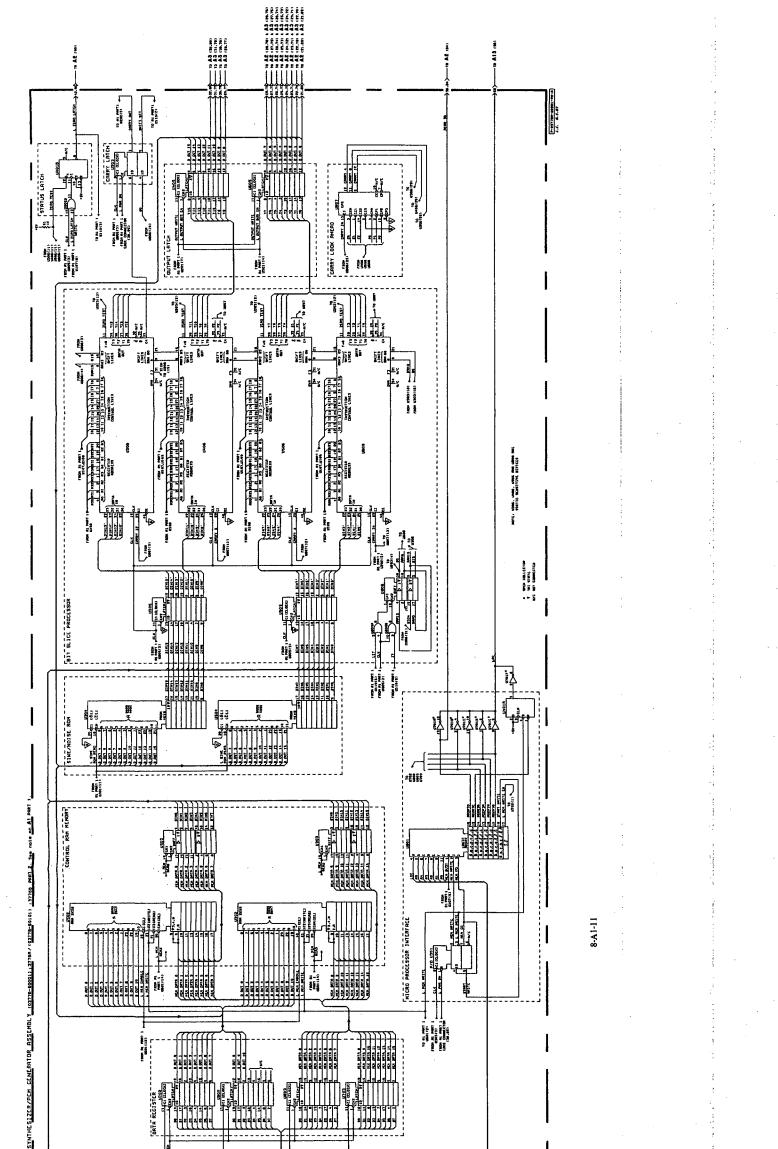
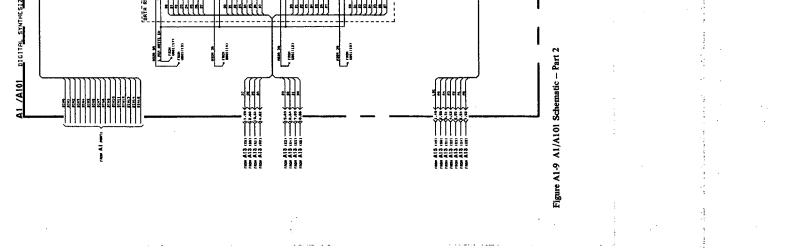




Figure A1-7 A1/A101 Component Location

ł

÷

ASSEMBLY SERVICE SHEET A2/A102 DIGITAL PCM TRANSMITTER A2 (3776A)/A102 (3776B)

A2-1 INTRODUCTION

A2-2 A major portion of the circuitry on A2/A102 forms the 3776 Digital PCM Transmitter, see Figure A2-1. The remaining circuitry forms two circuits and their functions are as follows:

- 1 Converts audio signals from an external generator or microphone to a binary form for insertion into a timeslot in the 3776 synthesized PCM frame structure. The external audio is applied to A2/A102 via the rear panel AUXILIARY INPUT.
- 2 Provides clock signals for use on the A1/A101 and A2/A102 assemblies.

A2-3 Digital PCM Transmitter

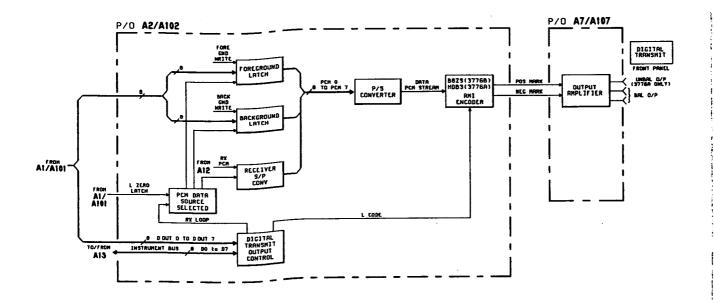


Figure A2-1 Digital PCM Transmitter

A2-4 The circuits forming the Digital PCM Transmitter are illustrated in Figure A2-1.

A2-5 Data for transmission is applied to the transmitter from two sources;

- 1 Assembly A1/A101: when the 3776A is performing D to A or D to D measurements or when an external signal is applied to the AUXILIARY INPUT.
- 2 Assembly A12: when the 3776A is in the THRU MODE and performing an A to A measurement on a 2 or 4-wire system. In a 2-wire system timeslot translation is normally required (see Paragraph A2-17).

A2-6 Data from A1/A101 is applied to A2/A102 as a sequence of 8-bit binary words D OUT (0 to 7). These words are latched into either the Foreground or Background PCM Latches (see Paragraphs A1-31 to 36) by either FORE GND WRITE or BACK GND WRITE depending on the output status of the PCM Data Source Selector. The outputs of the latches are then converted to a serial 2,048kb/s (3776A) stream of pulses (1,544kb/s for the 3776B). This bit stream is then HDB3/AMI (3776A) encoded and amplified (on A7/A107) prior to being transmitted at the 3776A DIG Tx output. In the 3776B the 1.544kb/s bit stream is B8ZS/AMI (AZS) encoded. The PCM Data Source Selector, controlled from A1/A101, determines whether Foreground or Background data is inserted into a timeslot.

A2-7 Test signals generated on A1/A101 are allocated specific timeslot(s) (via the front panel). These signals are known as the Foreground PCM signals.

A2-8 All timeslots not containing a Foreground PCM signal contain a Background PCM signal. This is set up by using the measurement DIG Tx-Rx front panel key.

A2-9 HDB3/AMI Encoding (3776A)

A2-10 AMI Code. AMI (Alternate Mark Inversion) is a bipolar or ternary (ie three level) code in which every second logic 1 or mark is transmitted as a negative-going pulse. This enables the PCM transmission line to be transformer coupled, ie the line can be used to carry the bit stream and the dc power supply to the regenerators. Because a single error on a line will always produce either two consecutive negative or positive pulses, errors can be detected using a simple Bipolar Violation Detector.

A2-11 HDB3 Code. Since there is no separate clock line, the regenerators in a PCM line need to extract clock timing information from the incoming stream. If long runs of zeros occur, the clock extraction circuitry drifts off the system frequency. This is overcome by substituting preselected zeros with marks. HDB3 (High Density Bipolar 3) code is similar to AMI code but makes a substitution whenever there are four or more zeros. The substitution must obey two rules, as follows:

- 1 The bipolar violation inserted, in place of the fourth zero must be of opposite polarity to the previous bipolar violation.
- 2 The fourth zero has to be a mark of the same polarity as the immediately preceding mark, thus violating the AMI rule (ie bipolar violation is introduced).

A2-12 In some instances the first zero in the more than three consecutive zeros pattern, may have to be changed in order to satisfy both of the conditions in Paragraph A2-11. This extra mark is added when there would be an even number of marks between successive bipolar violations (ie to satisfy rules 1 and 2 in Paragraph A2-11 there must be an ODD number of marks between violations). Figure A2-2 illustrates these points in diagram form.

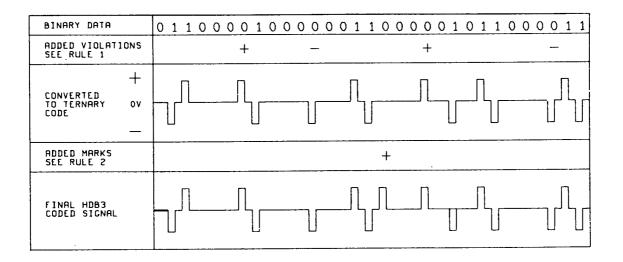
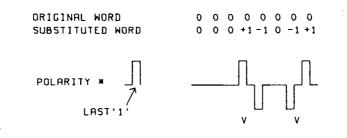


Figure A2-2 HDB3 Code Structure Diagram

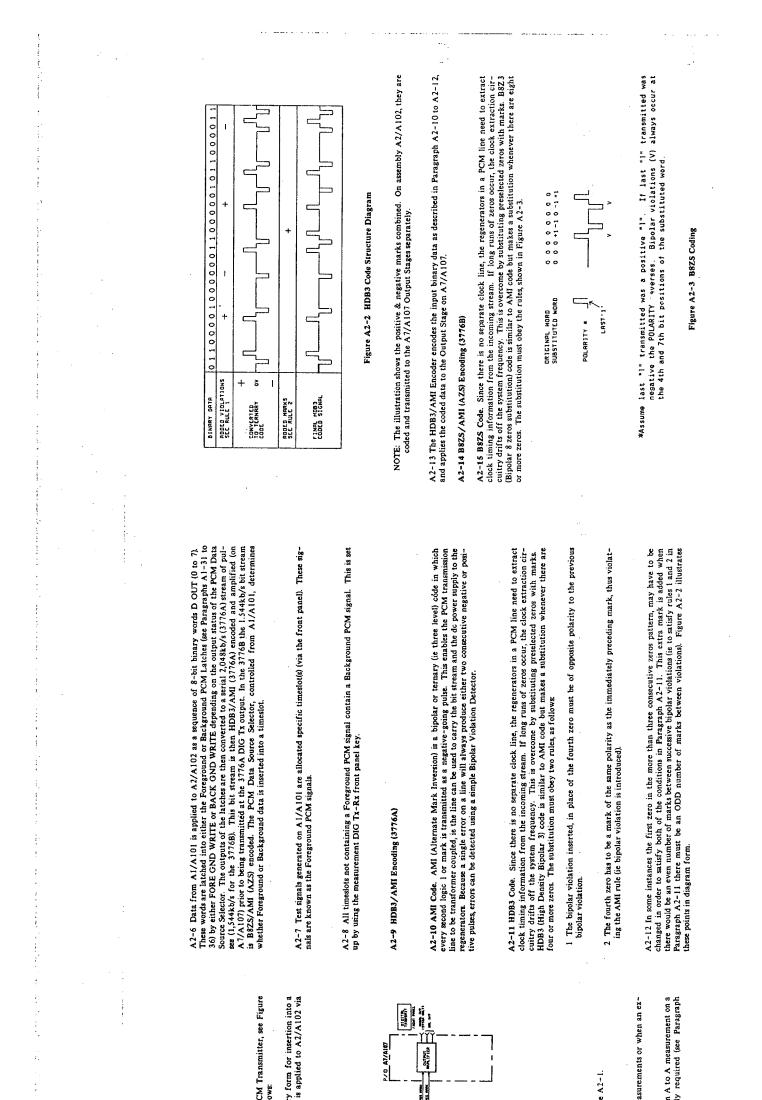
NOTE: The illustration shows the positive & negative marks combined. On assembly A2/A102, they are coded and transmitted to the A7/A107 Output Stages separately.


A2-13 The HDB3/AMI Encoder encodes the input binary data as described in Paragraph A2-10 to A2-12, and applies the coded data to the Output Stage on A7/A107.

1

A2-14 B8ZS/AMI (AZS) Encoding (3776B)

. .

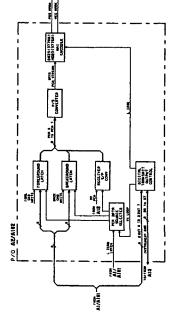

A2-15 B8ZS Code. Since there is no separate clock line, the regenerators in a PCM line need to extract clock timing information from the incoming stream. If long runs of zeros occur, the clock extraction circuitry drifts off the system frequency. This is overcome by substituting preselected zeros with marks. B8Z3 (Bipolar 8 zeros substitution) code is similar to AMI code but makes a substitution whenever there are eight or more zeros. The substitution must obey the rules, shown in Figure A2-3.

*Assume last "1" transmitted was a positive "1". If last "1" transmitted was negative the POLARITY meverses. Bipolar violations (V) always occur at the 4th and 7th bit positions of the substituted word.

. .

Figure A2-3 B8ZS Coding

Model 3776A/B


•

ASSEMBLY SERVICE SHEET A2/A102 DIGITAL PCM TRANSMITTER A2 (3776A)/A102 (3776B)

A2-1 INTRODUCTION

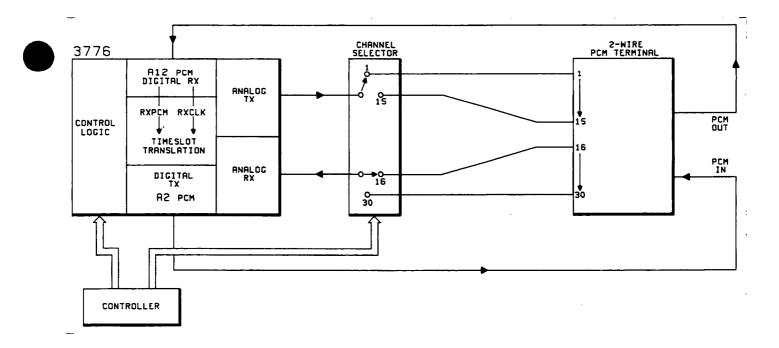
- A 2-2 A major portion of the circuitry on A 2/A 102 forms the 3776 Digital PCM Transmitter, see Figure A 2-1. The remaining circuitry forms two circuits and their functions are as follows:
- 1 Converts audio signals from an external generator or microphone to a binary timeslot in the 3776 synthesized PCM frame structure. The external audio is the rear panel AUXILIARY INPUT.
- 2 Provides clock signals for use on the A1/A101 and A2/A102 assemblies

A2-3 Digital PCM Transmitter

Figure A2-1 Digital PCM Transmitter

A2-4 The circuits forming the Digital PCM Transmitter are illustrated in Figure A2-1. A2-5 Data for transmission is applied to the transmitter from two sources,

- I Assembly AI/A101: when the 3776A is performing D to A or D to D me: ternal signal is applied to the AUXILIARY INPUT.
- 2 Assembly A12: when the 3776A is in the THRU MODE and performing an A to A measurement on a 2 or 4-wire system. In a 2-wire system timeslot translation is normally required (see Paragraph A2-17).

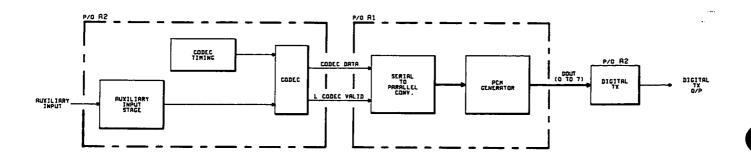

8-A2-0

A2-16 AZS: All Zero Suppression is used to eliminate the maximum PCM code level 0000 0000 in u-Law systems. With AZS, whenever this code occurs it is replaced by the next usable level down, ie 0000 0010 (the extreme right-hand digit is a signalling bit in bit stealing frames). This limits the length of runs of zeros and so simplifies clock extraction. Note that AZS is not a line code; the PCM code level 0000 0010 is a valid code level and can not be compensated for at the receive end. However, the error of 2 code level is only significant at very high signal levels.

A2-17 THRU MODE (see Paragraph A2-5)

A2-18 When operating in the PCM looped THRU MODE, PCM data (RX PCM) is applied to the transmitter from the Digital Receiver A12. RX PCM is a serial data stream, it is first converted to an 8 bit parallel form for insertion into a Timeslot and then latched into the Receiver PCM Latch on A2/A102. This data is converted to a serial 2,048kbit/s stream of pulses, HDB3/AMI encoded and amplified (on A7/A107) prior to being transmitted at the 3776A DIG Tx output. In the 3776B the bit rate is 1.544kb/s and is B8ZS/AMI encoded.

A2-19 Figure A2-4 illustrates how the 3776 is connected up for an A to A measurement on a 2-wire system using the Digital THRU and Timeslot Translation facility.


Figure A2-4 A-A Measurement

A2-20 The RX PCM signal, and the synchronising signal RX CLK, on A12, are looped back to the transmitter on A2/A102 with timeslot tanslation if required (see Paragraph A12-41).

A2-21 AUXILIARY INPUT (rear panel)

<u>A2-22</u> Under certain circumstances the 3776 operator may require to transmit an externally applied audio signal. This is achieved by applying the audio signal from a microphone or external generator, to the rear panel AUXILIARY INPUT.

A2-23 The audio signal is sampled in a codec at an 8kHz rate by the Codec Timing circuit. This sampled audio signal is then converted to a binary form by the codec for insertion into a timeslot in the PCM frame structure. This signal compressed by the codec is put into the required timeslot by the Bit Slice Processor on A1/A101. Timeslot selection is done manually via the front panel DIGITAL Tx TIMESLOT key or by HP-IB. The data from A1/A101 is transmitted as per Paragraph A2-6. Figure A2-5 illustrates the data flow of the AUXILIARY INPUT.

A2-24 Clock Selection

A2-25 The main clock signals required for the circuits on the A1/A101 and A2/A102 assemblies are provided by the Clock Selection circuit on A2/A102.

A2-26 CIRCUIT DESCRIPTION

A2-27 PCM Data Source Selector

A2-28 Foreground, Background or Receiver PCM data is inserted into a timeslot during a digital transmission. However only one source of PCM data can be selected. PCM data source selection is achieved using two 2 to 4 line decoders U303A and U303B. These decoders are enabled at a 2,048kb/s (3776A) or 1,544kb/s (3776B) rate by L PCM CLK. When enabled, the decoders select the appropriate PCM data source by enabling the outputs of the appropriate PCM Latch. The enable signals L FORE READ, L BACK READ and L RX READ are produced by decoding L ZERO LATCH and RX LOOP.

L ZERO LATCH	RX LOOP	L PCM CLK	Description
0 1 1	DON'T CARE 0 1	لخالخا	Foreground PCM Enabled Background PCM Enabled Receiver PCM Enabled

Table A2-1 Source Selector

A2-29 Foreground and Background PCM Latches

A2-30 Foreground and Background Latches U404 and U405 store the PCM Frame data D OUT (0 to 7) from the Bit Slice Processor on A1/A101. The timing of when to store data in U404 is determined by FORE GND WRITE and for U405 by BACK GND WRITE from A1/A101.

A2-31 Receiver Serial to Parallel Converter and Receiver PCM Latch

A2-32 When the 3776A is in the PCM looped THRU MODE for an A to A measurement, digitally received data on A12 (RX PCM) is applied to the Receiver Serial to Parallel Converter. This RX PCM data is converted to a parallel form for insertion into a timeslot in the PCM Frame Structure. The parallel data is allocated its timeslot by the timing of L RX LOAD, L RX READ from U303B and the L RX CLK signal together with RX TC SYNC from A11/A111 to A1/A101. These signals determine when the parallel data is stored in U406.

A2-33 Parallel to Serial Converter

A2-34 Each set of 8 bits (timeslot word) from the Foreground, Background and Receiver PCM Latches is converted to a serial format by U306. This serial data is then encoded before transmission via the DIG Tx output. The L PCM OUT LOAD signal routed via flip flop U305B latches the PCM (0 to 7) data into U306 at an 8kHz rate. The data stored in U306 is serially shifted to the HDB3/AMI Encoder (3776A) or B8ZS/AMI(AZS) (3776B) by L PCM CLK at a 2,048kHz (3776A) or 1,544kHz (3776B) rate.

A2-35 HDB3/AMI Encoder (3776A)

A2-36 This circuit implements either AMI or HDB3 encoding, see Paragraphs A2-9 to 13, depending on the level of L CODE. When L CODE is high the encoder is AMI encoding when low it HDB3 encodes.

A2-37 When the circuit is AMI encoding the logic '1' levels or marks in the input DATA BIT STREAM appear at the output as alternate POS and NEG MARKS.

A2-38 When the circuit is HDB3 encoding the circuit can be split in two sections;

1 four zeros detector and substitute "1000" generator (inserts a bipolar violation in place of fourth zero)

2 circuitry implementing HDB3 and AMI encoding

A2-39 The flip flops U309A to U309D and NOR gate U310B detect the four zeros and insert the bipolar violation. The rest of the circuitry implements the rules outlined in Paragraphs A2-9 to 13.

A2-40 AUXILIARY INPUT - Auxiliary Amplifier, Codec and Codec Timing

A2-41 When an external balanced audio signal is applied via the 600ohm AUXILI INPUT, it is converted to a single ended form by a unity gain amplifier comprising U312A to U312C. The output of U312C splits into two signal paths; to the Codec for digital transmission and to U312D for analog transmission of AUX SIG via A3.

A2-42 The audio signal in the digital path is sampled at an 8kHz rate by CODEC SYNC, from the Codec Timing circuit (see Figure A2-6), to enable audio signal samples to be synchronised to the PCM System. The sampled signal decoded by codec U212 is applied to A1/A101 as a binary sequence along with L CODEC VALID which latches the binary sequence into a register on A1/A101.

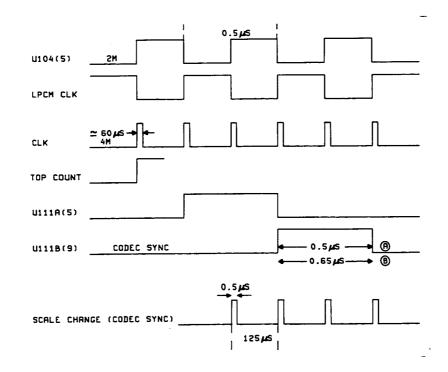


Figure A2-6 Codec Timing Diagram

A2-43 Digital Transmit Output Control

A2-44 This circuit receives data from A1/A101 and also transmits/receives data to/from the processor on A13 to control the operation of the circuits on Assembly A2/A102. The Handshake logic between the A2/A102 and A13 assemblies is contained on A1/A101 (ADDR 3D). When using Signature Analysis (SA) to troubleshoot A2/A102, the END OF MF signal at U304(12) is used as the SA start/stop control signal.

A2-45 Clock Selection

A2-46 This circuit comprising U203, U104 and monostable U401 provides the clock signals for Assemblies A1/A101 and A2/A102. Most clocks run at 2,048kHz (3776A) or 1.544kHz (3776B) rate with the exception of CLK which runs at 4,096 (3776A) or 3,088kHz (3776B). These clocks are derived from either the P CLK from A13; the DIG TX EXT CLK from the rear panel or the N CLK RX from A12. Selection is controlled from the Digital Transmit Output Control.

A2-47 CLK is produced by adding a delay to one of the signal paths to the Exclusive OR gate U205A (see Figure A2-7). By running at twice the other clock rates CLK enables the Program Counter on A1/A101 to provide enough addresses (256) in 125us to perform the A1/A101 software routine. CLK also enables all the Bit Slice Processor instruction to be carried out over one period of CLK because the narrow pulses disable the Bit Slices for only 60ns.

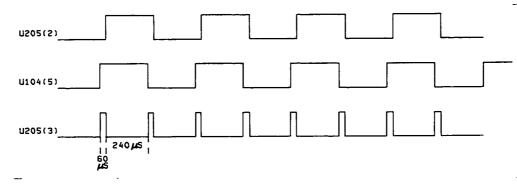


Figure A2-7 CLK Generation

A2-48 If there is loss of clock, monostable U401 triggers, producing INHIBIT and L INHIBIT. The INHIBIT signal fed via U402(4) informs the processor on A13 of the loss of clock signal while the L INHIBIT disables the output of the HDB3/AMI Encoder (3776A or the B875/AMI (ASZ) Encoder (3776B) at U409 (5,9), forcing zero on to the output of the PCM transmitter.

A2-49 Loop Timing

A2-50 The clock recovery circuits in PCM systems are checked by the Loop Timing circuit. This circuit checks to see that the system clock extracted from the received PCM stream is synchronised with the clock in the 3776 transmitted PCM stream. The 3776 gives a pictorial indication of Loop Timing on the front panel RESULTS display. When the received clock is at the same frequency as the 3776 transmitted clock a stationary pattern is obtained. When the clock frequencies are different a rotating pattern is obtained.

A2-51 The Loop Timing circuit on A2/A102 (comprising two counters and a Latch) compares the clocks L PCM CLK and RX CLK. When the clocks are synchronised the same bit pattern (Loop 0 to Loop 3) is continuously obtained at the output of the Loop Timing circuit. This pattern is fed back to the A13 assembly and finally produces a stationary pattern on the front panel RESULTS display.

A2-52 Digital transmitter troubleshooting information is contained in GENERAL SERVICE SHEET G5.

CODEC GAIN ADJUSTMENT

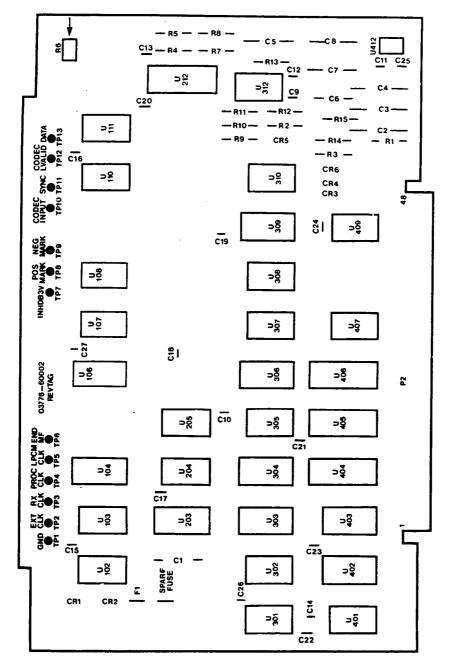
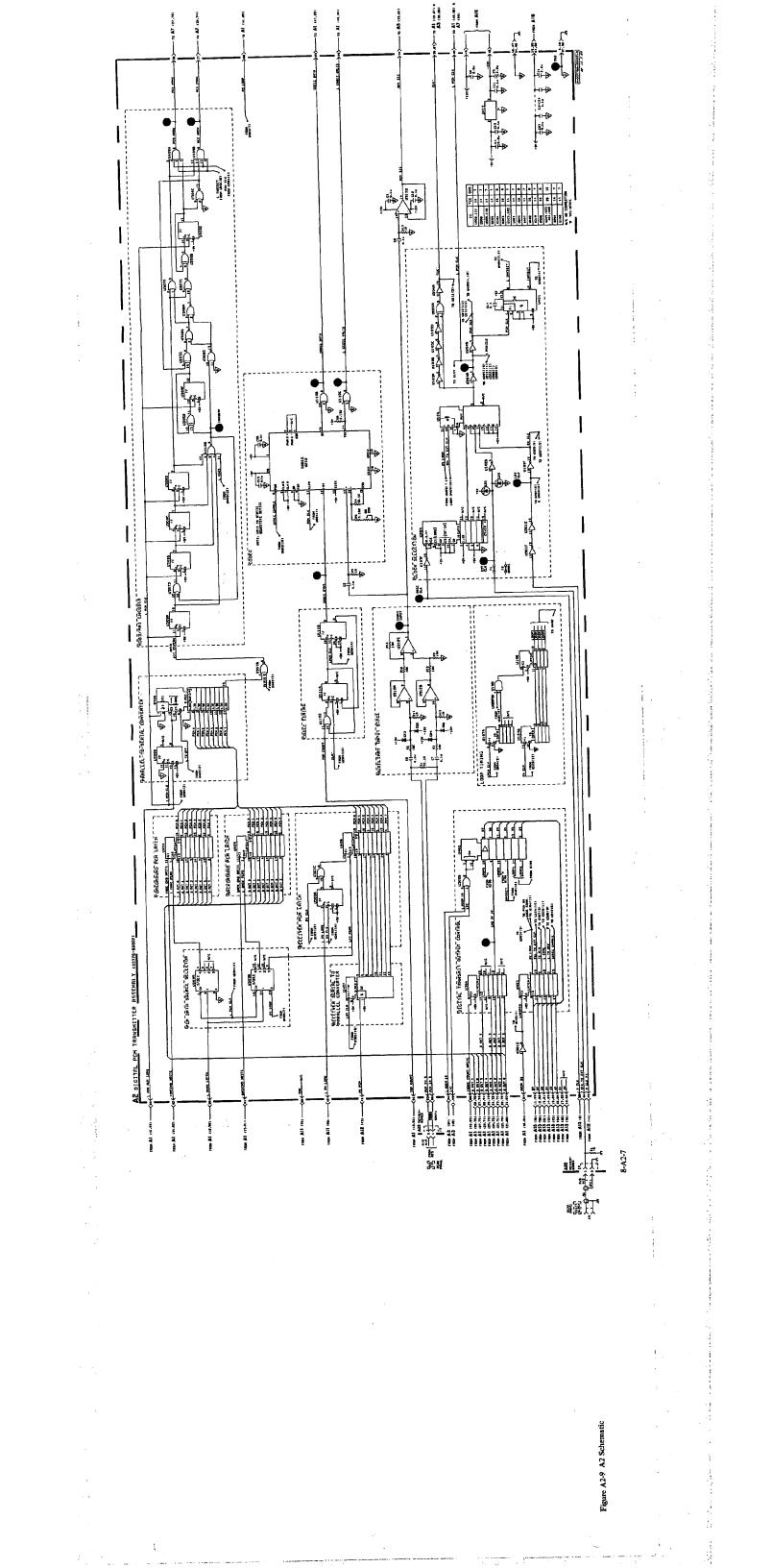
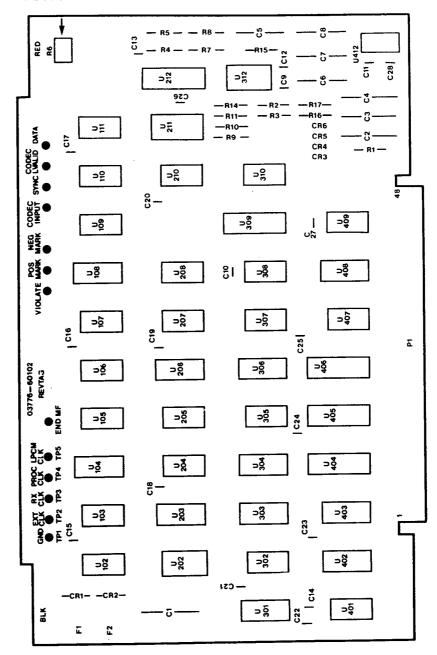
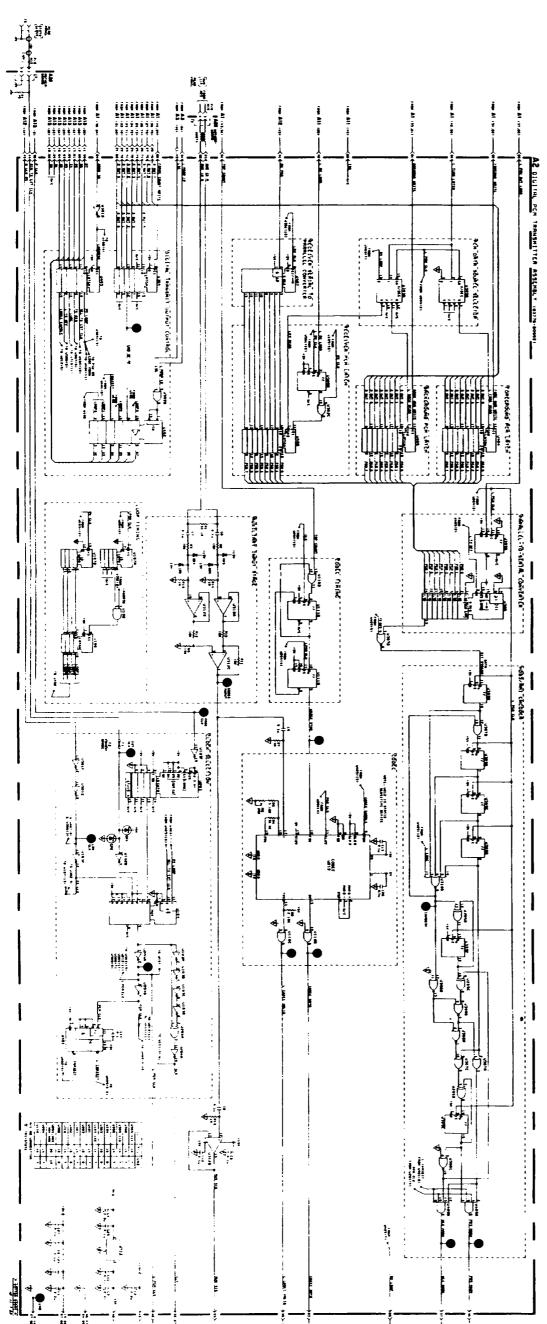




Figure A2-8 A2 Component Location



CODEC GAIN ADJUSTMENT

·

Figure A2-10 A102 Component Location

8-A 2-7

Figure A2-9 A2 Schematic

CODEC GAIN ADJUSTMENT

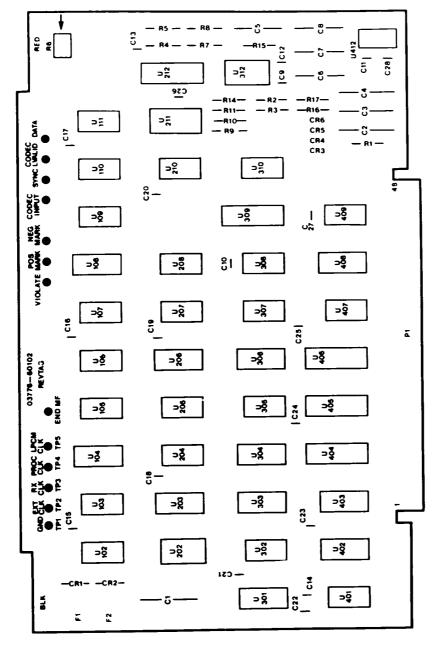
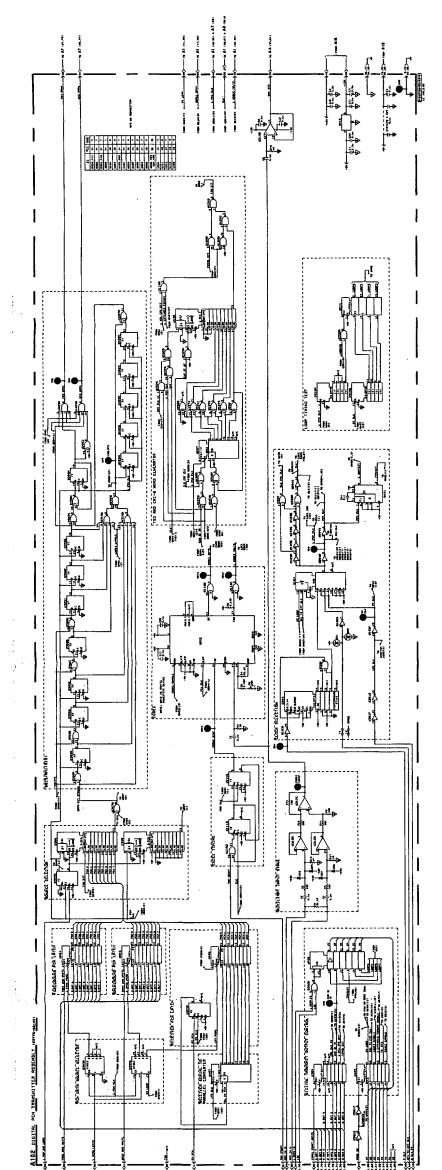
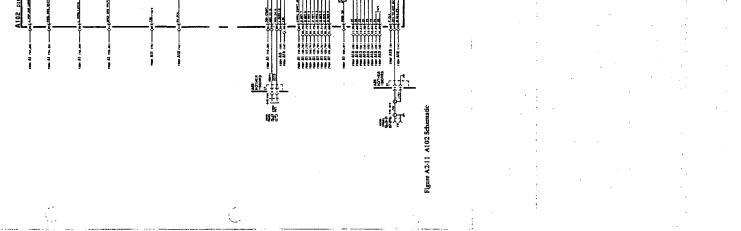




Figure A2-10 A102 Component Location

8-A2-9

ASSEMBLY SERVICE SHEET A3 ANALOG TRANSMITTER

A3-1 INTRODUCTION

A3-2 When operating the 3776 in the ANALOG TRANSMIT mode, the level and frequency parameters for transmission are keyed in via the front panel. The selected frequencies synthesized as 12 bit binary words on A1/A101 are converted to an analog form on A3, prior to transmission. The required signal level is determined by the gain and attenuator stages on A3 and by the digital attenuators on A1/A101 and A2/A102. Figure A3-1 illustrates the main circuit elements on A3.

ił

11

11

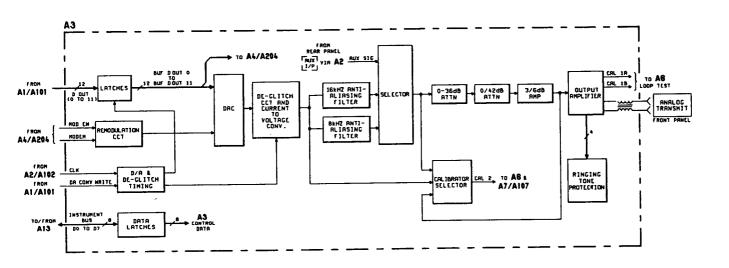


Figure A3-1 A3 Block Diagram

A 3-3 The binary data D OUT 0 to D OUT 11 from A1/A101 is stored in latches on A3 prior to analog conversion by a DAC (digital to analog converter). The outputs of the Latches are also applied to A4/A204 during self-test.

A3-4 Analog signals from the DAC are applied to 3 paths via a De-glitch circuit and a Current to Voltage Converter (see Figure A3-1). The De-glitch circuit open-circuits the DAC output path during changes in the binary input data. This prevents transients from corrupting the analog output waveform. De-glitch timing is controlled from A1/A101 by D/A CONV WRITE.

A 3-5 Analog waveforms from the DAC are applied to the 16kHz and 8kHz Anti-aliasing Filters and to the Calibrator Selector. The 16kHz Anti-aliasing Filter has a flat response to 4kHz and then falls off to attenuate by 60dB aliasing signals around 16kHz. The 8kHz Anti-aliasing Filter is flat to 1.6kHz and rejects aliasing signals around 8kHz. The Calibration Selector path is used during the 3776 Calibrator routines. A Phase Correction circuit is inserted in the 16kHz Anti-aliasing Filter path to correct phase distortion.

A3-6 Both Anti-aliasing filters and the AUX SIG from the rear panel AUX I/P are applied to the Selector on the main signal path. Path selection is controlled by the processor on A13 via the Data Latches. The output of the Selector is applied to the transmitter attenuator and gain stages and to the Calibrator Selector.

A3-7 Attenuator and gain stages (0-36dB and 0/42dB Attenuators and the 3/6dB Amplifier) are controlled by the processor on A13 via the Data Latches. The attenuation and gains of these circuits are accurately determined during the 3776 Calibrator routine.

A3-8 The Selector and 3/6dB Amplifier outputs are applied to the Calibrator Selector and then routed to A8 during the 3776 Calibration routine.

A3-9 The Output Amplifier provides analog transmit output buffering and also provides either a balanced or single-ended output termination.

A3-10 The ANALOG TRANSMIT output is protected against the improper application of a ringing tone. When this occurs the Output Protection circuit operates relays within the Output Amplifier which open circuit the ANALOG TRANSMIT output paths.

A3-11 REMOD Mode

A3-12 The 3776 operates in the REMOD mode during Group Delay (3776A) and Envelope Delay Distortion (3776B) measurements (see Figure A3-2). The envelope from the GO path is demodulated in the receiver of the SLAVE 3776 then remodulated on A3 (see Figure A3-1) onto a new carrier prior to retransmission along the RETURN path.

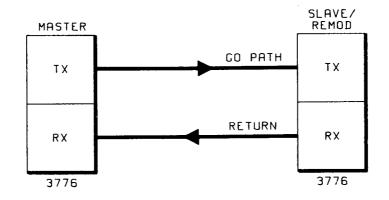


Figure A3-2 Group Delay/Envelope Delay Distortion Measurement

A3-13 CIRCUIT DESCRIPTION

A3-14 D/A Converter

A3-15 When D/A CONV WRITE goes low, counter U43 is incremented from its preloaded value (6) by CLK from A2. When U43(11) goes high the de-glitch FET Q31 goes high impedance (drain to source), the Data Latches U53 and U54 are also enabled. When the change in level at U43(12) is low to high (\oint) the binary data D OUT 0 to D OUT 11 is latched into U53 and U54 and converted to an analog form by DAC U33. After the DAC has settled U43(11) goes low and removes the enable signal from the Data Latches and also switches-on FET Q31. The current drive from U33 is now converted to a voltage at TP11 by U34/C40.

A3-16 8kHz, 16kHz Anti-aliasing Filters and Phase Correction

A3-17 These circuits are active networks with complex feedback loops. If either anti-aliasing filter is suspected of being faulty, they may be checked out by removing test links TL1 to TL4 and by following the appropriate section in GENERAL SERVICE SHEET G7.

A3-18 Selector & Calibration Selector

A3-19 These two circuit elements each comprises three similar switch networks which comprise a FET switch and op amp driver. The op amps are controlled by path selection data from Data Latch U31. The output of the Calibration Selector has FETs Q19/Q24 in the CAL2 path. When Q19/Q24 are high impedance (drain to source), CAL2 is isolated from A6 and A7/A107.

1

A3-20 0 -> 36dB Attenuator, 0/42dB Attenuator and 3/6dB Amplifier

A3-21 The resistor networks which make up the 0 ->36dB and 0/42dB Attenuators are all switched to GND by similar switching networks. When 6dB of attenuation is selected, L 6dB ATT from U32 allows Q1 to saturate and 3V is applied to Q9 via R3C which in turn saturates Q9; R18 is effectively shorted to GND. The gain of U14 is similarly switched between 3 and 6dB by the signal H 3dB to the base of Q5. The amount of A3 autoranging is shown by the LEDs listed in Table A3-1.

	0 – > 36dB Attenuator					0/42dB Attenuator		3/6dB Amplifier		
LEDs	6dB	12dB	18dB	24dB	30dB	36dB	0dB	42dB	3dB	6dB
CR14	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	ON
CR15	ON	ON .	ON	OFF	OFF	OFF	OFF	OFF	OFF	OFF
CR16	OFF	ON	ON	OFF	ON	ON	OFF	OFF	OFF	OFF
CR17	OFF	OFF	ON	OFF	OFF	ON	OFF	OFF	OFF	OFF
CR18	OFF	OFF	OFF	ON	ON	ON	OFF	OFF	OFF	OFF
CR19	OFF	OFF	OFF	OFF	OFF	OFF	OFF	ON	OFF	OFF

Table A3-1 Autoranging LED Indicators

A3-22 Output Amplifier

A3-23 The Output Amplifier sets the ANALOG TRANSMIT output terminations and provides output buffering. In the BALance 6000hm termination mode H ATX DCNCT, L BAL OP and L 600 TERM are all low. This causes Q15 and Q16 to short circuit, which allows the signal at TP14 to be routed via TP15 and TP16 and K4A/B to produce a 6000hm BALanced signal at the front panel ANALOG TRANSMIT output. In the unbalanced mode Q15 is open circuit and the signal at TP14 is applied to the transmitter output via TP16. The other transmitter output is GND via K3B.

A3-24 Ringing Tone Protection and Relays

A3-25 Four points at the ANALOG TRANSMIT output are monitored for ringing tone. If a ringing tone is detected U21 is triggered which causes the output of U55 (V RELAY) to crash. This causes the relays to set to their normally closed (NC) position which isolates the ANALOG TRANSMIT output.

A3-26 Remodulation Mode

A3-27 The Remodulation circuit comprising U21/U22 and Q29 is enabled by applying MOD EN to the source of Q29. The demodulated envelope from A4/A204 is then fed to U33(6, 8) to modulate the current output of the DAC (see Paragraph A3-12).

A3-28 LEDs

A3-29 The LEDs are located at the output of the Data Latches to give an indication of the A3 set-up conditions.

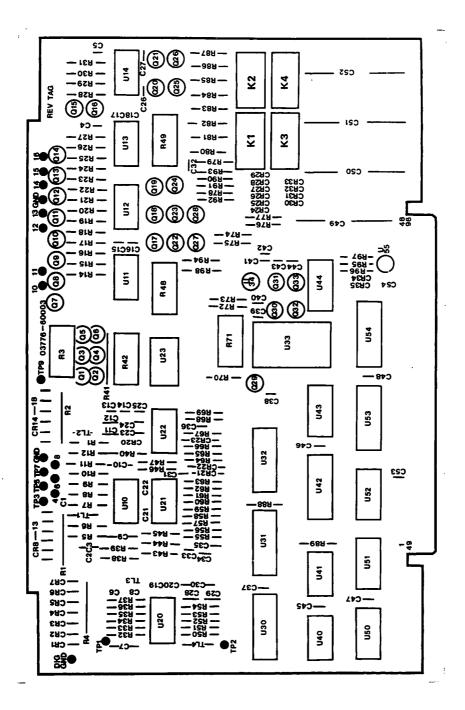
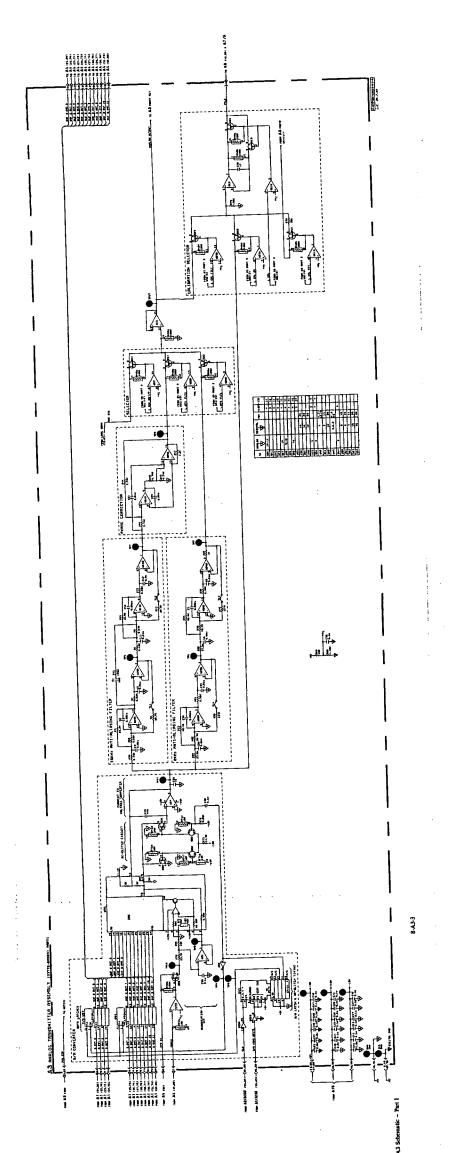



Figure A3-3 A3 Component Location

8-A3-2

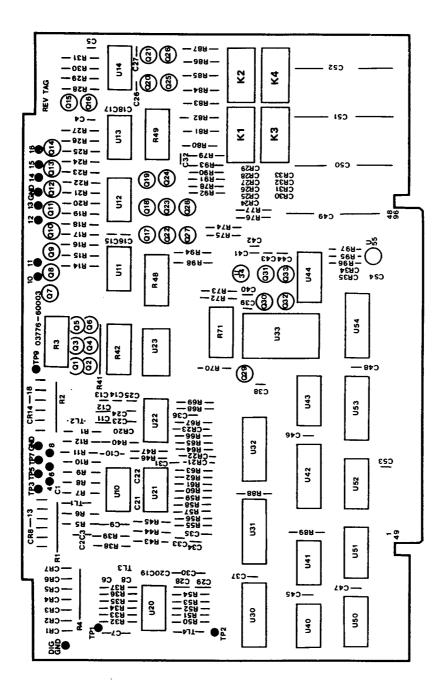


Figure A3-3 A3 Component Location

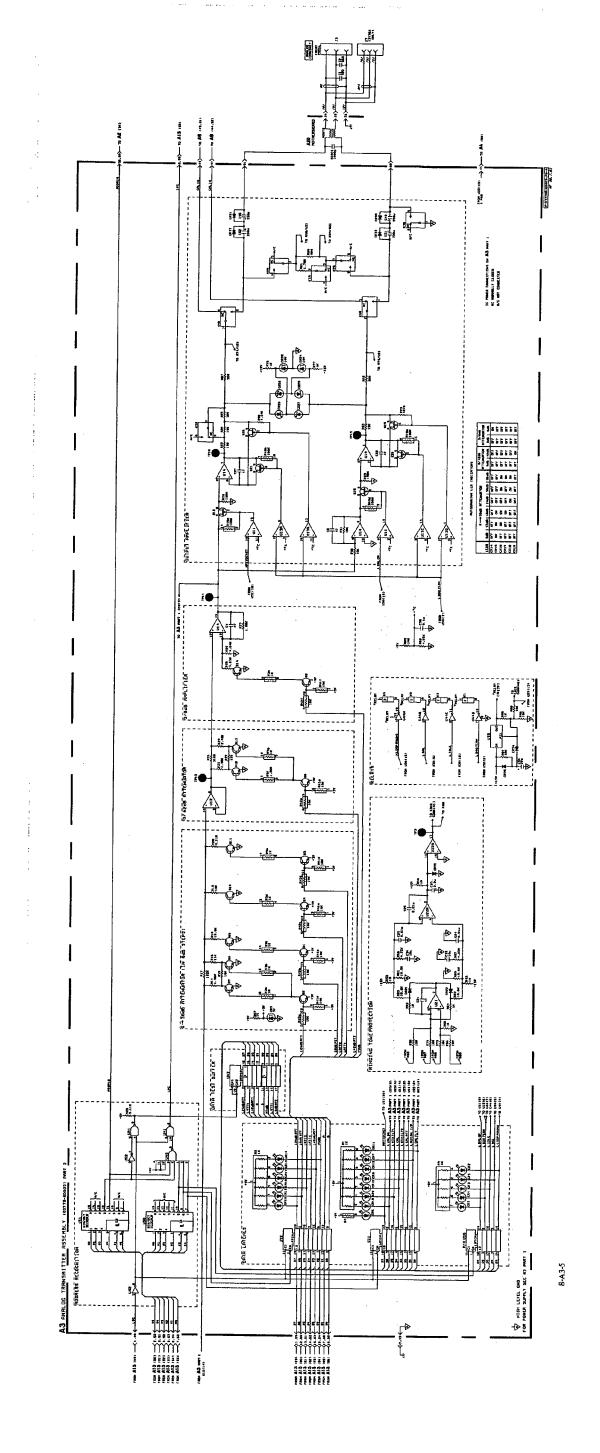
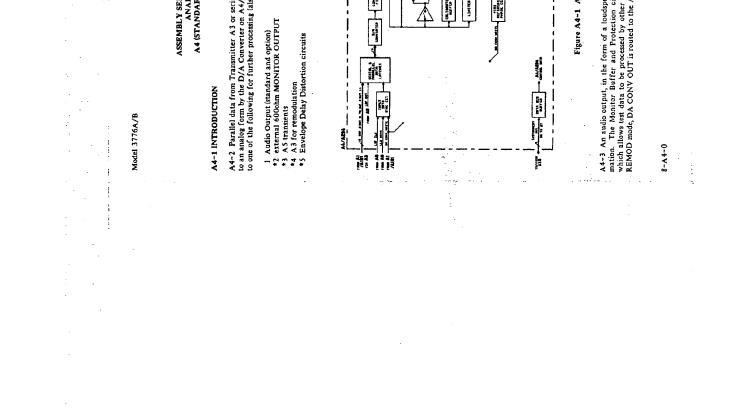
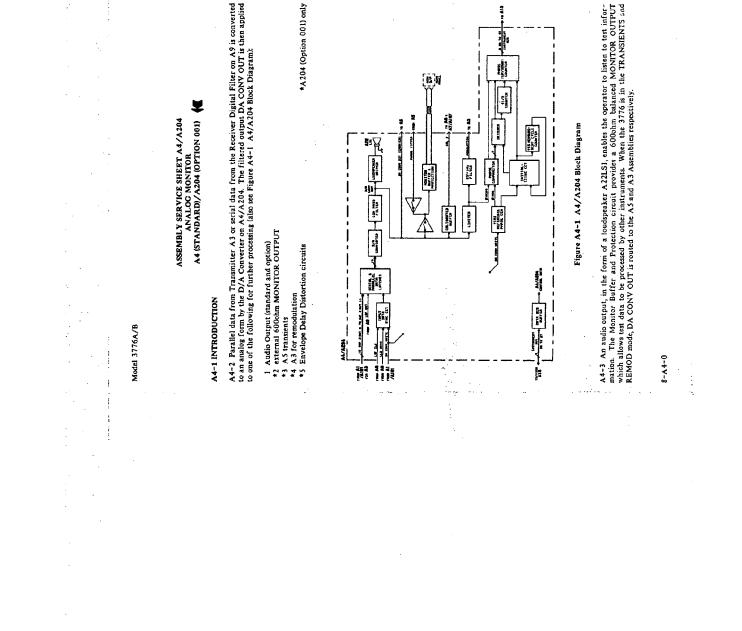
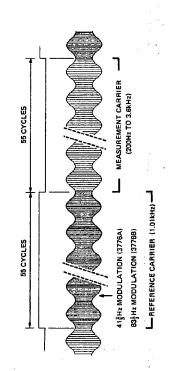




Figure A3-5 A3 Schematic - Part 2

• ;



A4-4 DA CONV OUT is also utilised during the calibration routine, producing CAL2 which is then applied to A6.

A4-5 Envelope Delay Distortion/Absolute Delay Distortion

A4-6 Envelope Delay Distortion (EDD) is measured using the waveform as illustrated in Figure A4-2. The two main configurations for measuring EDD are illustrated in Figure A4-3. They are the loop back and end to end configurations. The end to end mode uses the REMOD facility described in the following paragraphs. During the EDD measurement the processor performs an attenuation distortion measurement on graphs.

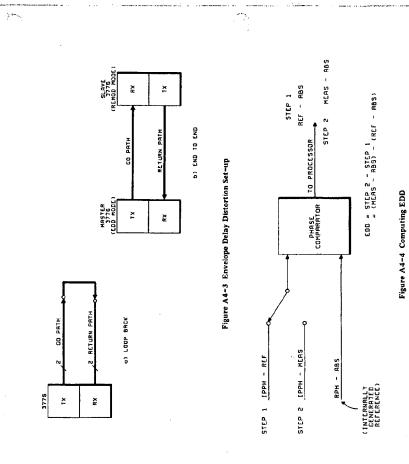
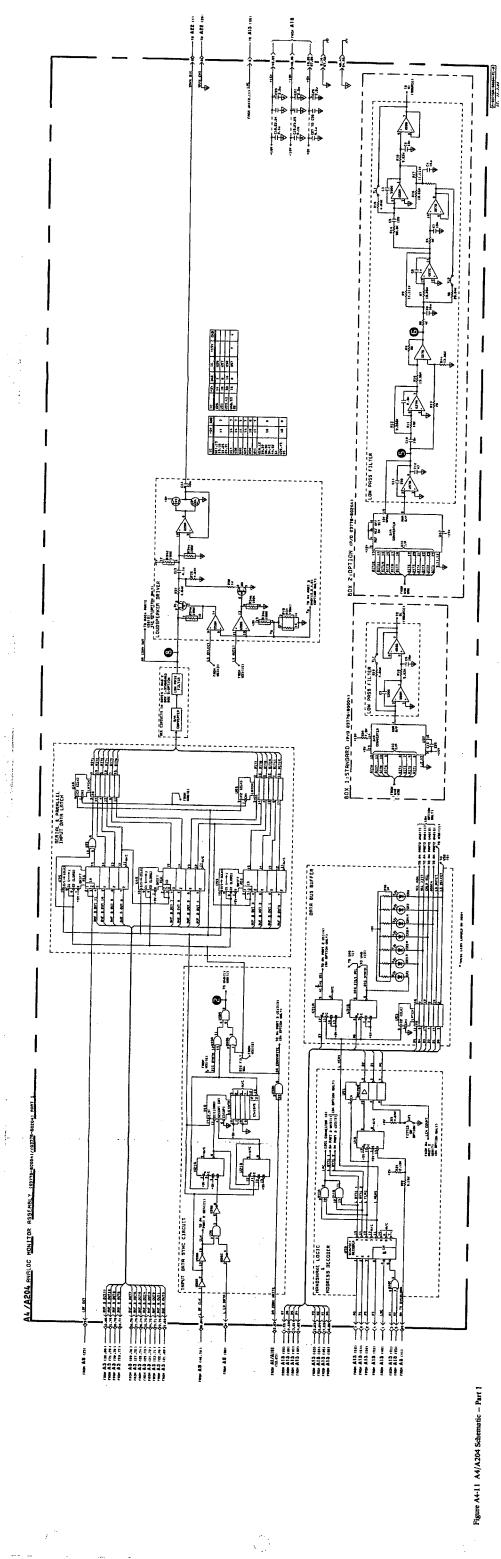


Figure A4-2 Envelope Delay Distortion Waveform

61V ----


A4-7 In Envelope Delay Distortion measurements, the Master 3776 (in the EDD mode) applies a 83 1/3Hz (37768) or 41 2/3Hz (3776A) mobulated carrier (200Hz to 36AHz) signal to a test channel. Shave (in the REMOD mode) 3776 recevers the 83 1/3Hz or 41 2/3Hz envelope and translutates it on to a 1.10KHz reference carrier which is then transmitted back to the Master 3776, where the phase of the 83 1/3Hz or 41 2/3Hz envelope back to the 0.3Hz or 41 2/3Hz or 41 2/3Hz envelope and translutates it on to a 1.10KHz or reference carrier which is then transmitted back to the Master 3776, where the phase of the 83 1/3Hz or the 31 2/3Hz envelope back against a reference and the Envelope Delay Distortion computed. Consider the 83 1/3Hz envelope for the remainder of the description.

A4-8 Two measurement steps are necessary in computing the Envelope Delay Distortion. First 55 cycles of the 83 1/3Hz modulated 1.01kHz reference signal IP PH-REF are applied around the loop of Figure A4-3B and the phase 0(the 83 1/3Hz envelope compared against an absolute reference R PH-ARS (a reference signal produced in the 371/3Hz envelope compared against an absolute reference R PH-ARS (a reference signal produced in the 371/3Hz envelope compared against an absolute reference 1/3Hz modulated measurement carrier IP PH-MEAS (in the range 200Hz to 3.6kHz) around the loop as described in paragraph A4-7. Both the reference and measurement phases are areaged over 55 cycles to overcome any pragraph A4-7. Both the reference and measurement phases are areaged over 55 cycles to overcome any pragraph A4-7. Both the reference and measurement phases are areaged over 55 cycles to overcome any pragraph A4-7. Both the reference and measurement phases are areaged over 55 cycles to overcome any pragraph A4-7. Both the reference and measurement phases are areaged over 55 cycles to overcome any inter in the activity frequencies. The IP PH-MEAS is compared against the absolute reference R PH-ABS. The Envelope Delay Distortion (EDD) is computed as illustrated in Figure A4-4.

A4-9 The Envelope Delay Distortion (EDD) circuits which form a major part of the A204 option assembly are described in the following paragraphs.

A4-10 The 83 1/3Hz envelope is applied to A204 (from A9) as a serial digital data stream L DF OUT. This is converted to a parallel form then to an analog form by the D/A Converter. The filtered output of the D/A Converter DA CONV OUT is then applied to the input Limiter of the EDD circuits.

1 1 1 1 . à t

8-A4-7

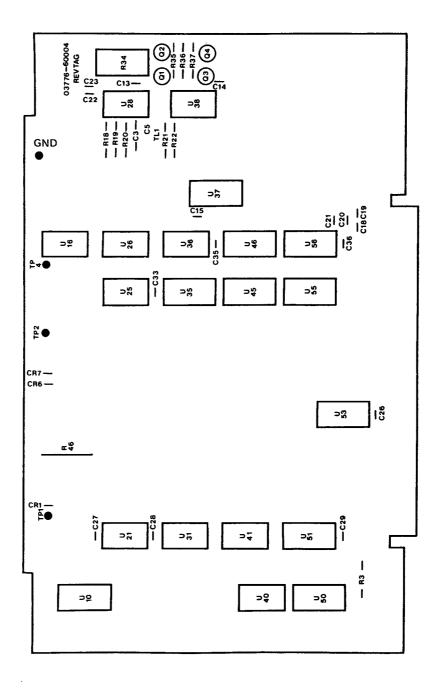
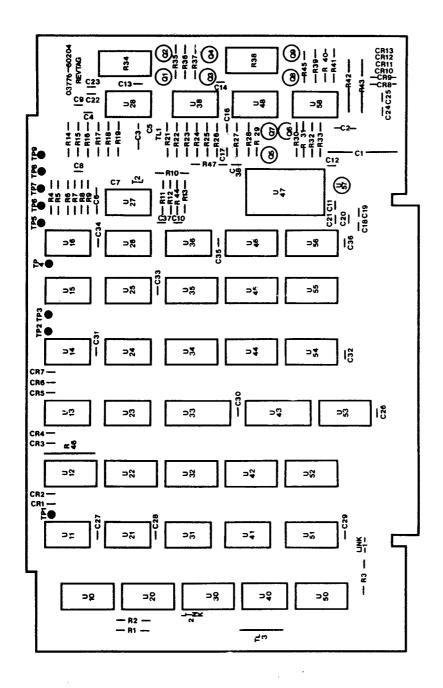



Figure A4-9 A4 Component Location

ł

Figure A4-10 A204 Component Location

1 4 .

.

.

.

.

,

.

.

8-A4-8 LOCATED INSIDE FOLD { Figure A4-9 A4 Component Location Figure A4-10 A204 Component Location

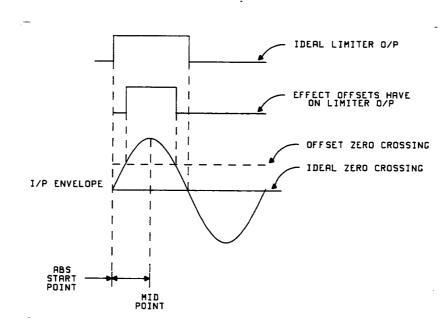


Figure A4-5 Limiter Output Affected by dc Offset

A4-11 The Limiter applies TTL levels to the Phase Comparator, changes in level occur each time there is a zero crossing of DA CONV OUT. The Phase Comparator stores the IP PH and R PH signals from the Limiter and Reference Phase Generator respectively. The Decoder decodes IP PH and R PH according to the timing relationship between the two signals (see Paragraph A4-13). Due to dc off-sets, the zero crossings of the DA CONV OUT may produce IP PH with a mark space ratio which may vary from cycle to cycle (see Figure A4-5). This would insert errors into the EDD measurement if the rising edges of IP PH and R PH were used to measure EDD. This is overcome by comparing the leading edge of R PH to the midpoint of the IP PH mark (positive peak of DA CONV OUT) see Figure A4-6. Although the mark space ratio of IP PH changes, the timing between the leading edge of R PH and the midpoint of IP PH remains constant (see Figure A4-6). A further complication is that jitter may affect the IP PH signal. This is overcome by averaging the EDD measurement over 55 cycles of the 83 1/3Hz envelope in both the reference and measurement periods (see Figure A4-2).

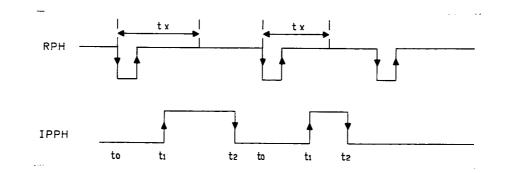


Figure A4-6 Timing Between R PH and IP PH

Service

A4-12 Three cycles with jitter on IP PH are illustrated in Figure A4-7 together with the timing information between the leading edge of R PH and the midpoint of IP PH. Note that in Figure A4-7 the timing does vary.

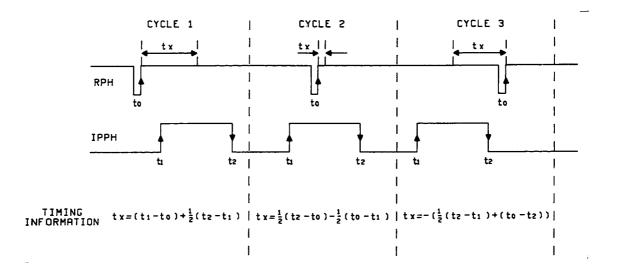


Figure A4-7 Jitter and IP PH

A4-13 The timing information (t0, t1 and t2) shown in Figure A4-7 is decoded from R PH and IP PH by the Decoder. This information allows the Phase Counter to be incremented up or down over each cycle by either L CLK or 1/2 L CLK as per the decoder output instructions (see Figure A4-8). After 55 cycles the Measurement Cycle Counter flags the Initialising circuit which then instructs the Phase Counter to stop counting and loads the count into the processor on A13. On A13 the Count is scaled: converted to ms for display on the front panel.

A4-14 DESCRIPTION

A4-15 Serial and Parallel Input Data Latch

A4-16 Data may be applied to A4/A204 from two sources:

- 1 serial MEASUREMENT and REFERENCE (IP PH) data L DF OUT (comprising 24 bits) from A9.
- 2 parallel self-test data BUF D OUT 0 to BUF D OUT 11 from A1/A101 via A3.

A4-17 When serial data is selected (DIG FILT SEL is high), the Serial & Parallel Input Data Latch, clocked by inverted L DF CLK, serially shifts L DF OUT through U35, U45 and U55. As only the 12 most significant bits (MSB) of the 24 bits of L DF OUT are converted to an analog form, the Input Data Sync Circuit is synchronised to L DF OUT.

A4-18 Prior to the 24 bits of L DF OUT being applied to A4/A204, L LD DATA allows the counter circuit of the Input Data Sync to be incremented by L DF CLK. After 24 clock pulses the Input Data Sync Circuit produces a clock pulse at TP2 which latches the 12 MSB of the serially shifted L DF OUT signal into U46 and U56. The outputs of these latches, BIT 1 to BIT 12, are then converted to an analog form by a D/A Converter. A4-19 When parallel data BUF D OUT 0 to BUF D OUT 11 is latched into the Serial & Parallel Input Data. Latches U35, U45 and U55 by L DF CLK, DIG FILT SEL is low. The data at the output of these latches are latched into U46 and U56 by a clock pulse at TP2. This pulse is generated when DIG SYNTH SEL from the Data Bus Buffer and DA CONV WRITE are true.

A4-20 The Handshake Logic and Address Decoder is the interface between the A4/A204 and A13 Assemblies. A list of the control signals together with a brief description follow:

LAC; part of handshake protocol (see Assembly Service Sheet A13)

- L BYTE 1 & at the end of an envelope delay measurement these signals allow L BYTE 2; the processor to read back the results of the measurement in the form of 2 X 8 bit words ie they enable the Output Buffers U33 and U43 in turn.
- L FLAG; produced when the processor interrogates certain status condition on A4/A204 via U51:-LEN COUNT: indicates status of envelope delay measurement. Low: indicates measurement in progress. High: measurement completed. When processor receives this signal L BYTE 1 and L BYTE 2 are applied to A4/A204 and allow the envelope delay measurement result to be read back to the processor.
- LK1; indicates whether the assembly is A4 or A204 (LK1 fitted for option A204)
- L MEAS; loads A4/A204 control data from the D0 to D7 instrument bus into U53, the Input Data Latch.

ANTx OVERLOAD; flags the processor when a ringing tone has been applied to the ANALOG TRANSMIT output of the 3776.

A4-21 The LEDs at the output of U53 are illuminated when the control signals are NOT activated (ie all signals are active high).

A4-22 D/A Converter and Lowpass Filter

A4-23 In the standard A4 Assembly only BIT 1 to BIT 8 are converted to an analog form (see BOX 1 on schematic). The output of D/A Converter U37 is then filtered.

A4-24 In the optional A204 Assembly BIT 1 to BIT 11 are converted to an analog form (see Box 2 in schematic), then filtered. Test links enable the filter to be checked out when suspected of being faulty (see GENERAL SERVICE SHEET G9).

A4-25 The Loudspeaker Driver is enabled by LS SELECT from U53. A further LS QUIET signal may be applied to this circuit to reduce the Loudspeaker output level.

A4-26 The filtered output DA CONV OUT of the D/A Converter at TP8 is applied to five paths:

- 1 via a Limiter to the envelope delay circuits (TP3)
- 2 via a Limiter to the 83 1/3Hz Filter,
- 3 DA CONV OUT routed as (CARRIER) to A5,
- 4 Calibration path via Calibration Buffer,
- 5 Monitor Output Path to rear panel output.

A4-27 The Limiter common to the envelope delay and 83 1/3Hz Filter paths detects zero crossings of DA CONV OUT and produces TTL signals.

A4-28 The envelope delay circuits at TP3 have DA CONV OUT applied to TP3 at all times.

A4-29 The REMOD front panel switch controls the signal flow into the 83 1/3Hz Filter. When REMOD is pressed MODEM is produced at U53(5) which allows Q6 to saturate via U48D.

A4-30 When the A5 option 001 Assembly is fitted there is a direct path between the DA CONV OUT (CARRIER) and the A5 Assembly.

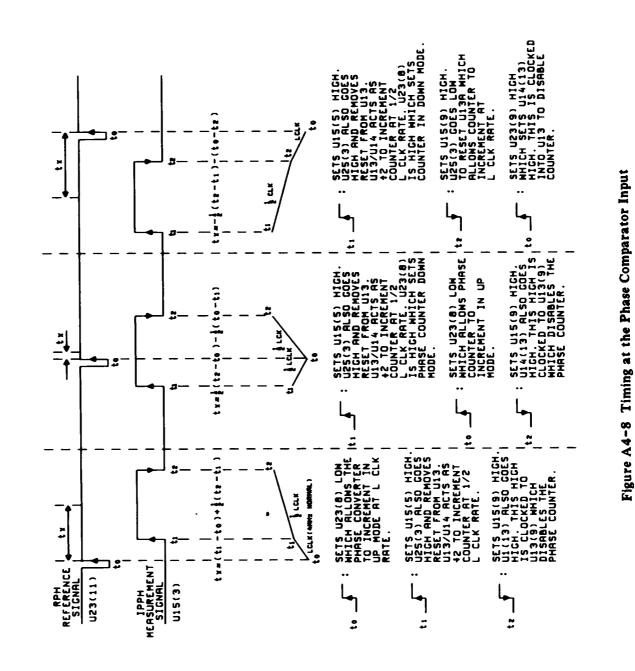
A4-31 During self-test routines CAL 2 SEL enables the Calibration Buffer - CAL 2 is applied to A6.

A4-32 DA CONV OUT is applied to the rear panel MONITOR OUTPUT via the Monitor Output Buffer. This buffer has a differential output which is protected against overloads by the Monitor Output Protection circuit.

A4-33 When option 001 is fitted the Phase Jitter output from A5 may be routed to the rear panel MONITOR OUTPUT via Q7. FET Q5 isolates the DA CONV OUT output at TP8 during the Phase Jitter measurement.

A4-34 Envelope Delay Measurement Circuits

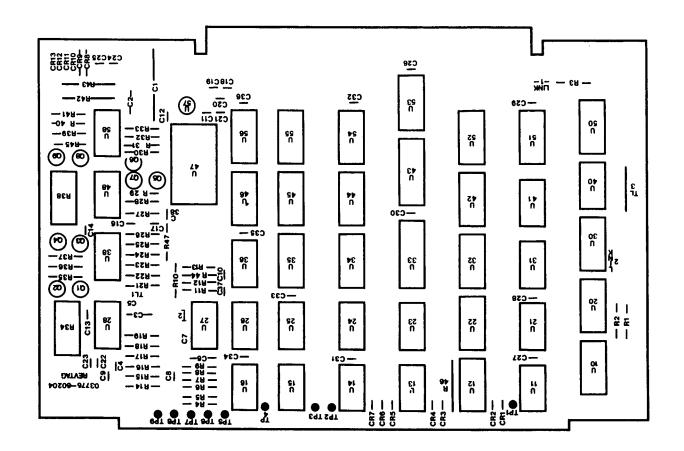
A4-35 During an envelope delay measurement LEN COUNT at the output of the Measurement Cycle Counter is held low at U20(7). When the envelope delay measurement is completed (after 55 counts) LEN COUNT goes high, informing the processor via U51 (on A4/A204 Part 1) that the measurement is complete and the result contained at the output of the Up/Down Phase Counter is ready to be read by the processor. The processor responds by sending L BYTE 1 and L BYTE 2 which enable the Output Buffers U43 and U33 in turn. The Output Buffer loads (2 X 8 bits) the envelope delay measurement result on to the D0 to D7 instrument bus.


A4-36 The Initialising Circuit produces a low reset signal at U24(6) when LEN COUNT goes high. The low reset signal resets the Phase Comparator flip-flops via synchronising bistable U13B of the Decoder.

A4-37 L BYTE 2 is also applied to the Initialising Circuit to produce a low L CLR PH CNT signal at U23(6). This signal presets the Measurement Cycle Counter U20 and U30 prior to the start of the next measurement. L CLR PH CNT is then set high by a positive transition (\int) at the input to the Initialising Circuit at U24(3) which produces a reset signal for U23 and also removes the reset from the Phase Comparator flip-flop via U13B. A high L CLR PH CNT allows the Measurement Cycle Counter to increment, ie the Envelope Delay circuits are in the "armed state" ready to make the next measurement.

A4-38 Envelope delay is measured using a Phase Comparator, Decoder, $\div 1/2$ Counter and Up/Down Phase.... Counter. Reasons for using this method are given in Paragraph A4-11.

the reference signal or Reference Phase R PH at TP1 and the measurement signal or input Phase IP PH at TP3 may be detected during an envelope delay measurement. These timing conditions produce control signal that drive the Up/Down Phase Counter. The Counter is in-cremented up or down at L CLK or 1/2 L CLK depending on which timing relationship is detected at the


55 (see Paragraph A4-11) the total count in the Up/Down ie LEN COUNT at U20(7) informs the processor that the en-A4-41 The Measurement Cycle Counter is incremented each time U13(9) goes high (see Figure A4-8). When the measurement cycle count reaches Phase Counter is applied to A13 for processing velope delay measurement is completed.

001 ONLY

A4-39 Phase Comparator and Decoder

input of the Phase Comparator. Figure A4-8 illustrates the three timing conditions. A 4-40 Three basic timing conditions relating

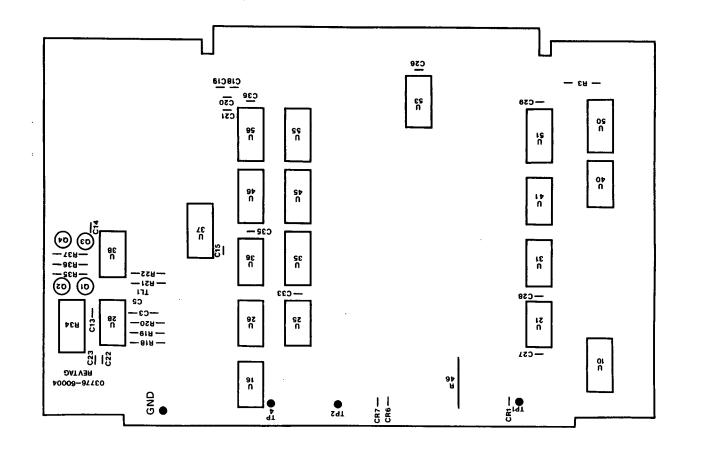
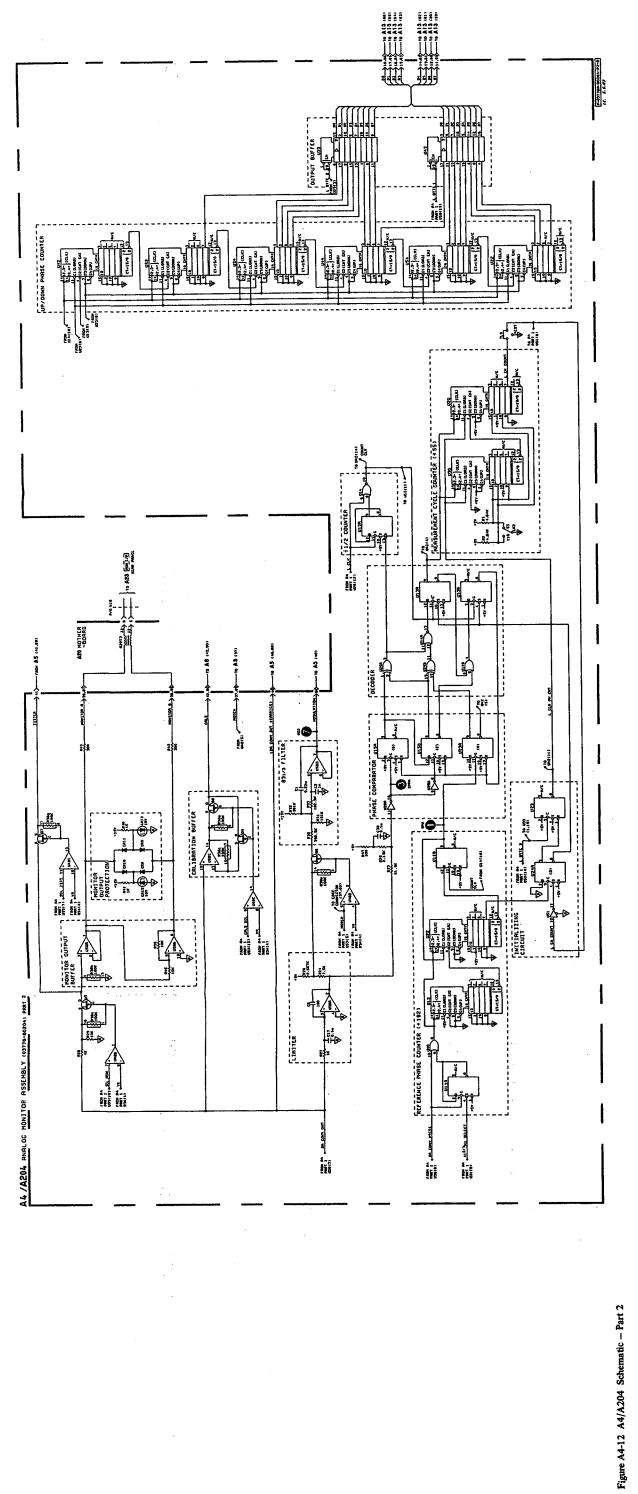



Figure A4-10 A204 Component Location

Figure A4-9 A4 Component Location

8-A4-9

(

•, •--

A5-3 Transients Measurements

Table A5-1 Transient Parameters

	3776A	3776B
Dropout/Interruption	10dB (interruption)	12dB (dropout)
Qualification Period	3ms (nominal)	4ms (nominal)
Self blocking deadtime	3ms/125ms	6ms/1s
Maximum Count Rate	150/8 per s	100/8 per s
Cross blocking of other transients	duration of the interruption +1s	6ms/1 s
Gain Hits thresholds	± 2, 3, 4, 6dB	Same as 3776A
Phase Hits thresholds	± 5° to 40° in 5° steps	Same as 3776A
Qualification Period	4ms	
Deadtime	125ms	10ms/125ms
Maximum Count Rate	8 per s ·	100/8 per s

Bhase Hits and A 5-4 Transient measurements - Dropouts (3776B)/Interruptions (3776A), Gain Hits, Bhase Impulse Noise are made simultaneously on a 1010Hz carrier generated from the 3776 transmitter.

A5-5 Dropouts (3776B) - See also Paras A5-25 and A5-59

to A13

A 5-6 A dropout exists if the carrier level drops 12dB below the reference level which is established at the start of each measurement. A dropout is registered if the carrier level drops by 12dB or more for a period of >4ms. This period is called the Qualification Period or Guard Interval.

A5-7 The dropout count rate is selectable (see Table A5-1) and produces lockout or deadtime periods of 1s (slow) and 6ms (fast). During deadtimes, Dropout, Gain Hit, Phase Hit and Impulse Noise counting is in-hibited. Dropouts block the counting of hits and impulse noise for the duration of the dropout +1s in slow counts and the duration of the dropouts +6ms in the fast count (also self block for the same periods). Dropouts lasting longer than the times specified in Table A5-1 have a 6ms recovery period inserted after the dropout recovers. This provides a settling period for the transient detection circuits.

A5-8 Interruptions (3776A Only) - See also Paras A5-25 and A5-59

Na Al3

A 5-9 An interruption exists if the carrier level falls 10dB below the reference level which is established at the start of the measurement. An interruption is registered if the level falls 10dB below the reference level for >3ms. The 3ms period is called the Guard Interval or Qualification Period.

A 5-10 The Interruption count rate is selectable see Table A 5-1. After an interruption has recovered, a 1 second lockout period or deadtime is always applied to the Gain Hit, Phase Hit and Impulse Noise Detectors, ie the counting of hits and impulse noise is inhibited for the duration of the interruption +1s. In the 8 counts/s and 150 counts/s modes, self-lockouts of 125ms and 3ms respectively are applied to the dropout detector only.

A5-11 Gain Hits and Phase Hits - See also Paras A5-33, A5-39, A5-65 and A5-70

. .

A 5-12 Gain Hits are abrupt changes in the amplitude of a received sinewave. If the change exceeds a preset selectable threshold, a count is registered. The selectable thresholds are +/-2, 3, 4 and 6dB. Phase Hits are abrupt changes in the phase of a received sinewave. If the Phase Hit screeds a preselected threshold a count is registered. The selectable thresholds are 5 degrees to 40 degrees in 5 degree steps.

A5-13 Both Gain Hits and Phase Hits must last for 4ms or more before a hit is registered (Qualification Period or Guärd Interval). In the 3776A, the count rate for both Gain Hits and Phase Hits is 8 counts/s (ie a self-lockout period of 125ms or 10ms is applied after a hit has been detected). In the 3776B, the count rate is selectable between 8 counts/s and 100 counts/s (ie self-lockout periods of 125ms and 10ms respectively after a hit has been detected).

A5-14 The carrier signal in both the Transients and Phase Jitter measurements is applied to A5 via the A4/A204 Assembly. During transient measurements the carrier signal is first filtered by the Transients Bandpass Filter then applied to two signal paths. The signal applied to the Temperature Compensated Log Converter is analysed for Dropouts/Interruptions and Gain Hits while the other path is used to measure Phase Hits (see Figure A5-1).

A5-15 Phase Jitter Measurement - See also Paras A5-44 and A5-75

A 5-16 Phase Jitter is measured by transmitting a 1010Hz sinewave through the channel under test and measuring zero crossings of the sinewave at the Receiver. The peak to peak deviation in the zero crossings of the sinewave are detected and displayed in degrees. Two Jitter frequency ranges are available, they are:

to 300Hz to 300Hz 4Hz 20Hz Low Frequency Phase Jitter Normal Phase Jitter - 0

A 5-17 During a phase jitter measurement the carrier signal is passed through the Phase Jitter Bandpass Filter then demodulated using a Frequency to Voltage Converter. After further filtering a signal proportional to phase is derived and fed to the Positive and Negative Peak Detectors. These voltages are converted to a digital form then applied to A13 for processing.

A5-18 Temperature Compensated Log Converter - See also Para A5-48

A 5-19 The Temperature Compensated Log Converter illustrated in Figure A 5-2 provides the following:

1 A dynamic range compression (produces small changes in output voltages for large changes in input cur-rent) during dropout measurements (Figure A 5-3 illustrates a typical logarithmic characteristic).

2 Preserves the magnitude of the gain hit signal independent of the polarity of the hit.

Model 3776A/B

ASSEMBLY SERVICE SHEET A5 TRANSIENTS (OPTION 001)

A5-1 INTRODUCTION

ssembly. Figure A5-1 to five main functional A5-2 Transient and phase jitter measurement circuitry is contained on the A5 Assembl details the circuit elements which make up the A5 Assembly, listed below are the five elements.

- *1 Temperature Compensated log Converter
 *2 Dropouts/Interruptions
 *3 Gain Hits
 *4 Phase Hits
 5 Phase Jitter
- *Transients

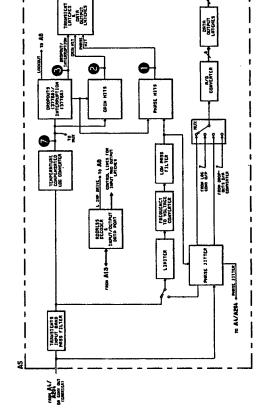


Figure A5-1 Transients Block Diagram

8-A5-0

i

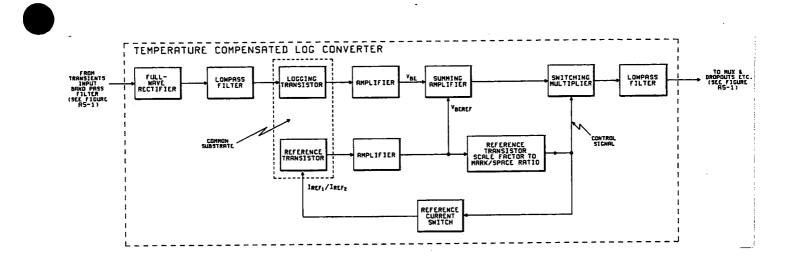
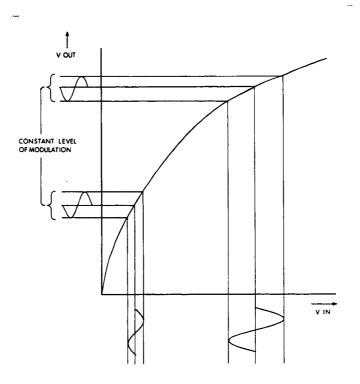
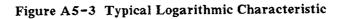




Figure A5-2 Temperature Compensated Log Converter

A 5-20 The basic logging action, performed by a transistor, ensures the dynamics of the hit signal are independent of the absolute carrier amplitude. The logging transistors base emitter voltage V_{BE} is proportional to the log of the collector current I_c i.e.

 $V_{BE} \alpha \ln(I_c/I_s)$ $V_{BE} = kT/q.\ln(I_c/I_s)$

Equation 1

where; I_s = saturation current and kT/q = temperature dependent constant

Temperature changes around the logging transistor create inaccuracies in the Log conversion. These are cancelled out by using two transistors on the same substrate in the Log Converter shown in Figure A5-2. The Reference Transistor, Reference Tansistor Scale Factor to Mark Space ratio, Switching Multiplexer and Current Switching circuits compensate for I_s and kT/q in equation 1.

A 5-21 The V_{BE} of the Reference Transistor is subtracted from the Logging Transistor V_{BE} to compensate for the saturation current I_s . This subtraction is performed by the Summing Amplifier, i.e.

 $V_{BE} - V_{BEREF} = kT/q.\ln(I_C/I_S) - kT/q.\ln(I_{REF}/I_S)$ $V_{BE} - V_{BEREF} = kT/q.\ln(I_C/I_{REF}) \quad Equation 2$

A 5-22 kT/q is cancelled out from equation 2 by routing the output of the Difference Amplifier via the Switching Multiplier for a time inversely proportional to kT/q. Relating temperature to time is described in the following paragraphs.

A 5-23 Two known reference currents I_{REF1} and I_{REF2} are applied alternately to the Reference Transistor and produce a change in V_{BEREF} i.e.

 $V_{\text{BEREF}} = kT/q.\ln(I_{\text{REF1}}/I_s) - kT/q.\ln(I_{\text{REF2}}/I_s)$

 $V_{BEREF} = kT/q.ln(I_{REF1}/I_{REF2})$

 $V_{BEREF} \alpha kT/q \alpha$ temperature (as I_{REF1} and I_{REF2} are fixed).

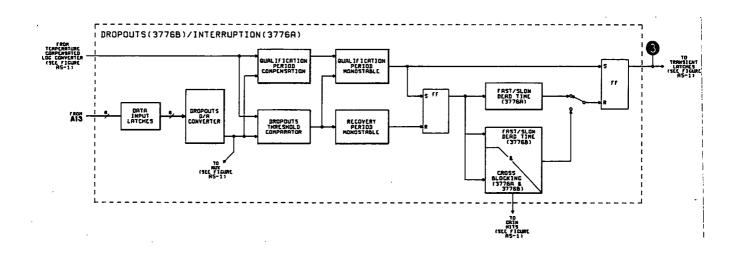
The change in V_{BEREF} is monitored by the Reference Transistor Scale Factor to Mark Space Ratio circuit. (comprising Sample and Hold device, integrator and monostable) which produces an output signal with a mark space ratio inversely proportional to the change in V_{BEREF} . The output signal controls the Switching Multiplier and the Reference Current Switch.

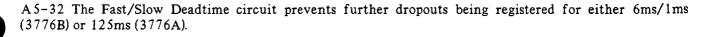
A 5-24 The length of time the Switching Multiplier routes the output of the Summing Amplifier to TP7 is inversely proportional to kT/q. Therefore the voltage at TP7 accurately represents the log of the input current I_c independent of temperature.

A5-25 Dropouts (3776B)/Interruptions (3776A)

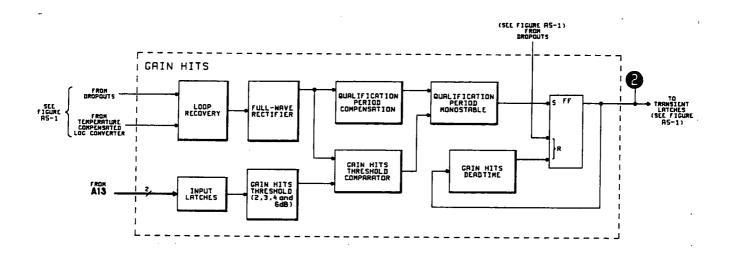
A5-26 Dropouts and Interruptions are detected and registered in an identical manner. Therefore only Dropouts are described. The dropouts circuit is illustrated in Figure A5-4.

A 5-27 Prior to a dropout measurement the carrier level is monitored at TP7 to establish a reference carrier level. The carrier at TP7 is routed via the MUX and the A/D Converter to the processor on A13. Once the reference level is established the processor applies a level equivalent to 12dB below the reference carrier to the Dropouts Threshold Comparator via the Dropouts D/A Converter.




Figure A5-4 Dropouts/Interruptions

A 5-28 When the carrier level falls by 12dB or more the Dropouts Threshold Comparator enables the Qualification Period Monostable. If the comparator monitors a fall in carrier level for >4ms the Qualification Period Monostable registers the dropout by setting TP3 high. This high is then latched into the Transient Latches. If the drop in carrier level is NOT maintained the Qualification Period Monostable is reset and no dropout is registered.


A 5-29 Dropouts are registered for falls in carrier level from 12dB down to total loss of signal. Since the carrier signal requires finite time to fall due to the input bandpass filter and other processing filters, the time to reach the 12dB down threshold varies depending on the overall change in the carrier signal. This timing variation affects the Qualification Period and is therefore compensated for by the Qualification Compensation circuit.

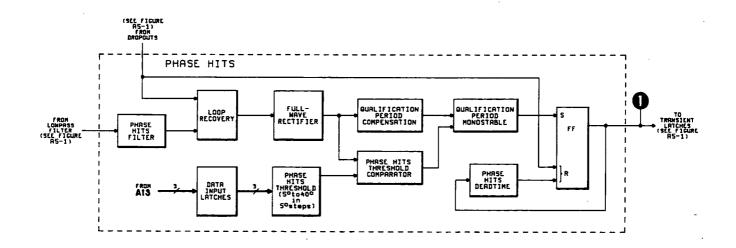
A 5-30 When a dropout is registered the output of the Qualification Period Monostable triggers the Cross Blocking circuit via a flip-flop. The Cross Blocking circuit ensures that the Gain Hits and Phase Hits circuits are disabled during a dropout.

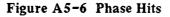
A 5-31 The Recovery Period Monostable also monitors the carrier level (via the Dropout Threshold Comparator) to determine when the reference level has been re-established after a dropout. If the level is maintained for 2ms or more the reference carrier level is considered to be re-established and the Recovery Period Monostable enables the Fast/Slow Deadtime circuit via a flip-flop.

A5-33 Gain Hits

Figure A5-5 Gain Hits

A 5-34 Prior to a Gain Hit measurement a reference carrier level is established, see Paragraph A 5-27. When an abrupt change in the carrier level of 2, 3, 4 or 6dB exists for 4ms or more a gain hit is registered. The gain hit threshold is keyed in via the front panel and applied to the Gain Hits Threshold circuit via the processor on A13. The Gain Hit circuits are illustrated in Figure A5-5.


A 5-35 The highpass filter Loop Recovery circuit routes abrupt changes in carrier level to the fullwave rectifier. Since a gain hit can be an abrupt increase or decrease in carrier level the fullwave rectifier allows detection of changes in either direction. The output of the fullwave rectifier is applied to the Gain Hit Threshold Comparator. It should be noted that slow varying changes in carrier level are blocked by the Loop Recovery circuit, therefore NO gain hits are detected.


A 5-36 When an abrupt change in the reference carrier exceeds the threshold stored in the Gain Hit Threshold circuit, the Gain Hit Comparator alerts the Qualification period Monostable. If the threshold is exceeded for 4ms or more the Qualification Period Monostable registers a gain hit by setting TP2 high. This high is then latched into the Transients Latches. If the threshold is NOT exceeded for 4ms or more, the Qualification Period Monostable is reset and no gain hit is registered.

A 5-37 The carrier level requires finite time to rise or fall and accordingly the apparent duration of the hit above the threshold also varies, dependent on the magnitude of the hit. This timing variation affects the Qualification Period and is therefore compensated for by the Qualification Period Compensation circuit.

A 5-38 Once a gain hit is registered the Gain Hit Deadtime circuit is enabled and prevents further gain hits being registered for either 10ms or 125ms.

A5-39 Phase Hits

A5-40 For Phase Hits measurements the carrier is routed via the Transients Bandpass Filter, a Limiter, Frequency to Voltage Converter and a Lowpass Filter with a controlled impulse response duration. Figure A5-6 illustrates the Phase Hits circuits.

A 5-41 The Limiter detects the zero crossings of the carrier signal and produces a TTL squarewave output. If the phase of the carrier varies the mark space ratio of the Limiter output will also vary. This variation is converted to voltage prior to being applied to the Phase Hit circuit.

A 5-42 A phase hit is registered if an abrupt change of phase in the range 5 degrees to 40 degrees is detected for 4ms or more. The phase threshold is keyed into the 3776 via the front panel and can be between 5 degrees and 40 degrees and is selected in 5 degrees steps.

A 5-43 The Phase Hit circuit operates in an identical manner to the Gain Hit circuit except that the input signal is applied to the Loop Recovery via the Phase Hit Filter (see Paragraphs A 5-33 to A 5-38). This filter in conjuction with the Filter in Paragraph A 5-40 has a step response constrained to last for <10ms so that phase hits separated by 10ms or more do not interact, allowing the Phase Hit Detector circuit to count phase hits at up to 100 counts/s without degrading the measurement accuracy.

A5-44 Phase Jitter

A5-45 The carrier signal is applied to the Phase Jitter circuit via the Phase Jitter Filter and Limiter/Frequency to Voltage converter. The Limiter and Frequency to Voltage Converter are described in Paragraph A5-41.

A 5-46 The output of the Frequency to Voltage Converter produces a voltage proportional to the frequency

of the carrier signal. A shift in the carrier frequency produces a change in the Frequency to Voltage Converter output voltage. This voltage is then filtered, producing a signal proportional to the change in phase of the carrier signal. The positive and negative peaks of this signal are detected and applied to the processor on A13 via the MUX and A/D Converter. The processor supplies the detected peak values to the front panel displays.

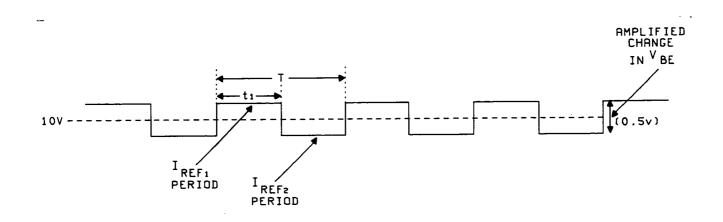
A5-47 DESCRIPTION

A5-48 Temperature Compensated Log Converter

A 5-49 The Transient Bandpass Filter complies with the IEEE standard and has a bandpass response nominally 700Hz to 1300Hz.

A5-50 Diodes CR20, CR21 and op amps U86C and U86D rectify the input carrier, driving the appropriate amount of current into the virtual earth of U95(2) of the Lowpass Filter.

A5-51 The Lowpass Filter reduces ripple and drives the emitter of the Logging Transistor p/o U87. The current from the Logging Transistor balances the current from the Fullwave Rectifier at U95(2).


A5-52 Amplifier U96A acts as a pre-amp for the base emitter voltage V_{BE} of the Logging Transistor and R118 provides a high impedance at the emitter of the Logging Transistor.

A 5-53 The Summing Amplifier sums the V_{BE} of the Logging and Reference Transistors.

A 5-54 Reference Transistor U87 has two reference currents applied alternately to it from the Reference Current Switch. The Reference Transistor V_{BE} is applied to the Summing Amplifier via U96B.

A 5-55 Both reference currents are derived from the $10V_{REF}$ line via R108 and R109. The time each reference current is applied to the Reference Transistor is controlled by the Reference Transistor Scale Factor to Mark Space Ratio circuit.

A 5-56 The Reference Transistor V_{BE} changes with a change in the reference current. Op Amp U96B amplifies the small changes in V_{BE} and produces an output signal as illustrated in Figure A5-7.

Figure A5-7 Input Signal to Reference Scale Factor to Mark Space Ratio Circuit

A 5-57 The most positive part of Figure A 5-7 is shifted to 0V by operating the sample and hold device U76 as a clamp, ie the 10Vdc component of Figure A 5-7 is removed leaving a 0 to -0.5V signal at U76(5).

A5-58 A current balance integrator circuit U75B/C81 is used to relate the change in V_{BE} and time t_1 of Figure A5-7. A fixed positive reference current is applied to the integrator via R110 and a negative current is applied via R111 to balance the reference current, i.e.

 $I_{REF(R110)} = -I_{(R111)} \alpha \Delta V_{BE} t_1 / T$

The output of U75B ramps until current balance is achieved. This is done by varying the mark space ratio (t_1/T) of the oscillator (U67) which forces t_1/T to be inversely proportional to ΔV_{BE} .

A5-59 Dropouts (3776A)/Interruptions (3776B)

A5-60 The incoming carrier signal, after autoranging, is passed through the transients input band-pass filter (U86A, B), fullwave rectified (U86C, D) and after low-pass filtering (U95A, U68A) the mean carrier level is converted to a logarithmic form using a transistor (p/o U87). This signal is temperature compensated using a matched transistor on the same substate (p/o U87) and the temperature compensation circuitry (see Temperature Compensated Log Converter section). Further low-pass filtering (U68D, C) is used to remove the switching waveform from the temperature compensation giving a stable logarithmic representation of the mean carrier level at TP7. This signal is compared with the dropout threshold (U53) established at the start of the measurement. If the carrier level falls below this threshold the qualification period monostable is enabled.

A 5-61 The carrier level signal will have finite rise and fall times due to the input bandpass filter and other. processing filters, and the observed width of the dropout will therefore vary dependent on the carrier level immediately prior to the dropout, both related to the dropout threshold level. These parameters are used to modify the qualification period monostable timing current (U43A, B, C, D, U42, U54C, D, U52A, U51A) to compensate for this effect.

A 5-62 If the dropout satisfies the magnitude and duration criteria, and provided that the deadtime monostable U52C, U62A, B, C2 (3776A) or U52D, U62B, C (3776B) has completed an operation after a previous dropout, a valid dropout count is generated and passed via a latch (U61B) to the dropout register. During the dropout and for a subsequent period, set by U52B, U52C, the counting of phase hits, gain hits and impulses are inhibited.

A 5-63 After the carrier level has recovered above the dropout threshold for greater than approximately 2msec (U52B, U51B) the self-blocking and cross-blocking, deadtime monostables are initiated via a latch (U61D).

A5-64 The dropout threshold is established at the beginning of the measurement by using the digital filter (on A9) to reduce the carrier level by a precisely known amount and then matching the threshold level (from D/A Converter U94 and U85A) to the level at TP7, evaluated by the A/D converter (U64, U55, U63). This method relies only on the stability of the signal processing stages prior to TP7 and the stability of the D/A converter, rather than absolute accuracy and linearity.

A5-65 Gain Hits

A 5-66 The gain hit signal is derived from the logarithmic carrier level signal present at TP7 by high-pass filtering. The resultant signal is equivalent to that obtained using an AGC circuit, with the loop recovery time set by the time constant of the high-pass filter. This time constant is the same for positive or negative hits, and due to the logarithmic nature of the carrier level signal equal magnitude gain hit signals are obtained for positive or negative hits. A fullwave rectifier (U24A, B) is used to allow a single threshold for either polarity hit, and the gain hit threshold from U64 is compared with the rectified gain hit signal by U31A.

A 5-67 Due to the finite rise and fall times, the observed width of a gain hit is dependent on the magnitude of the hit and the gain hit threshold. The qualification period monostable timing current is modified (U54A, U23A, B, C, D U22) to compensate for this effect.

A 5-68 If the gain hit satisfies the magnitude and duration criteria and provided that it is not inhibited by the dropout cross blocking or the gain hit deadtime self blocking, a valid gain hit count signal is passed to the processor A13 via the deadtime latch (U61C) and the gain hit register. The gain hit deadtime monostable (U31A, U41A, U51D) inhibits further counting for the duration of the deadtime.

A 5-69 During a dropout and while the carrier level is settling after a dropout the loop recovery time filter is switched to a short time constant to allow rapid acquisition of the new carrier level.

A5-70 Phase Hits

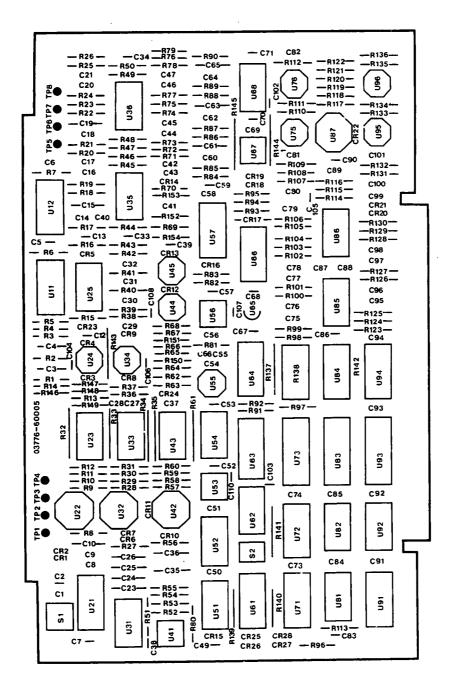
A 5-71 The received carrier after autoranging is bandpass filtered by U86A, U86D and then passed via the input filter selector switch (U66B) to the limiter (U56A) and frequency to voltage converter (U57, U35A). The resulting signal is low-pass filtered (U36A, B, C, D and U35C) so that for a step in phase of the input carrier an equi-ripple approximation to a flat-topped pulse is obtained at TP6. The total duration of this pulse is constrained to be less than 10msec in order that phase hits at a rate of 100 per second can be detected without interaction.

A 5-72 The conversion of a step in carrier phase to an output defined duration pulse also simulates the loop recovery time requirement, so that slow changes in phase are rejected. A further high-pass filter is used after this filtering in order to reject dc offsets and static frequency offsets. The high pass filter time constant is shortened (U11) during a dropout and associated cross-blocking period in order to achieve rapid acquisition of carrier frequency and phase after a dropout has ended.

A5-73 The phase hit signal is then fullwave rectified (U34A & B) so that positive and negative phase hits . can be compared with a single threshold in the threshold comparator (U31A). The threshold is selected by the user via the processor (on A13) and the threshold selector multiplexer (U84). Due to the finite rise and fall times imposed by the input band-pass and other filtering, the apparent duration of a phase hit depends on the magnitude of the hit and the hit threshold. These parameters are used to modify the Qualification Period monostable timing current (U33, A, B, C, D U54B, U32, U51C) to compensate for this effect.

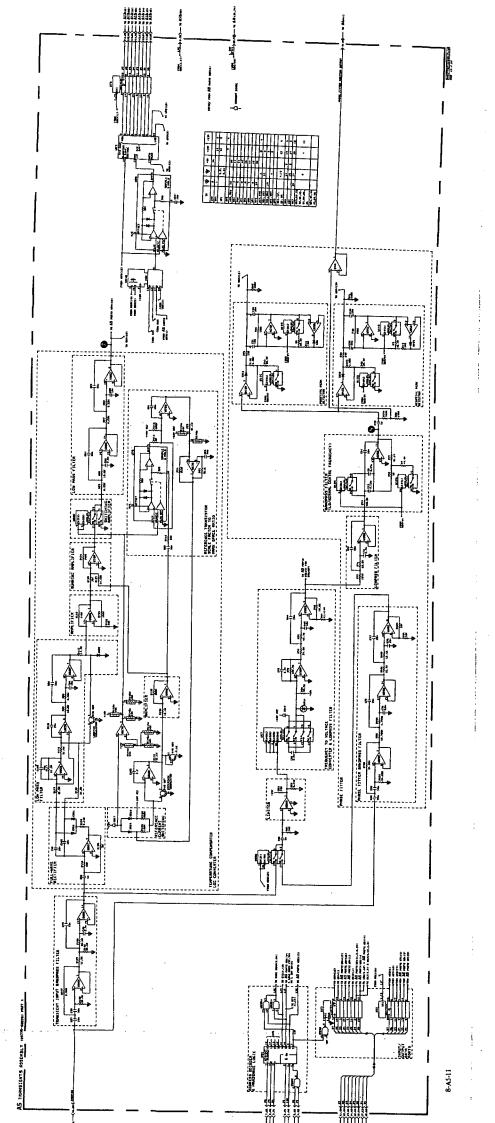
A 5-74 If a phase hit satisfies the magnitude and duration criteria, and is also not prevented by the dropout cross-blocking or the phase hit deadtime a valid phase hit count is passed to the phase hit register to be read by the processor.

A5-75 Phase Jitter


A5-76 The incoming carrier is passed through the Phase Jitter BP filter (U85A, B, C) via the input filter selector switch (P/0 U66B) and limiter (U56) to the frequency to voltage converter (U57, U35A). The resulting voltage proportional to carrier frequency deviation is low-pass filtered (U36D and U35A) and converted into a voltage proportional to phase deviation (U35B). This signal is buffered (U44A) and passed to the rear panel MONitor output via A4/A204.

A5-77 The demodulated phase signal is also fed to the positive peak detector (U45A, U25A, U25B) and the negative peak detector (U45C, U25C, U25D). The peak detectors have a second order decay response in order to achieve fast settling times with good ripple rejection. The peak detector outputs are A/D converted (U64, U55, U63) and passed to the processor (on A13) which supplies the peak to peak phase jitter to the front panel displays.

A 5-78 Selection of different frequency response and decay time for Low frequency and Normal phase jitter is performed by U12.


A 5-79 Further Transient Troubleshooting is contained on GENERAL SERVICE SHEET G9.

Service

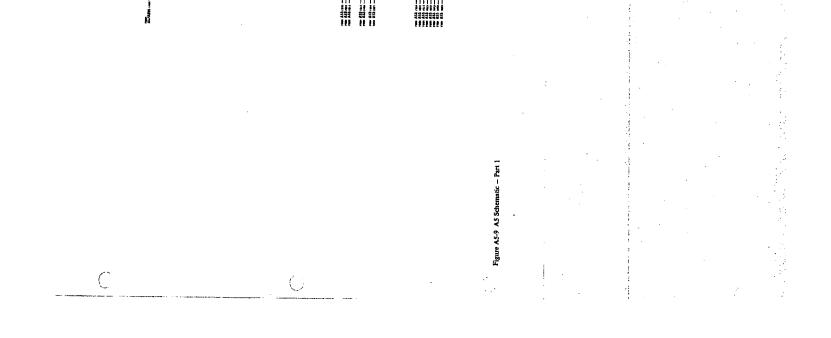


Figure A5-8 A5 Component Location

8-A5-10

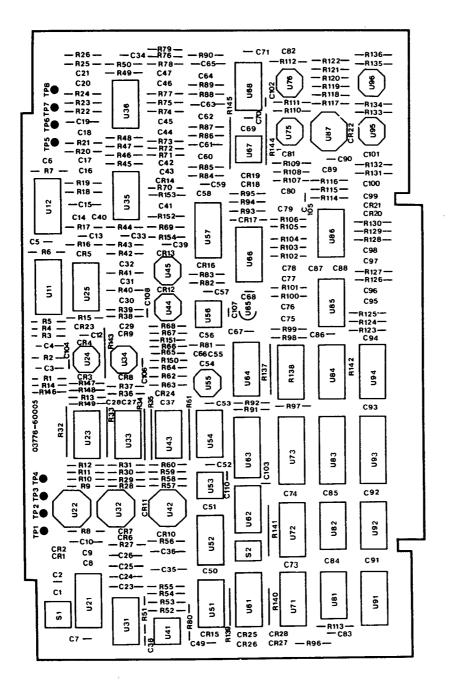
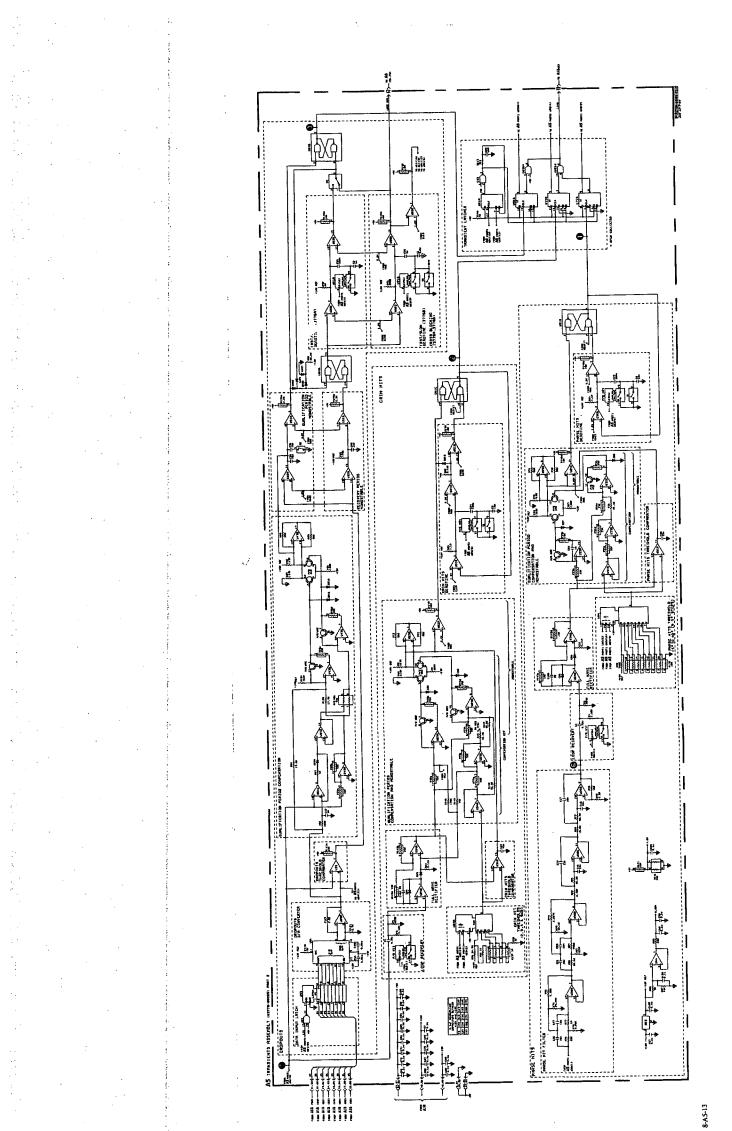
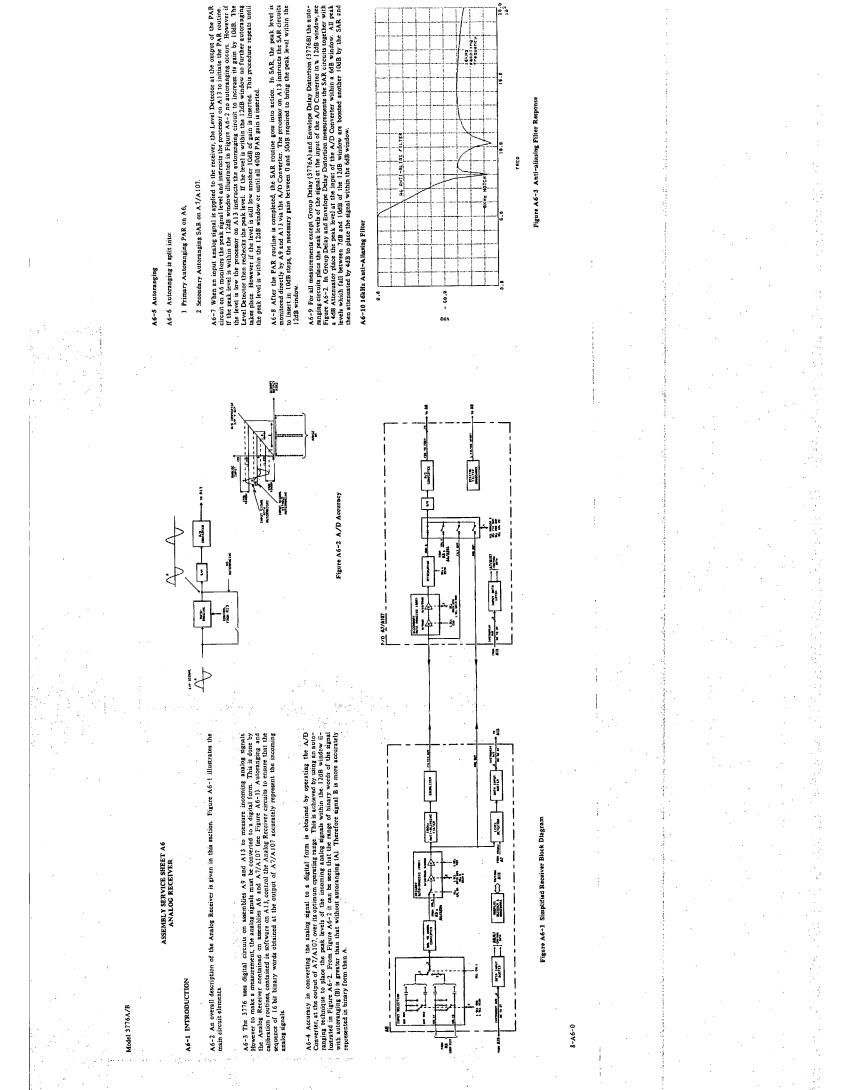




Figure A5-8 A5 Component Location

٩.

8-A5-13 Figure A5-10 A5 Schematic - Part 2

:

- A6-11 To ensure that out-of-band signals do not corrupt the in-band voice channel with aliasing signals (see APPENDIX B) during a 3776 measurement, an anti-alaising filter is used in the Analog Receiver. This filter rejects the out-of-band components.
- A6-12 In a PCM environment an 8kHz component may be received. The Anti-aliasing Filter has a notch specifically designed to attenuate the 8kHz by 60dB. A plot of Anti-aliasing Filter Response is shown in Figure A6-3.

A6-13 The 16kHz Anti-aliasing filter is placed between the PAR and SAR circuits for optimum in-band to out-of-band signal rejection.

A6-14 Calibration

A6-15 A calibration routine contained in the software of the A13 Assembly ensures that the various gain stages in the PAR and SAR circuits and the anti-aliasing filter response are accurately checked after every analog measurement (see APPENDIX C). Any ERRORS due to termperature and tolerances in the gain stages of the autoranging circuits or ERRORS in the filter response are stored in the processor. These ERRORS together with the the amount of gain used in autoranging and the binary words at the output of the A/D Converter are used to compute, accurately, the level of the incoming analog signal.

A6-16 Input Selection and Bal to Unbal Converter

A6-17 The Input Selection circuit terminates the balanced calibration signal and the incoming balanced signal in one of three impedances; 6000hms, 9000hms or 50kohms. Both paths are always terminated to prevent damage to the input circuits when switching between paths.

A6-18 The Bal to Unbal Converter converts the differential input signal to a single ended signal.

A6-19 Input/Output Buffers and Handshake Logic

A6-20 These circuits interface with the processor on A13 to allow the control signals on A6 and A7/A107 to provide autoranging and calibration.

A6-21 CIRCUIT DESCRIPTION

A5-22 Input Selection, Impedance Selection and Bal to Unbal Converter

A6-23 Relays K1A and K1B route either the external balanced ANALOG RXA and RXB signal or the balanced calibration CAL1A and 1B signal to the Bal to Unbal Converter.

A6-24 Relays K2A/K3A and K2B/K3B terminate both balanced signal paths in either 600ohms, 900ohms or 50kohms. Both paths are always terminated by equal termination impedances.

A6-25 The relay control signals L SEL CAL1, L SEL 900 and L SEL HIGH are derived from the processor on A13.

A6-26 The Bal to Unbal Converter comprising four amplifiers U17A/B/C/D converts the balanced or unbalanced signal to a single-ended signal.

A6-27 Primary Autoranging (PAR)

A6-28 There are two analog signal paths to the PAR circuits:

- 1 the analog receiver input signal, from the Bal to Unbal Converter;
- 2 the calibration signal, CAL2 from A3.

The signal from the Bal to Unbal Converter is applied to the first gain stage of the PAR via a switching network comprising U55A and FET's Q1/Q3. The CAL 2 signal is applied to the same PAR gain stage via U55B and Q5/Q7. The switching networks are controlled by SEL CAL 2A. When SEL CAL 2 is low, Q1/Q3 are switched on and Q5/Q7 are off; the analog receiver input signal is selected.

A6-29 The first gain stage of the PAR comprises selectable gain amplifier U55C. The gain of U55C is set at 0dB, 10dB or 20dB by either SEL GAIN B20 or SEL 0 GAIN B. When SEL GAIN B20 goes high, Q2 switches on and shorts out R14 to set the gain to 10dB. When SEL GAIN B is low, Q2 is switched off and R14 increases the gain to 20dB. If SEL 0 GAIN B goes high, Q4 shorts out R13 and R14 to set the gain of U55C to 0dB.

A6-30 The second stage of the PAR is U55D. This amplifier has two selectable gains 0dB or 20dB. Gain selection is controlled by L SEL A20. When L SEL A20 is high, Q6 shorts out R10 to set the gain to 0dB (see Table A6-1).

GAIN (dB)		LEDs		1	PAR FET STATUS	
SELECTED	B10	B20	A20	Q4	Q2	Q6
0 10 20 30 40	OFF ON OFF ON OFF	OFF OFF OFF OFF ON	OFF OFF ON ON ON	ON OFF ON OFF OFF	DONT CARE ON DONT CARE ON OFF	ON ON OFF OFF OFF

Table A6-1 Primary Autoranging Gain Selection

NOTE: The measurement software selects only the given LED patterns to produce the appropriate gain.

A6-31 16kHz Anti-aliasing Filter

A6-32 The 16kHz Anti-aliasing Filter comprises three similar networks. Test Links TL1, TL2, TL3 and TL4 allow the technician to isolate each of the three filter sections during troubleshooting. See GENERAL SERVICE SHEET G7 for troubleshooting hints.

A6-33 Equaliser

A6-34 The Equaliser comprising U85C and U85D has an all pass frequency response. It also has a phase response that cancels out the phase non-linearities of the 16kHz Anti-aliasing Filter to produce constant group delay which is essential in Group Delay (3776A) and Envelope Delay Distortion (3776B) measurements.

A6-35 Address Decoder, Handshake logic, Input and Output Buffers

A6-36 The calibration and autoranging routines, the input selection and input impedance selection are all carried out on A6 under the control of the processor which is located on A13. Communication between A6 and A13 is via the Address Decoder U81 and the Handshake Logic. The Handshake protocol is described in Assembly Service Sheet A13.

A6-37 Data is latched into the Input and Output Buffers by control signals from the Address Decoder and Handshake Logic.

A6-38 The Address Decoder also provides the control signals for the A7/A107 Assembly (i.e. L ADDR 33 and L ADDR 35).

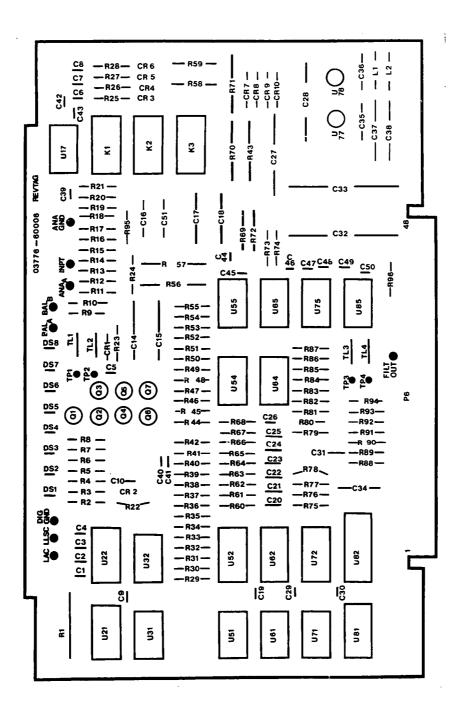
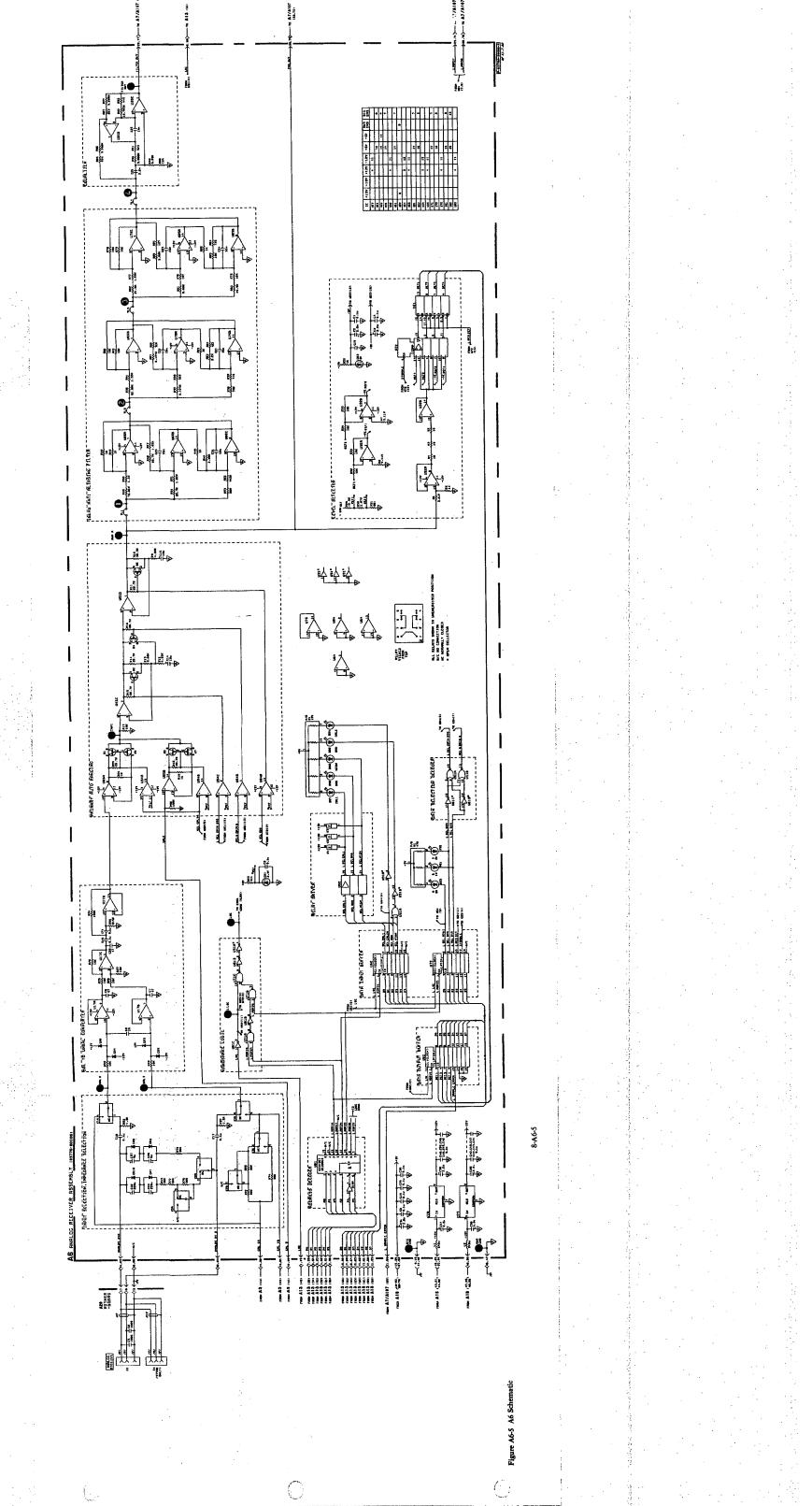



Figure A6-4 A6 Component Location

A7-9 Attenuator

· •••

A7-10 The 4dB attenuator comprising R38/R39 may be switched into the analog signal path by SEL 4 ATTN during Group Delay (3776A) and Envelope Delay Distortion (3776B) measurements, see Paragraph A6-9 on Assembly Service Sheet A6.

A7-11 Analog B Switch, Filter Out Switch, Analog A Switch and CAL2 Switch

A7-12 Four signal paths are applied to the input of the A/D Sample Hold Logic via four switching networks. These switching network are all similar and are enabled one at a time. The Analog B Switch routes the incoming analog signal to U25D. The other three switching networks are utilised during a calibration cycle.

ابدر

the A7/A107 sec-

A7-13 When SEL ANALOG B from the Data Input Buffer goes high it switches on Q2/Q4 and routes the incoming signal to the A/D Sample & Hold Logic. When SEL ANALOG B goes low, Q2/Q4 switches off and breaks the signal path. All the other switching networks operate in a similar manner and are controlled by SEL FILT OUT, SEL PAR OUT and SEL CAL 2B.

A7-14 A/D Sample & Hold Logic

A7-15 The sample and hold circuit is contained in U45. Incoming analog signals at U45(3) are sampled at a 16kHz rate by L HOLD to produce a staircase waveform at U45(5), see Figure A7-1. The sampled signal levels are then converted to a digital form everytime a low L CONVERT is applied to the enable input of the A/D Converter U65.

TO R/D CONVERTER 250-U45(5) SAMPLE 8 Hold L HOLD (16 KHz) U45(3) ₹O-

Figure A7-1 Sample and Hold Waveforms

A7-16 The digital word at the output of U65 is latched into U75 and U85 by LOAD DATA. The data stored in the latches is then applied to A9 when the Digital Filter Handshake signal L READ DATA goes low (see Figure A7-2 Timing Diagram).

A7-17 6000hms BAL Output

A 7–18 A 6000hms BAL Output circuit is placed at the input of the Sample and Hold circuit as an aid when troubleshooting the Analog Receiver.

. . . .

A.7-19 Digital Filter Handshake Logic; Sample Error Detector; Hold Control Logic and Delay and Sample Control Logic

1

A7-20 These four digital circuit elements allow analog signals to be sampled and converted to a digital form. They also determine when the digital words at the output of A7/A107 are to be applied to A9. The following paragraphs should be read in conjunction with the Timing Diagram in Figure A^{7} -2.

A7-21 The Hold Control Logic comprising U32D and U22B produces L HOLD. This signal allows U45 to hold the sampled incoming signal for 50us in every 62.5us. The cumulative effect of L HOLD on U65 is to produce a staircase waveform as illustrated in Figure A7-1. However only one sample is considered in the Timing Diagram of Figure A7-2.

A7-22 The Delay and Sample Control Logic ensures that there is a delay of nominally 3us between the sample enable signal L HOLD and the A/D Converter enable signal L CONVERT. The delay allows the sampled analog signal to settle before it is digitised by U65.

A7-23 The S0us Counter is initiated at the beginning of an A/D conversion. Only after COUNT 50 goes high at U31(15) does the Digital Filter Handshake Logic produce L FILT START. This signal informs the Digital Filter that a digital word at the output of A7/A107 is ready to be applied to A9. Once A9 has received L FILT START it sends L READ DATA which enables the outputs of U75 and U85 and allows the output of A7/A107 to be applied to A9.

A7-24 After an A/D conversion, LOAD DATA and COUNT 50 flag the Digital Filter Handshake Logic. LOAD DATA from the A/D Converter informs the Digital Handshake Logic that digital data at the output of A7/A107 is ready to be applied to A9. COUNT 50 is a synchronising signal, generated by the 50us Counter, it determines when the data is to be applied to A9 and is always produced 50us after L HOLD. A complete A/D conversion takes nominally 40us, the 50us time delay between L HOLD and COUNT 50 en-sures that the A/D Conversion will have been completed before the data stored in U75 and U85 is applied to A9.

A7-25 The Sample Error Detector illuminates DS9 when it detects no handshake between A9 and A7/A107 is no L READ DATA.

A 7-26 Further troubleshooting information regarding this assembly is contained on GENERAL SERVICE SHEET G7.

Model 3776A/B

A7 (3776A) A107 (3776B) SECONDARY AUTORANGING, A/D CONVERTER AND DIGITAL OUTPUT STAGE ASSEMBLY SERVICE SHEET A7/A107

A7-1 INTRODUCTION

A7-2 Assemblies A6 and A7/A107 form the Analog Receiver; a general description of tion of the receiver is given in Assembly Service Sheet A6.

A7-3 CIRCUIT DESCRIPTION

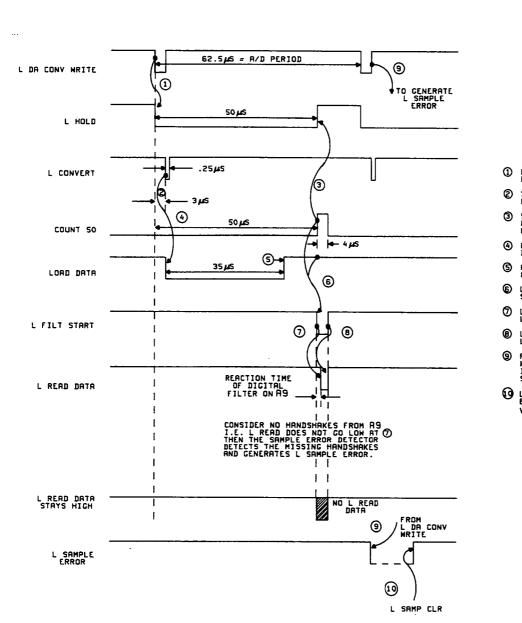
A7-4 Data Input Buffers

A7-5 Latches U72 and U82 receive and store data from A13. This data controls:

the Secondary Autoranging (SAR) circuits,
 signal path selection, during calibration,
 the Digital Filter Handshake Control.

A7-6 Secondary Autoranging (SAR)

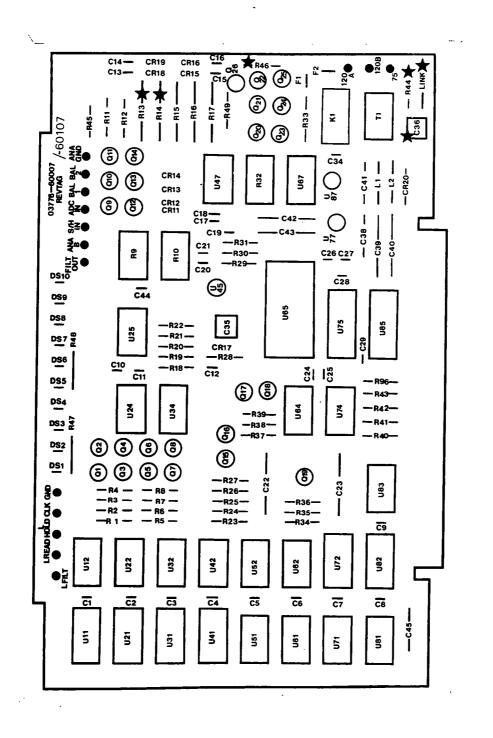
A7-7 The SAR circuit comprising two selectable gain stage amplifiers U64A and U64B provides between 0dB to 50dB of gain. The first gain stage provides either 0dB or 30dB. The second gain stage provides either 0dB, 10dB or 20dB.


A7-8 Gain selection is controlled by L SEL C30, SEL GAIN D20 and L SEL GAIN D00. When L SEL C30 is low; Q19 is switched off and R35/R34 set the gain of U64A to 30dB. When L SEL C30 is high, Q19 is switched on and R35 is shorted out to set the gain to 0dB. The 0dB, 10dB and 20dB gains of U64B are selected in a similar manner to U64A (see Table A7-1). The autoranging routine is described in Paragraphs A6-7 to A6-9 in Assembly Service Sheet A6.

,	GAIN (dB)		LEDs		S	SAR FET STATUS	
	SELECTED	D10.	D10 D20	C30	Q15	Q16	Q19
					i	1010	į
	0	GFF	5		z	LUN I CAKE	S
	0	S	OFF	OFF	OFF	8	S
	20	OFF	S	OFF	OFF	0FF	8
	30	OFF	OFF	N	S	DON'T CARE	OFF
	40	S	OFF	S	OFF	20	OFF
	50	OFF	8	N	OFF	0FF	OFF

Table A7-1. Secondary Autoranging Selection

8-A7-0


--;

NOTES

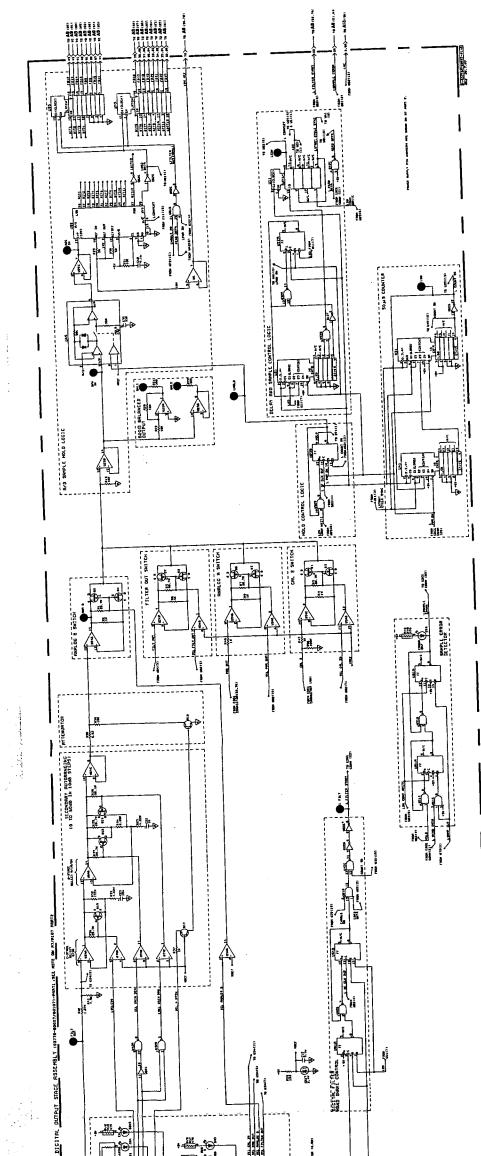
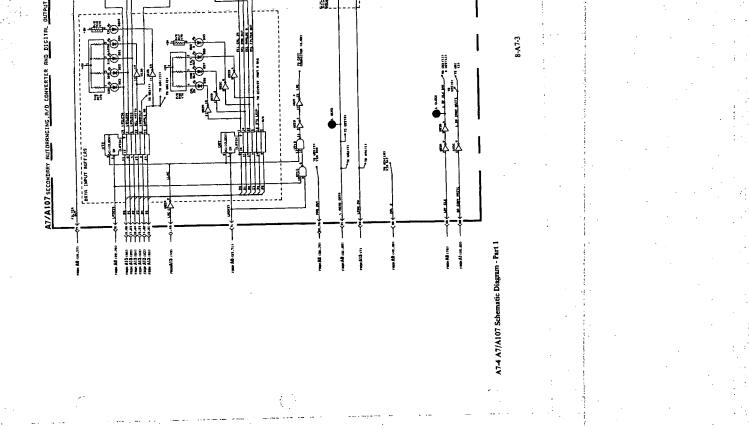

- ① L DA CONV WRITE SETS L HOLD LOW
- 3 3 AS DELAY BETWEEN L HOLD AND L CONVERT
- 3) 50 US AFTER L DA CONV NRITE, L COUNT 50 SETS L HOLD HIGH
- A L CONVERT SETS LOAD DATA LOW
- S AFTER 35 45 LORD DATA COES HICH
- C LOAD DATA AND COUNT SO SET L FILT START LOW
-) L READ DATA SET LOW AFTER L FILT START GOES LOW
- L READ DATA SET HICH WHEN L FILT START GOES HIGH
- RISING EDGE OF L DA CONV WRITE SETS L SAMPLE LOW IF L READ DATA IS NOT SET LOW
- U L SAMPLE ERROR SET HIGH BY L SAMP CLR FROM A13 VIA A6

Figure A7-2 Timing Diagram



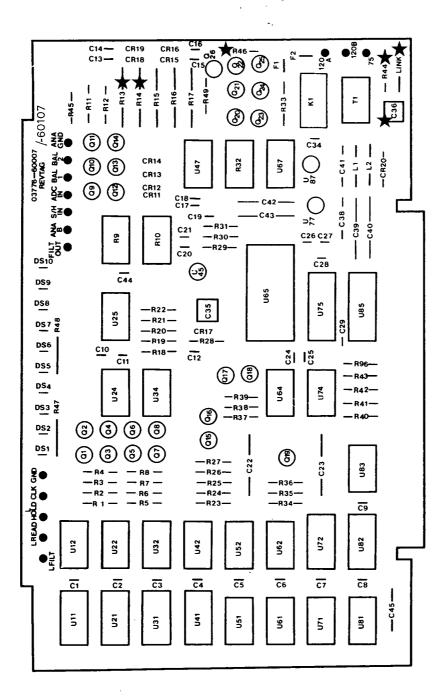
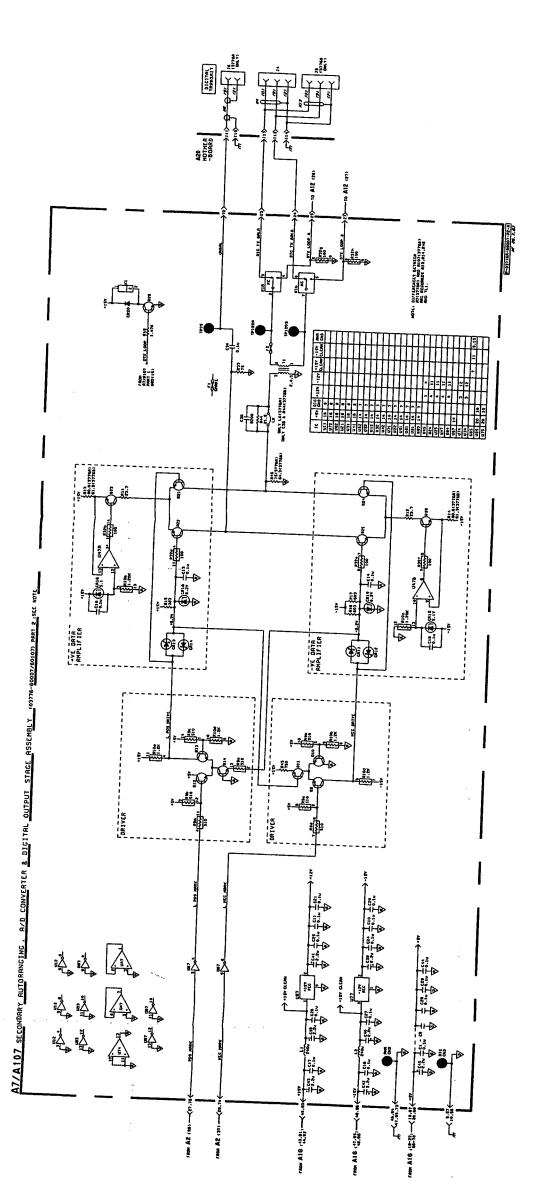

★ HIGHLIGHTS DIFFERENCES BETWEEN A7 AND A107. REFER TO NOTES ADJACENT TO COMPONENTS ON A7/A107 SCHEMATIC.

Figure A7-3 A7/A107 Component Location


8-A7-3

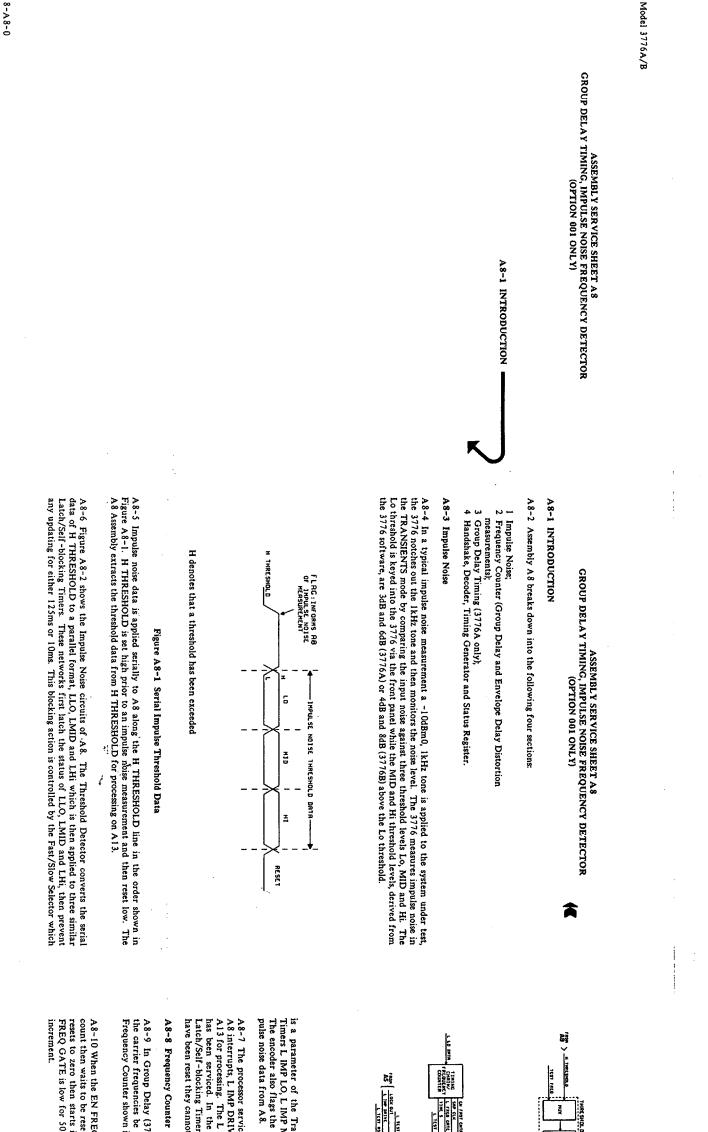

★ HIGHLIGHTS DIFFERENCES BETWEEN A7 AND A107. REFER TO NOTES ADJACENT TO COMPONENTS ON A7/A107 SCHEMATIC.

Figure A7-3 A7/A107 Component Location

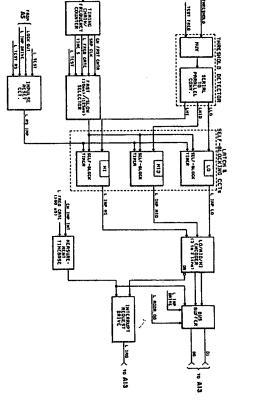

8-A7-S

Figure A7-5 A7/A107 Schematic Diagram - Part 2 (. .

increment.

A8-7 The processor services the interrupt request via the A5 Assembly. When the processor services the A8 interrupt, L IMP DRIVE is generated. This signal enables the Bus Buffers which present D0 and D1 to A13 for processing. The L IMP DRIVE signal is also used to remove L IRQ after the impulse noise interrupt has been serviced. In the Impulse Reset circuit L IMP DRIVE, produces L RS IMP which resets the Latch/Self-blocking Timers and removes the low L IRQ signal. Although the Latch/Self-blocking Timers and removes the low L IRQ signal. Although the Latch/Self-blocking Timers have been reset they cannot be updated until after the 125ms or 10ms blocking period.

TEST FREE

ŝ

1)

Figure A8-2 Impulse Noise

Ċ. --.

is a parameter of the Transients measurements. The signals at the outputs of the Latch/Self-blocking Timers L IMP LO, L IMP MID and L IMP Hi are converted from 3 to 2 lines by the Lo/MID/Hi Encoder. The encoder also flags the Interrupt Request Driver which instructs the processor on A13 to read the im-pulse noise data from A8.

A8-9 In Group Delay (3776A) and Envelope Delay Distortion (3776B) measurements it is necessary that the carrier frequencies be measured and presented to the front panel displays. This is done on A8 by the Frequency Counter shown in Figure A8-3.

A8-10 When the EN FREQ GATE line is true the Timing Chain/Frequency Counter increments to its full count then waits to be reset by L ADDR 2E. Each time L ADDR 2E is pulsed, the Frequency Gate Counter resets to zero then starts incrementing to its full count again. During this sequence the gating signal L FREQ GATE is low for 50ms then high for 50ms. While L FREQ GATE is low the Frequency Counter can

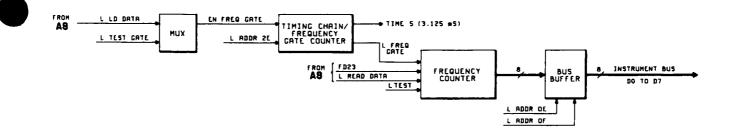


Figure A8-3 Frequency Counter

A8-11 The low L FREQ GATE signal allows the Frequency Counter to increment each time there is a zero crossing of the carrier signal, ie a change in state of the sign bit, FD23, of the digital filter data bus during the L READ DATA instruction. When the gating signal is removed the zero crossing count is applied via the Bus Buffer to A13 for processing.

A8-12 There are two zero crossings in 1 cycle, the number of zero crossings in 50ms equals the number of cycles in 100ms. Therefore the number of zero crossings counted multiplied by 10 gives the carrier frequency in Hz.

A8-13 Group Delay Timing

A8-14 The 3776 uses the recommended CCITT (0.81) method to measure Group Delay. The 3776 measures group delay in the PCM domain or in the analog domain, Figure A8-4 shows a typical analog group delay waveform. The 41 2/3Hz and 166 2/3Hz modulation envelopes shown in Figure A8-4 are used by the 3776 to measure Group Delay.

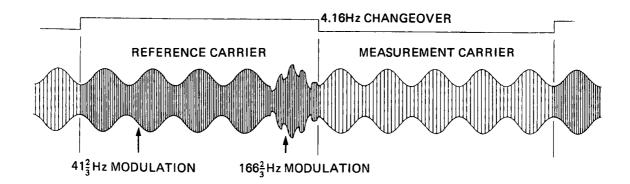


Figure A8-4 Group Delay Waveform

A8-15 The phase of the 41 2/3Hz modulation envelope is measured alternately in the Reference and Measurement carrier periods by the 3776. Differences in phase define the group delay.

A8-16 The 166 2/3Hz modulation is a synchronising marker and indicates the start/finish of the Measurement/Reference carrier. This marker detected on A9 is applied to the Group Delay Timing on A8 to generate the timing signals which determine where in the Reference and Measurement periods the 41 2/3Hz modulation is sampled. Figure A8-5 shows the Group Delay Timing circuits.

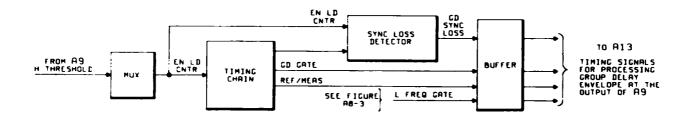


Figure A8-5 Group Delay Timing

A8-17 Signature Analysis (SA)

A8-18 The Impulse Noise, Group Delay and Frequency Counter circuits are covered by signature analysis. If a fault condition is suspected in any of these circuits refer to the GENERAL SERVICE SHEET G9 and check the signatures obtained against the listed ones. Because these circuits can be checked using SA, NO detailed description of the Group Delay circuits is given.

A8-19 Handshake, Address Decoder, Status Register

A8-20 These circuits allow the Impulse Noise and Group Delay circuits to perform their respective functions by supplying the appropriate control data.

A8-21 The Address Decoder and Handshake Logic implements the handshake protocol between the A8 and A13 Assemblies (see Handshake Protocol in Assembly Service Sheet A13). The Status Register latches control data from the processor on A13.

A8-22 CIRCUIT DESCRIPTION

A8-23 Impulse Noise

A8-24 The Threshold Detector comprises a MUX, counter and a decoder. The MUX routes serially encoded impulse threshold information (see Figure A8-1) or a test signal TEST FREQ (used during a self test check) to the counter and decoder. These two devices U32 and U22 convert the serial data at TP6 to a parallel form at TP7, 8 and 9.

8-A8-3

A8-25 The L Lo, L MID and L Hi lines from TP7, 8 and 9 are applied to three identical Latch/Self-blocking Timers - only the LO network is described. The L LO signal is latched into the SR flip-flop U24A to produce L IMP LO which is applied to the Lo/MID/Hi Encoder U23 and to SR flip-flop U24B. No subsequent impulses can be recorded by U24A until:

- 1 the processor on A13 has read this particular impulse (the reading action produces a pulse on L RS IMP which resets U24A);
- 2 the self blocking mechanism times out.

A high LATCH Lo at the output of U24B prevents further impulse threshold updating (self-blocking) by holding the reset input of U24A high. LATCH Lo allows the Self blocking Timer U34A/U45A to be incremented by the clock signals from the Fast/Slow Selector. Further impulses may be latched after the Self blocking Timer has incremented through to reset U24B, ie LATCH Lo set low. The times to reset U24B, 125ms (SLOW) and 10ms (FAST) are TRANSIENT parameters and are determined by the clock rates produced at the output of the Fast/Slow Selector.

A8-26 The outputs of the three Latch/Self blocking Timers are applied to the highest-priority-to-binary encoder U23 which operates as a 3 to 2 line encoder. When any of the inputs to U23 go low, the encoder also produces an impulse threshold interrupt flag which drives L IRQ at U42(8). When the processor services the interrupt L IMP DRIVE is generated on A5 and applied to the bus buffer U64 and to the Impulse Reset circuit to produce L RS IMP. This signal removes the interrupt flag at U23(14) by setting all the lines L Lo, L MID and L Hi high.

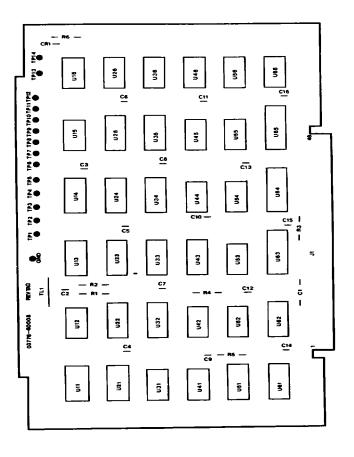
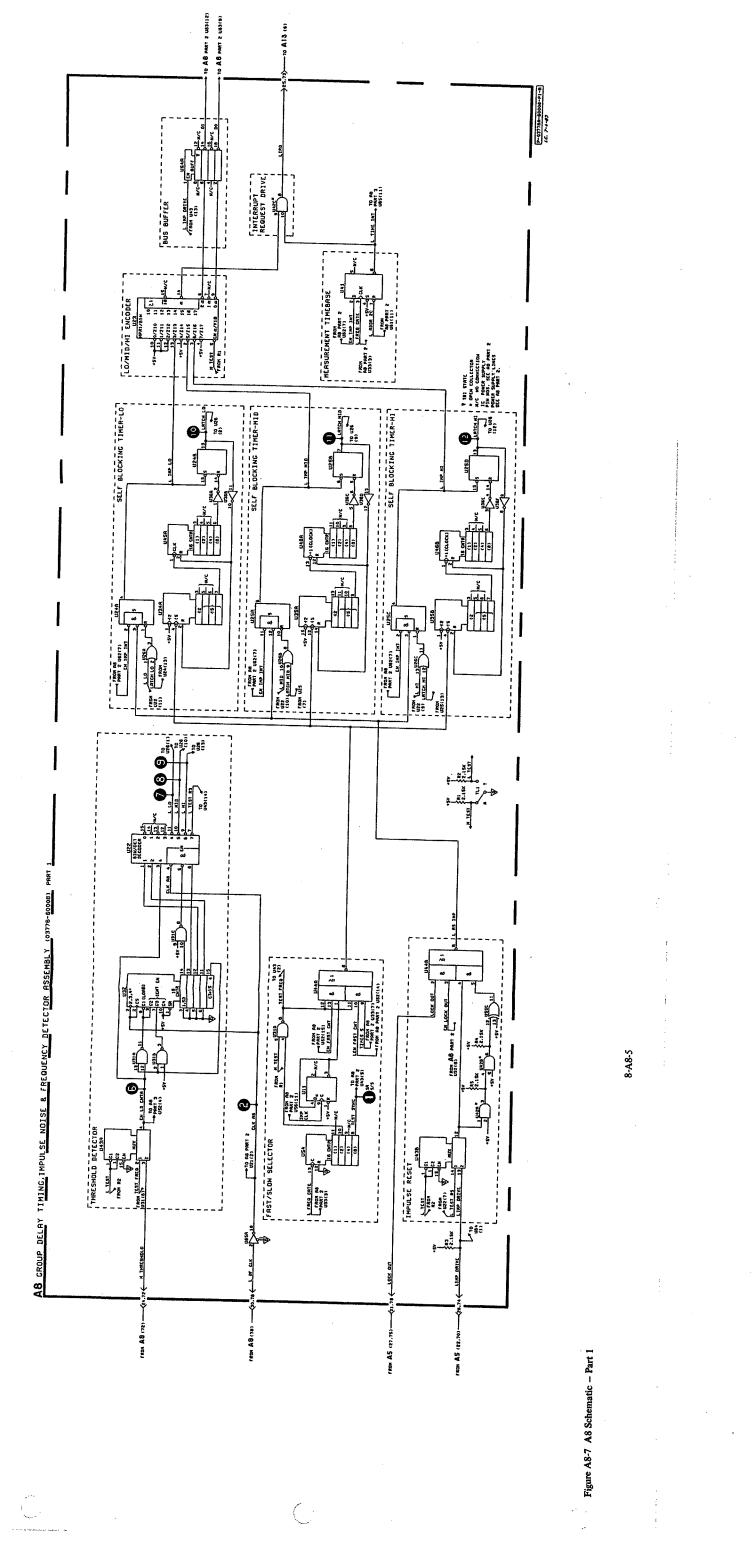
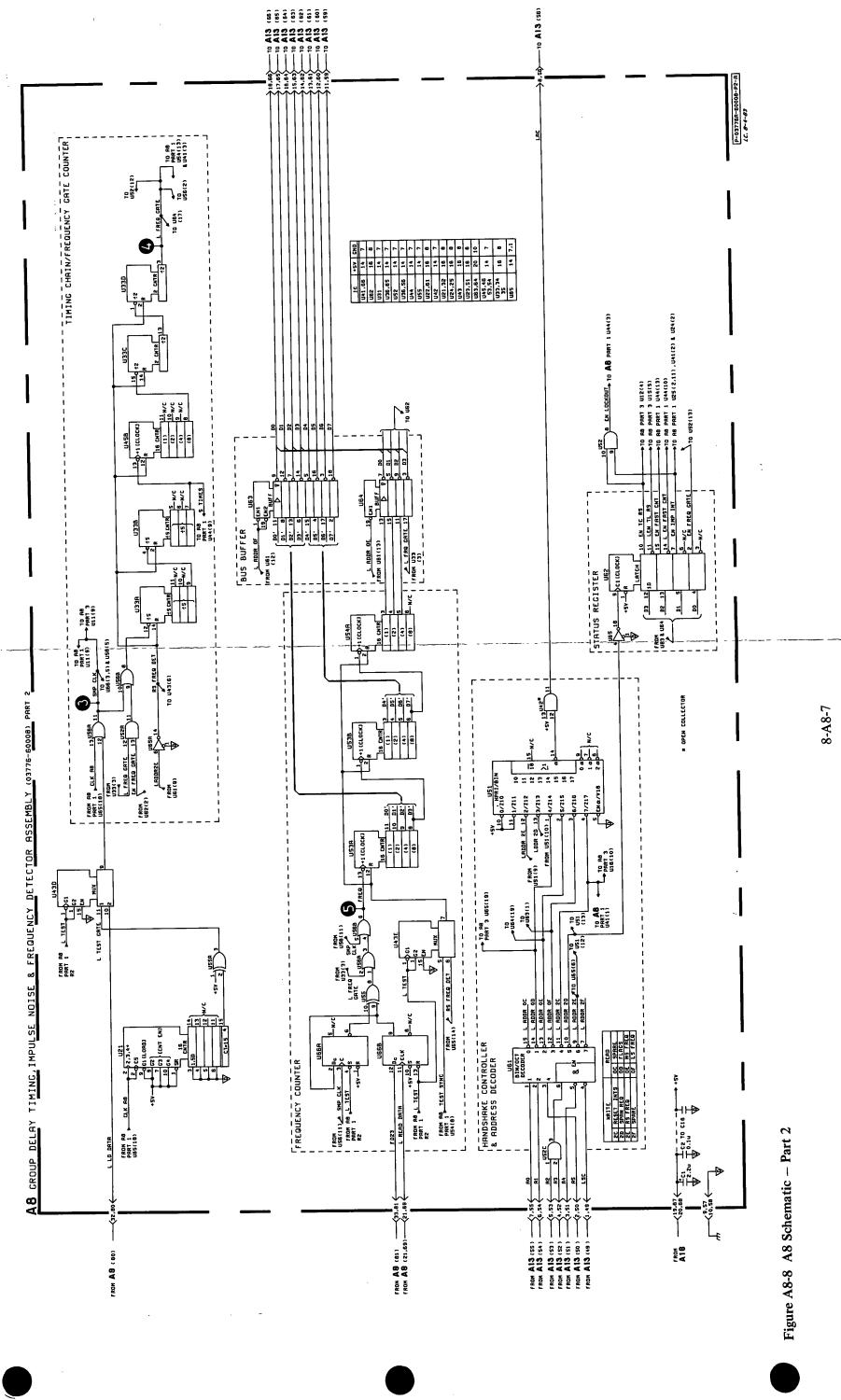



Figure A8-6 A8 Component Location

. .


8-**A**8-4

- R6 ---CR1 -Ĕ● Ĩ U26 **U36** U46 **066** U56 U16 C16 <u>C6</u> <u>C11</u> U25 U 65 **C15 U35** U55 U45 <u>C8</u> **₽**● <u>C3</u> C13 ž. ₫• 164 ž U24 **U34 U44** 154 **20** C10 ã● c15 | | ₽ | | <u>C5</u> ₽ **U6**3 **●**₿ 5 U23 N33 U43 US3 C: N - R2 --C2 - R1 --<u>C7</u> REV TAG ۱ LL <u>C12</u> 5 — R4 ł 03776-60008 **U32** U\$2 U12 U22 U62 U42 <u>C4</u> <u>C14</u> — R5 ľ <u>c</u>9 ŝ 5 **U**31 le) **U4**1 USI

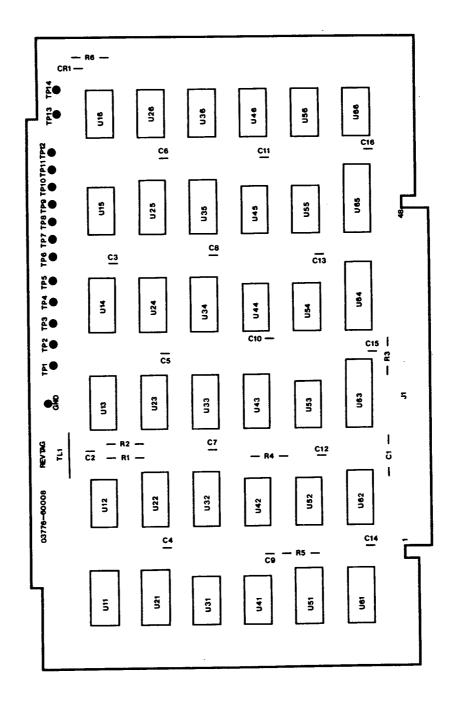
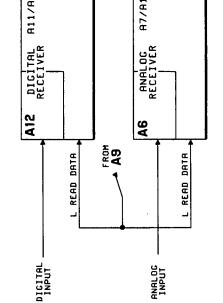


Figure A8-6 A8 Component Location

Figure A8-9 Schematic – Part 3

and difference equations for digital filtering Figure A9-3 illustrates the transfer functions for a 2nd order tions which in turn may be transformed to the time domain as differential equations for analog filtering A9-13 DC thresholds required during digital filtering are applied to the Digital Filter chip from A13 via mined bands of frequency. They may be represented analytically in the frequency domain by transfer func-A9-15 Digital and analog filters are frequency-selective systems which discriminate between predeter-TO D/A MONITOR ON A4/A204 TO A4/A204 D/B MONITOR P-3776A-F1CA9-2 7.8.28-9-83 T0 A13 PROCESSOR DATA BUS TO D7 L DF OUT DETECTOR OUTPUT (3x8 bit OUTPUTS) 1 SER/PAR INTERRUPT RATE CONTROL L READ DATA L THRESHOLD I L LD DATA FILTER INSTRUCTION BUS the Processor Data Bus and Threshold Register. MCR DUT F D23 FMCR I T0 17 印 INSTRUCTION DECODER DICITAL FILTER CHIP F D8 A9-14 Analog and Digital Filters 2 IO TO I7 ^{TO} A12 ⁸ A6 I analog and digital filter. FILTER INPUT BUS FILTER PROGRAM RAM I FD8 TO FD23 RRO TO RRB I I L THRESHOLD THRES-HOLD REGISTER CNTR RESET RAM ADDRESS COUNTER INPUT/ OUTPUT BUFFER SYNC PROCESSOR DATA BUS HCLK FILTER INPUT BUS START initiates the digital filtering routine by resetting the RAM Address Counter. The reset address at the output of the counter locates an instruction in the Filter Program RAM which produces L READ READ DATA allows the receiver data to be applied to the Digital Filter Chip via the Filter Input Bus. During the execution of the digital filtering the Filter Program RAM addresses. Instructions contained in the addressed locations are applied to the Instruction A9-10 The RAM Address Counter clocked by P CLK divided by 2 (H CLK) increments through the Filter A9-9 When either the Digital Receiver or Analog Receiver output data is ready for processing L FILTER Decoder and the Digital Filter chip. These circuit elements contain the required logic necessary to filter bi-D0 T0 D7 data from these are applied in bursts of 24 bits to:-L FILTER START **A**9 ... PCLK FROM A13 F ROM FD8 TO FD23 D8 T0 FD23 L FILTER START L FILTER START nary input data. A typical 2nd order filter is shown in Figure A9-3. DICITAL A11/A111 RECEIVER 0 A9-11 The Digital Filter chip has two serial outputs, 87/A1 DATA at the output of the Instruction Decoder. L ANALOC RECEIVER Program RAM is in the READ mode. AI2 **A6** P ROM DATA L READ DATA L READ DIGITAL RNAL OC INPUT

.


. . .

Filtering of Input Data Figure A9-2 Digital

1 The processor on A13 for further processing via the serial to parallel Detector Output - 2 The rear panel MONitor O/P via the D/A Converter on A4/A204.

A9-12 The 24-bits, clocked into the Detector Output are applied to the processor on A13 in 3 X 8bit bursts via the Processor Data Bus D0 to D7.

Only one data source is connected to A9 for processing at a time and the data for filtering is applied to the Digital Filter chip via the Filter Input Bus (FD8 to FD23).

ASSEMBLY SERVICE SHEET A9 DIGITAL FILTER

A9-1 INTRODUCTION

A9-2 A filter response may be expressed as a mathematical equation (see Paragraph 9-15), ie can be expressed as a series of add, subtract and shift operations. The A9 Assembly performs these arithmetic operations to digitally filter binary data.

A9-3 Programming the Digital Filter Hardware on A9

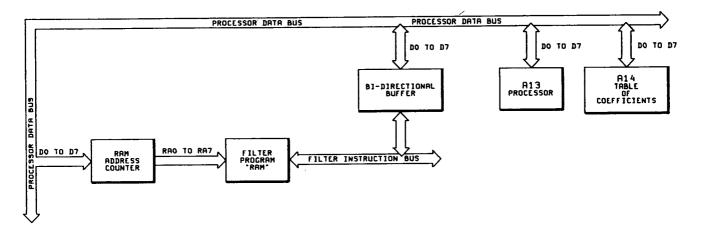


Figure A9-1 Loading Digital Filter Instructions into RAM

A9-4 When the 3776 front panel RUN key is pressed, the MPU on A13 assembles the filter coefficients into a sequence of add, subtract and shift operations and down loads these into the Filter Program RAM (see Figure A9-1). The MPU's initial tasks (in the RUN state) are to:-

- 1 select the appropriate measurement filter coefficients
- 2 program the A9 hardware.

A9-5 Once programmed A9 realises the digital filtering of sampled signals as represented by 2's complement binary words. Digital filtering commences on A9 shortly after the RUN key is pressed.

A9-6 Figure A9-1 illustrates the data flow for loading digital filter instructions into the Filter Program RAM. To load an instruction the processor first addresses the Filter Program RAM via the RAM Address Counter, then loads the appropriate instruction into the addressed location via the Bi-directional Buffer. This action is repeated until all instructions defining the filter are stored. A9 is now ready to filter the incoming data.

A9-7 Real Time Filtering

A9-8 Input data for digital filtering is applied to A9 from two sources (see Figure A9-2), these are:-

- 1 Digital Receiver (A12/A11/A111)
- 2 Analog Receiver (A6/A7/A107).

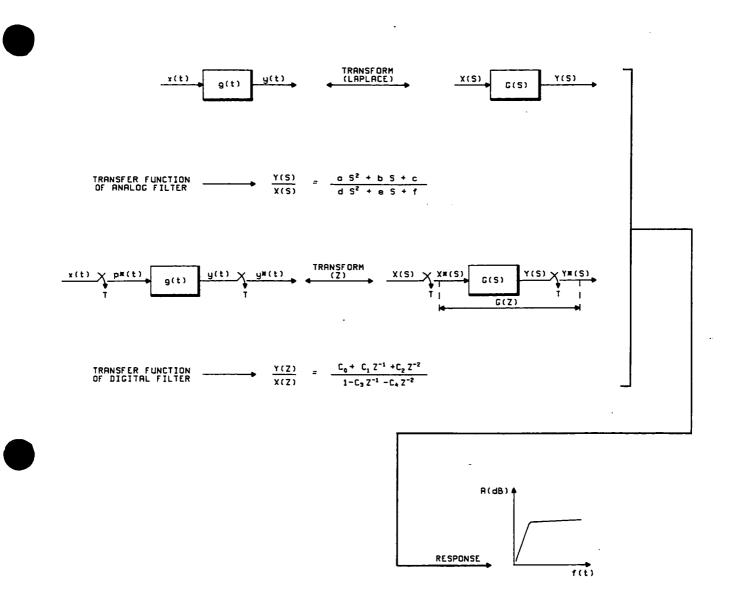


Figure A9-3 Transfer Functions and Response of 2nd Order Filter

A9-16 The A9 Assembly controlled by A13/A14 uses the transfer function of the digital filter as shown in Figure A9-3 to filter sampled signals. The transfer function is transformed to the time domain by the inverse (z) transform, ie

 $Y(Z) (1-C_3 Z^{-1}-C_4 Z^{-2}) = X(Z) (C_0+C_1 Z^{f-1}+C_2 Z^{-2})$

uses inverse transform to produce difference equation

$$Y_{nT} = C_0 X_{nT} + C_1 X_{(n-1)T} + C_2 X_{(n-2)T} + C_3 Y_{(n-1)T} + C_4 Y_{(n-2)T}$$

where, nT is current sampling time.

The difference equation represents the basic model for the 2nd order digital filter and is implemented by the 3776 operating program on A13/A14 and is diagramatically shown in Figure A9-4.

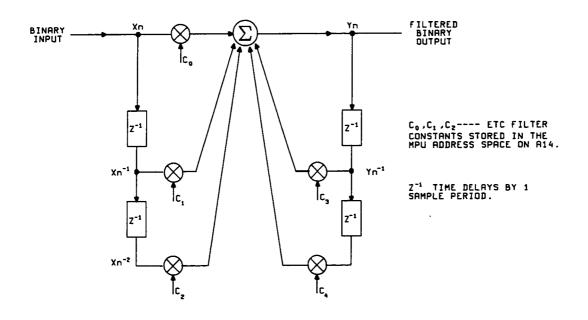


Figure A9-4 Model of 2nd Order Filter

A9-17 The basic model can be cascaded by the 3776 software to produce a series of nth order filters, ie y_n , y_{n-1} and y_{n-2} become X_n , X_{n-1} and X_{n-2} of the next stage.

A9-18 Digital Filter troubleshooting information is contained in GENERAL SERVICE SHEET G8.

•.

A9 Component Location is printed on the reverse of this sheet to facilitate its use in conjunction with the A9 Schematic.

-

. ..

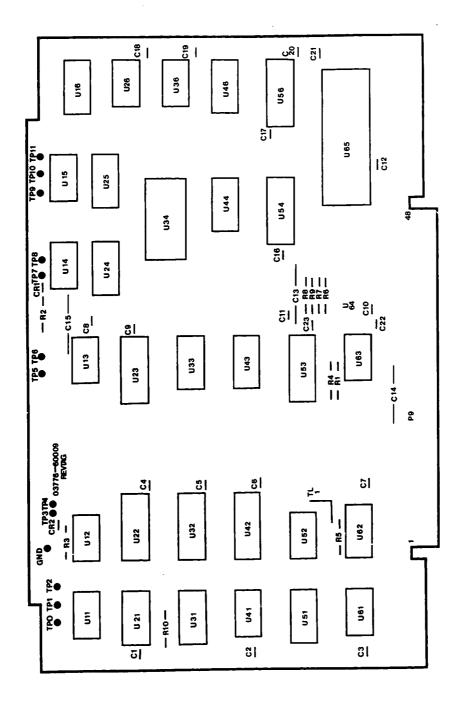
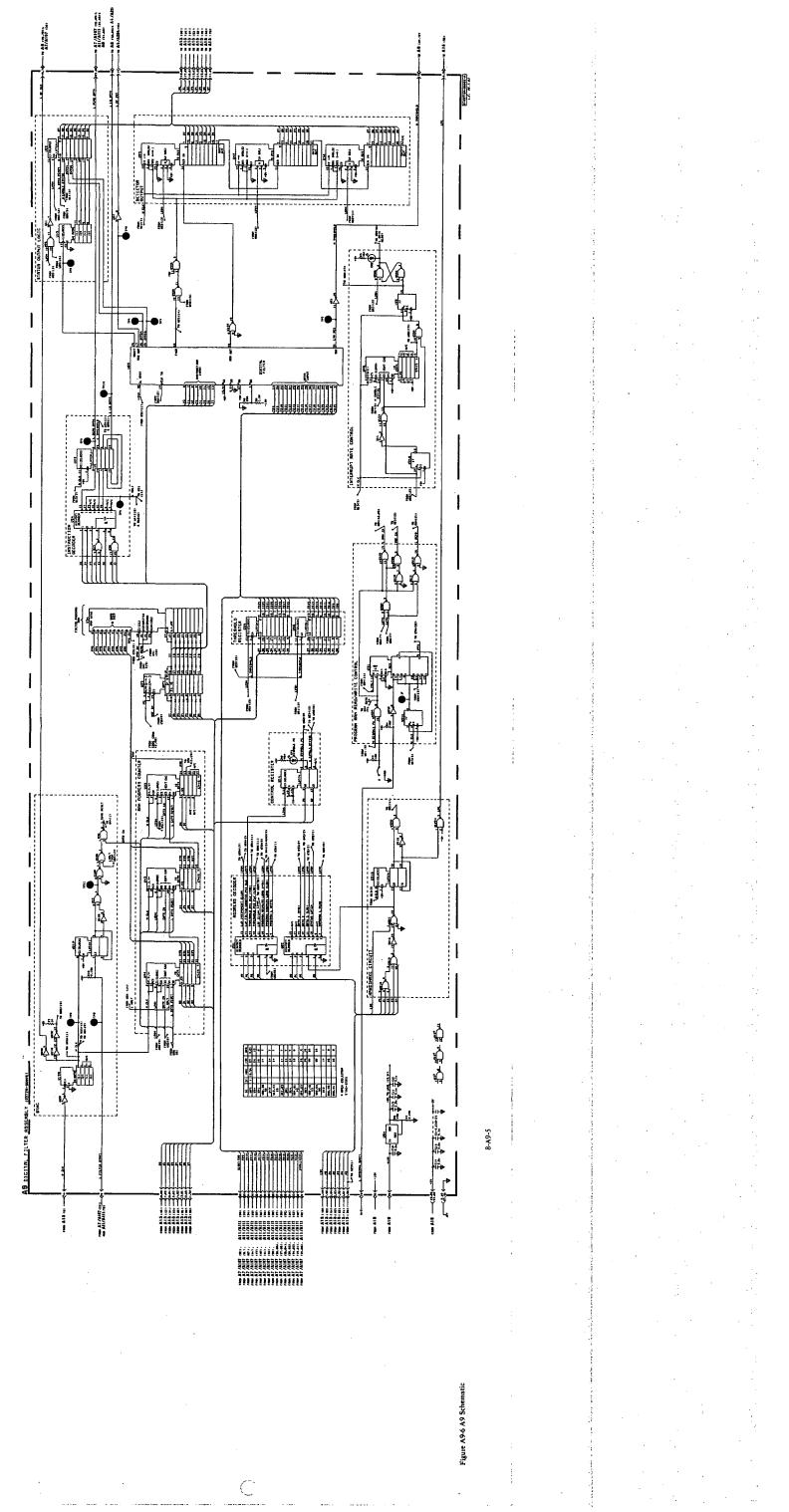



Figure A9-5 A9 Component Location

A 11-17 The Digital Filter Handshake Control produces L FILTER START (see Figure A11-1) when RX SEL TS goes low. L FILTER START informs the digital filter on A9 that data on A11/A111 is ready for processing. When the digital filter is ready for new data L READ DATA is applied to the Digital Filter Handshake Control which in turn produces the enable signal for the Expander. A11-13 Once alignment is achieved the Test Timeslot Selector allows data to be accessed and extracted from the timeslot under test. The Test Timeslot Selector compares the Receiver timing data (RXTC and KXFC see Figure A11-1) from the Timeslot Selector with the control pattern for the required timeslot (TEST WORD in Figure A11-1). When the bit pattern on both sets of inputs of the Test Timeisot Selector Comparator are the same, TTL DATA is the data contained in the test timeslot. The Comparator output RX SEL TS goes true indicating that the required data is available and may be clocked into the Test Timeslot Restor Selector. Timeslot Restored and set to the test timeslot the Test Timeslot selector Comparator are the same, TTL DATA is the data contained in the test timeslot. The Comparator output RX SEL TS goes true indicating that the required data is available and may be clocked into the Test Timeslot Restored RX Selector. A 11-15 The Expander decodes the timeslot data stored in the Test Timeslot Register in accordance with the A-Law characteristics for the 3776B. When the Expander receives an enable signal from the Digital Filter Handshake Control, it decodes the test timeslot data and applies it to the digital filter on A9 for processing. Al 1-11 Once alignment is achieved the Frame and Multiframe Alignment Detector continuously monitors the status of TTL DATA for frame and multiframe errors and informs the Status Condition Detector cir-cuit when the frame and multiframe alignment error criterion are violated. The Frame and Multiframe Alignment Detector then tries to re-align the Digital Receiver with the PCM data structure. A11-10 If however, the frame and multiframe criteria are NOT met, the Timing Generator is reset and held in the reset state until an alignment pattern is detected. It should be noted that it may take many at-tempts before alignment is achieved. DETECTION TEST TIMESLOT REGISTER (LRXMFA) TO TIMESLOT SELECTOR TO STATUS CONDITION Figure A11-2 Simplified Alignment Loop PCN ERRORS ۶ RL IGNMENT RCHIEVED SCT FRAME AND MULTIFRAME ALIGNMENT DETECTOR TIMING CENERATOR COUNT A11-16 Digital Filter Handshake Control RX PCH A11-12 Test Timeslot Selector TTL DRTR A11-14 Expander 10 A13 TIO A13 To A13 propriate data in TTL DATA it is necessary to synchronise the Timing Generator on A11/A111 to TTL DATA, is align the Digital Receiver to the structure of the incoming PCM stream. When alignment is achieved the timeslot containing the data to be processed may be accessed using the Test Timeslot Selector. The accessed data is then stored in the Test Timeslot Register prior to processing, it is also applied to the Peak Codes Detector. A11-9 When a bit/pattern matching the alignment bit/pattern is detected the Timing Generator is enabled by INITIATE COUNT (see Figure A11-2) and starts counting clock pulses to the next alignment bit/pattern. The Frame and Multiframe Alignment Detector rechecks the TTL DATA for each alignment bit/pattern. If the alignment pattern remains good the Timing Generator continues counting and the next alignment pattern is re-checked. This action is repeated, and when the frame and multiframe alignment criteria are satisfied (see APPENDIX A) alignment is considered to be achieved. If alignment is achieved then the alignment loop produces the ALIGNMENT ACHIEVED signal as illustrated in Figure A11-2. P-037764-80011/18-011.80 A11-8 Fundamental to any Digital Receiver operation is alignment. Alignment information is contained in all PCM structures shown in APPENDIX A. The Frame and Multiframe Alignment Detector and Timing Generator interrogate the TTL DATA looking for the alignment information. A11-6 When access is required to data in a particular timeslot the instruments MPU will down load the appropriate control bits to the Test Timeslot Selector via the Test Word Register. 710 A13 FD0 T0 FD23 To A9 5 6 THSTRUMENT 1 All are in ٦ R-LRN (3776R) U-LRN (3776B) EXPRNDER BUFFCR L FILTER STAR ł ŧ A11-7 Aligning the Digital Receiver to the PCM Data Structure TEST TIMESLOT REGISTER DIGITAL FILTER MANDSHRKE DETECTOR PCRK CODES DETECTOR DATA OUTPUT BULFER DRY STHC 1 ŧ -Z DRY DATA RCADY rach All/All1 L CLR STATUS rece AS L READ BATE ۱ FROM RX BC DATA Į I TX SELTS STRTUS CONDITION DETECTOR 1 TEST TIMESLOT SELECTION I 22. 22. L ł 70 A2 RY TSC DATA **CACK** IN FRIA T ł TCST FRAME RWD MULTIFRAME ALICKMENT DETECTOR TEST NORD RECISTER TININC CEMERATOR RESC) DATR 1 L 5 1 1 DATA 2222 AII/AIII 1 general description of is illustrated in Figure TO A2/A102 A5

Model 3776A/B

ASSEMBLY SERVICE SHEET A11/A111 A11 A-LAW ALIGNMENT (3776A) A111 U-LAW ALIGNMENT (3776B)

A11-1 INTRODUCTION

A11-2 The 3776 Digital Receiver is made up of assemblies A11/A111 and A12, a these assemblies is given in this section. A block diagram of the Digital Receiver i A11-1.

All-3 PCM data is organised and transmitted in formal structures (timeslots, frames and multiframes), the most commonly used are illustrated in APPENDIX A. The 3776 Digital Receiver accesses data within PCM structures and applies the accessed data to A9 or A13 for processing.

A11-4 To access data within a PCM structure the Digital Receiver (A12) first converts the PCM data stream to a binary data stream and removes the transmission line code (see Figure A11-1). If required (ie when the 3776 is connected to a -30dB monitor point) the A12 assembly boosts the level of the incoming PCM data and also extracts the Digital Receiver clock signals which are used throughout assemblies A11/A111 and A12. In two-wire PCM systems timeslot translation may be required, this is also implemented on A12.

A11-5 The binary data stream (TTL DATA in Figure A11-1) is applied to A11/A111. To access the ap-

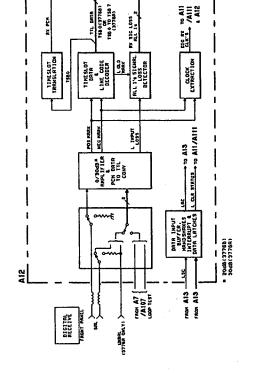


Figure A11-1 Digital Receiver Block Diagram

8-A11-0

A11-18 Digital Receiver Interrupts (LIRQ)

A11-19 If the frame or multiframe alignment status changes or the input signal status changes the Digital Receiver generates LIRQ which interrupts the processor on A13. The processor then interrogates the Status Condition Detector circuit via the Data Output Buffers. LIRQ can be disabled or masked by the Processor until it is ready to service the interrupt.

A11-20 Signature Analysis (SA) and Self Test Routines

A11-21 Due to the complexity of the A11/A111 Assembly, fault finding is performed using signature analysis (SA) and self test routines. These routines are stored in special utility programs, see GENERAL SERVICE SHEET G6. Figure A11-3 illustrates the circuits checked by SA.

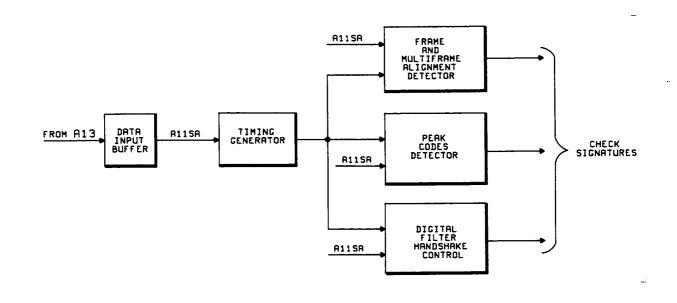
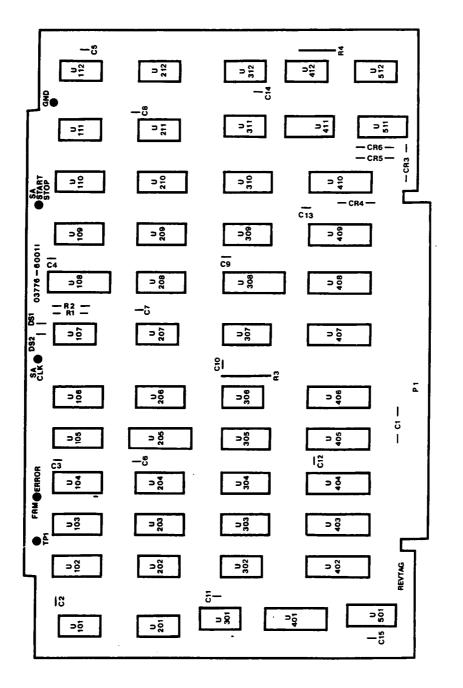


Figure A11-3 Signature Analysis


A11-22 The SA routine on A13 generates the A11 SA signal. This signal sets the circuits in Figure A11-3 to their SA mode.

A11-23 In the SA mode the Timing Generator is continuously incremented. Its outputs are applied to the circuits illustrated in Figure A11-3 and the signatures monitored (see GENERAL SERVICE SHEET G6).

A11-24 The Expander on A11/A111 is checked by a special self test routine (see GENERAL SERVICE SHEET G6).

A11-25 Peak Codes Detector


A11-26 The Peak Codes Detector is a ROM based state machine controlled by RX SEL TS and DRX PK EN. When both signals are true the incoming TTL DATA is compared with the stored PEAK POSitive and PEAK NEGative data. Depending on their magnitude relative to TTL DATA either of the PEAK values may be replaced by TTL DATA. If either RX SEL TS or DRX PK EN are false the stored PEAKS are held unchanging.

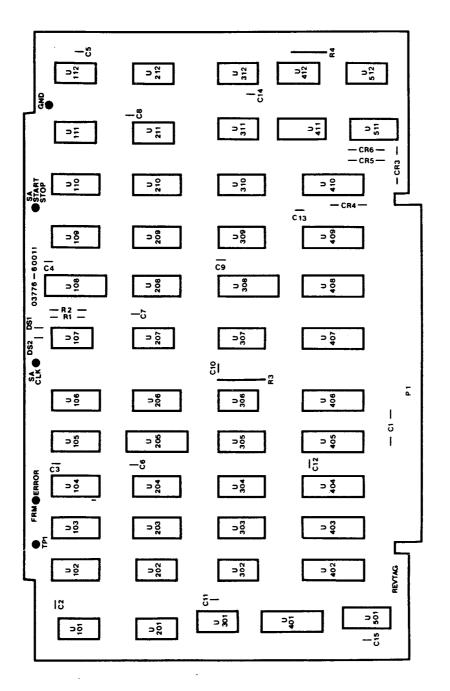
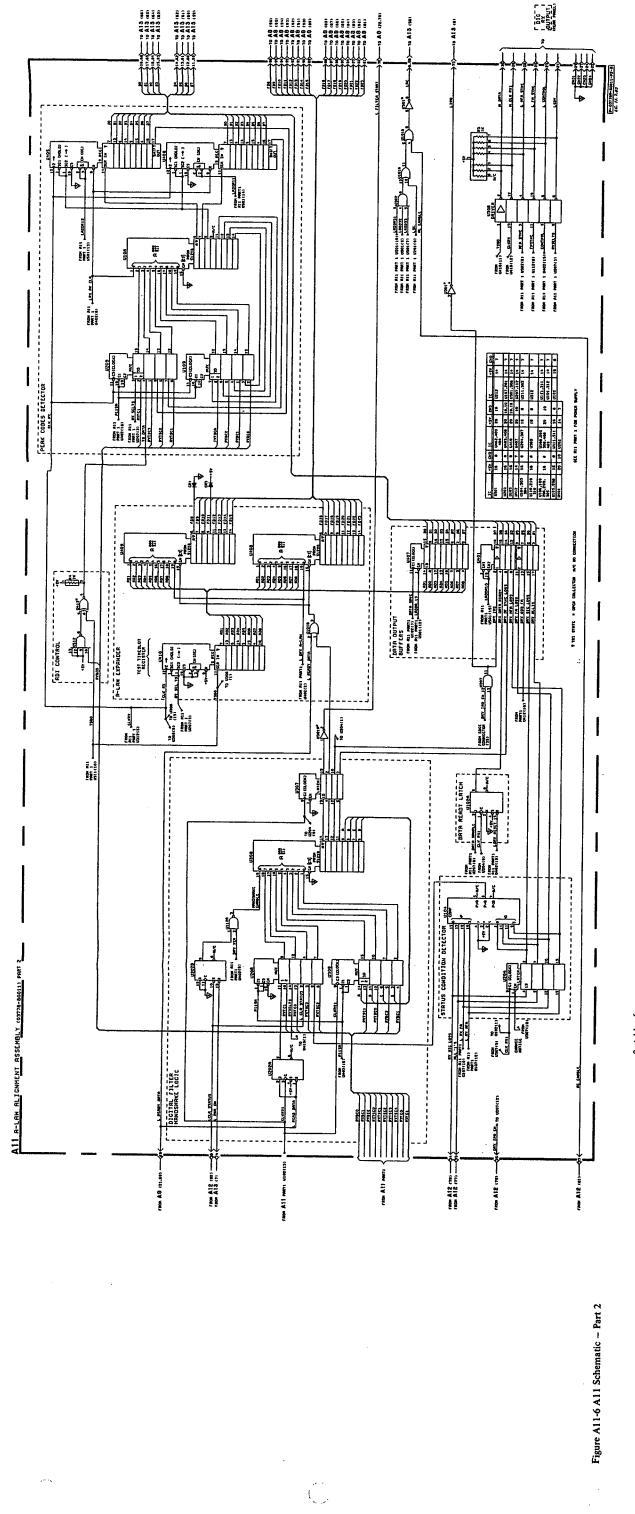

•

Figure A11-4 A11 Component Location

•



ł

1

8-A11-5

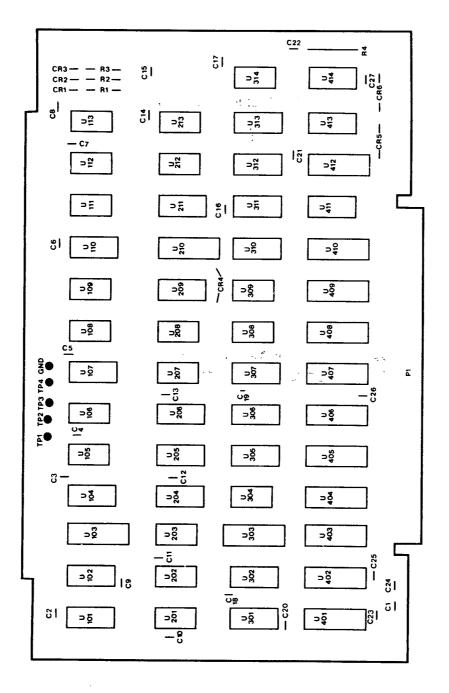
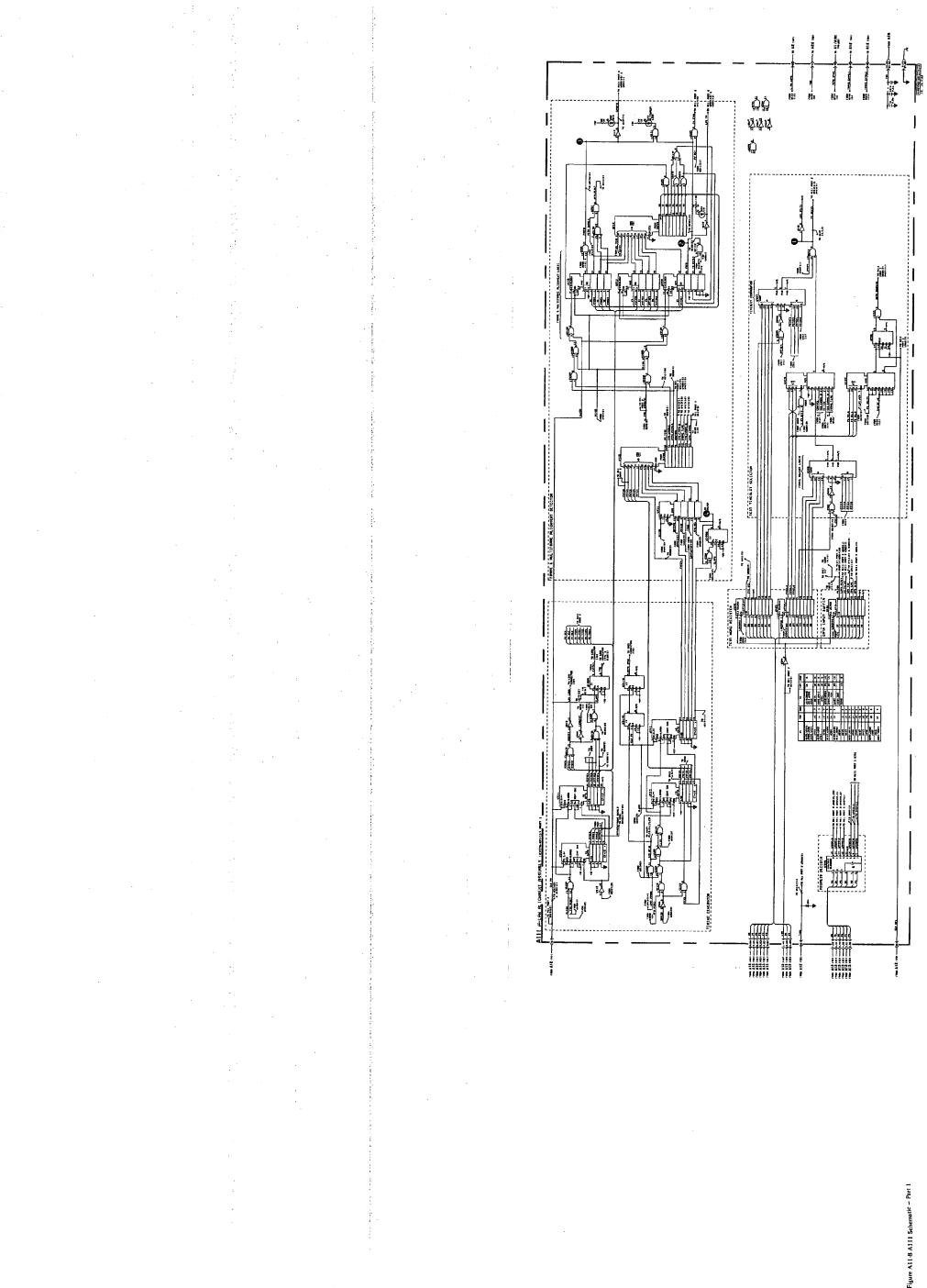
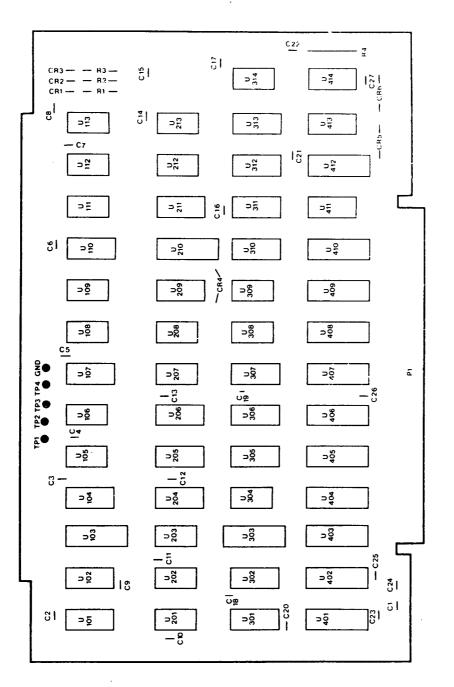
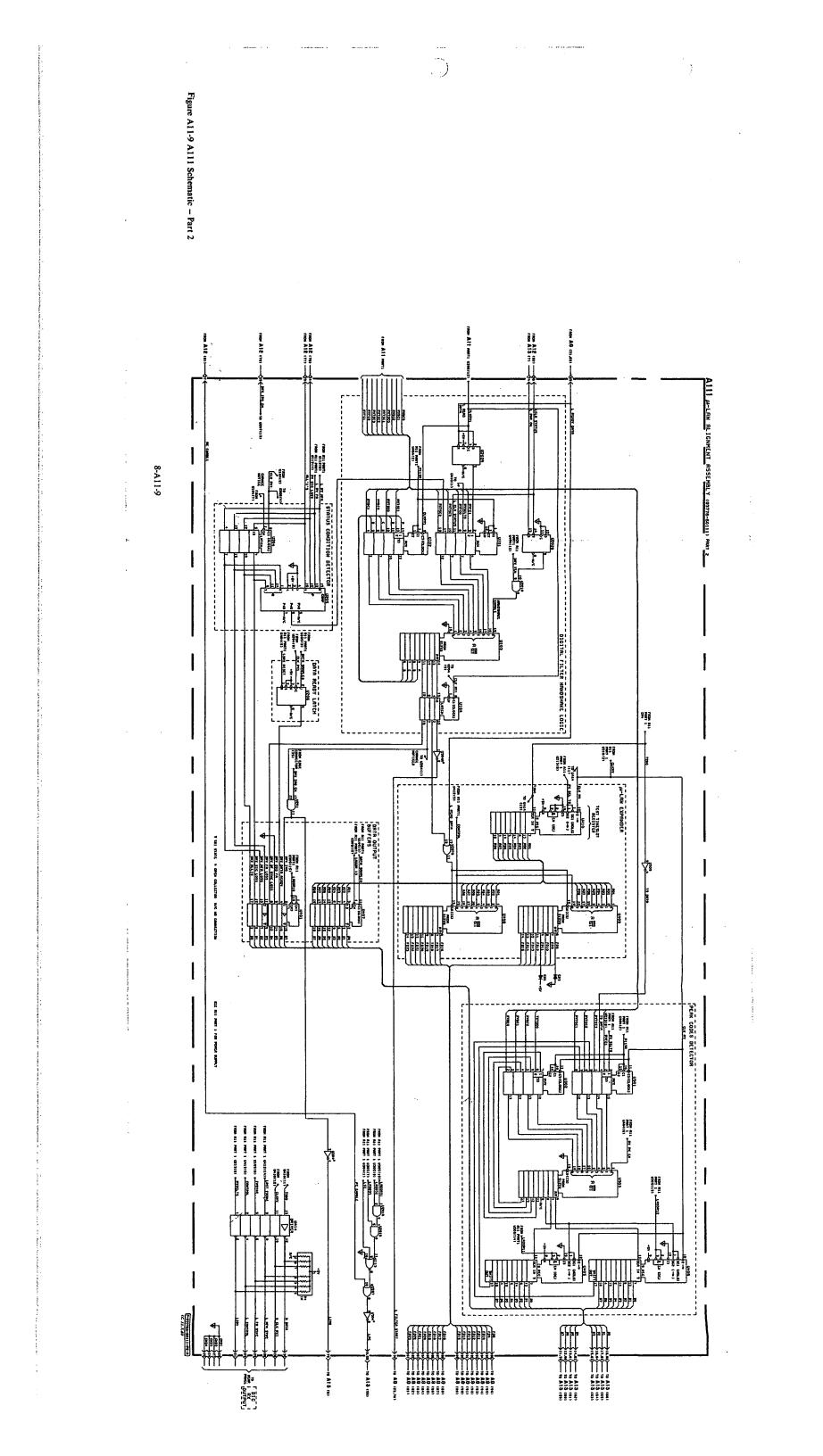




Figure A11-7 A111 Component Location



ł

1

Figure A11-7 A111 Component Location

· `` : A12-37 When A13 interrogates Data Buffer addresses 10, 11, 12 and 13 on A11/A111, the completion of the handshake is delayed by 2 CLK RX2 pulses by AC ENABLE. The delay ensures that the instrument bus D0 to D7 at the output of A11/A111 has settled before the accept data signal LAC is fed back to A13. The delay is provided by flip-flops U201A and U201B. A12-36 The handshake circuitry implements conventional handshake protocol between the A13 Assembly and the Digital Receiver A12, see Assembly Service Sheet A13. A12-29 The counters U305 to U307 along with U205 and U301 form the ALL 1s and Data Loss Detector recuit. So long as RX MARK equals the preceding value of RX MARK at U206(15) then the counters will increment. If the two signals are different the counters are reset. If the counter at U305(15) flags a carry and the value of L OLD MARK is zero then a DATA LOSS flag is set into U301A. If the counters count to 4096 then U307(15) goes high and an ALL 1s flag is set in U301B. A12-32 When A12SA is true, the counter U305 to U307 continuously increments. The outputs of the counter are applied to the Line Code Decoder and the output signatures checked (see GENERAL SERVICE SHEET G6). A 12-30 If a loss of PCM input is detected by U111 on A12 part 1, L INPUT LOSS is produced. This signal considered with DATA LOSS produces a high RX SIG LOSS at U202(11). The RX SIG LOSS signal is applied to the processor on A13 via the Status Condition Detector on A11/A111. A12-26 The CR time constants of the tank circuits are set to suit the PCM bit rates by test links TL1 and TL2 (See Test Links Table on A12 schematic). To set the natural frequency of the oscillator the PCM input is removed and C1 adjusted to give an output at CLK RX of 2,048kb/s for the 3776A and 1,544kb/s for the 3776B. A12-24 The A12 Assembly provides the clock signals for the Digital Receiver (A11/A111/A12) by generating the clock signals from the PCM data atream. The Clock Extraction circuit uses an injection - locked oscillator to extract the clocks from the PCM data. A12-25 The oscillator operates at 2048 kb/s for the 3776A and 1,544 kb/s for the 3776B. It comprises two tuned sections buffered by U108A/B. In the absence of a PCM input the circuit will free-run at the natural frequency of the two tank circuits L3/L4/C3/R3 and L1/L2/C1/C2/R2. When a PCM input is present the POS and NEG MARKs continually nudge the oscillator into SYNC with the PCM input. A12-28 The 3776 considers a sequence of 4096 consecutive marks constitute the ALL 1s condition. A12-34 The two chips U404 and U403 interface the A12 assembly with the A13 assembly. ; A12-33 Data Input Buffer, Address Decoder A12-31 SA Verification Code Generator A12-27 ALL is & Signal Loss Detector A12-35 Processor Handshake Control A 12-23 Clock Extraction A12 PART 2 A12-20 As soon as U211 detects a -ve mark, U210(9) is set low and disables U310, ie U310(7) is set high. The disable signal is removed from U310 by the next N CLK RX2 pulse to U2108. This allows the next mark in the PCM data to be detected. When U310 detects a +ve mark U210A disables U211, ie U211(7) is set high. Again the next N CLK RX2 pulse triggers flip-flop U210A which removes the low disable signal at U211(6). The detected +ve and -ve marks POS and NEG MARK at the output of the Data to TLL Converter are applied to the Clock Extraction and Line Code Decoder circuits. A12-21 If there is a loss of input signal, comparator UJJ1 detects this condition and produces L INPUT LOSS. The L INPUT LOSS signal disables comparaters UJ11 and U310 which sets POS and NEG MARK low. This condition allows the Clock Extraction circuit to free run at the PCM data rate. By allowing clock circuits to operate the Handshake protocol between the processor on A13 and the Digital Receiver (A11/A111/A12) is maintained. A12-18 All FCM data is fed via T1 or T2 to the selectable 0/30dB (3776A) or 0/20dB (3776B) Amplifier. T1 ensures all data is single ended prior to reaching the amplifier. The differential outputs of the amplifier are then applied to the Data to TTL Converter. When the gain of the amplifier is charged from 0dB to 30dB the MONITOR signal effective switches on Q7 and connects the emitters of Q5 and Q6 in the 3776A instrument. However, in a 2776B instrument TL3 is removed and R48 is between the emitters of Q5 and Q6, which sets the gain at 20dB. A12-22 The L INPUT LOSS signal is routed via A11/A111 to the processor on A13 to inform the processor of the change in status of the PCM data, ie loss of input signal. A12-19 The Data to TTL Converter comprises two comparators U310/U211 and two JK flip-flops U210A/B. The twe marks of a bipolar PCM signal are detected by U310 and the -ve marks by U211. A12-15 Test Links enable the A12(03776-60012) Assembly to be modified for 3776A and 3776B opera-tion, see Test Link Table on the A12 Schematic. A12-16 Switching between the BAL and UNBAL inputs in the 3776A is controlled by relays K1 and K2. In the 3776B there are two 1100hms BALanced inputs which are combined before presentation to A12. There are two digital input terminations for the 3776A:-A12-13 Input Signal Switching and Termination A12-17 Amplifier and Data to TTL Converter A12-14 The input PCM data stream is:-A12-12 CIRCUIT DESCRIPTION 1200hms BALanced Input, 750hms UNBALanced Input. 2,048kb/s for the 3776A 1,544kb/s for the 3776B

Model 3776A/B

ASSEMBLY SERVICE SHEET A12/A112 A12(3776A)/A112(3776B) DIGTTAL RECEIVER

A12 PART 1

A12-1 INTRODUCTION

A12-2 A general description of the A12 Assembly together with a block diagram is given in the Digital Receiver description contained in Assembly Service Sheet A11/A111. Further details of the A12 Assembly are given in this section. A12-3 FCM data may be applied to the A12 Assembly from an external source or internally from the Digital Transmitter O/P Assembly A7/A107. Source selection is controlled by PCM LOOP DRX and implemented by relays (see Figure A11-1). PCM LOOP DRX is derived from A13 via the Data Input Buffers.

A12-4 When the 3776A is connected to a -30dB monitor point (3776B is connected to -20dB monitor point) in a PCM system, the operator boosts the gain of the 0/30dB Amplifier (see Figure A11/A111-1) from 0dB to 30dB (20dB in 3776B) by pressing the front panel MONITOR key.

A12-5 Before any external PCM data can be processed it is necessary to convert it from its bipolar form to TTL binary form. This conversion is performed by the Data to TTL Converter.

A12-6 Again before any PCM Data can be processed the PCM Data transmission line code (see Assembly Service Sheet A2/A102 for codes) must be removed. This is done by the Line Code Decoder. After the transmission line code is removed the binary TTL DATA is applied to A11/A111 (see Assembly Service Sheet A11/A111) for further processing. Since the Line Code Decoder is a ROM based machine, signature analysis (SA) is used to check the circuit.

A 12-7 While checking the Line Code Decoder using SA, the SA Verification Code Generator operates as a continuously incrementing counter. The outputs of the counter RXVC (0 to 8) are applied to the input of the Line Code Decoder and the signatures at the outputs checked [see GENERAL SERVICE SHEET G6].

A12-8 The clock signals which drive the circuit elements on A11/A111 and A12 are extracted from the PCM data by the Clock Extraction circuit.

A12-9 The Data Input Buffer, Address Decoder and Processor Handshake Control interface the Digital Receiver (A11/A111/A12) with the Processor on A13.

A12-10 In a two-wire PCM system it may be necessary to perform timeslot translation on A12 by the Timeslot Translation Logic. In this mode of operation the PCM Data is tratimeslot to another in a predetermined manner.

A12-11 The status of the PCM data is monitored on A12 by the ALL 1s Signal Loss changes in status are detected, the processor on A13 is informed by the ALL 1s or RX SN These signals are fed to A13 via the A11/A111 Assembly.

ss Detector. When SIG LOSS signals.

This is performed asferred from one

8-A12-0

A12-38 The L CLR STATUS signal has a delay inserted by U303A and U303B and U304. The delay ensures that there is no updating of the PCM status data until A11/A111 has been serviced by A13. When L CLR STATUS goes low new status changes can be stored on A11/A111.

A12-39 Under certain conditions (such as searching for alignment) the Digital Receiver may send out continuous interrupts. This is undesirable as it may continuously tie-up the processor, due to the Digital Receiver's high IRQ priority.

A12-40 To prevent continuous interrupts U501 produces a low DRX IRQ EN pulse. This pulse inhibits the IRQ gate A11U201 and ensures a 100us (nominal) delay between the Data Output Buffer A11U401 being serviced by the processor and any subsequent Digital Receiver interrupts. During the 100us delay the processor services other assemblies in the 3776.

A12-41 Timeslot Translation Logic

A12-42 In the A-A LOOP mode of operation in a 2 wire system two different channels are used in the measurement, the timeslot contents from the GO path are transposed into a different timeslot in the Return path. The transposing of data from one timeslot to another is achieved by the Timeslot Translation circuit. Figure A12-1 illustrates the 3776 in the Loop mode and Table A12-1 shows the 3776A and 3776B Timeslot translations.

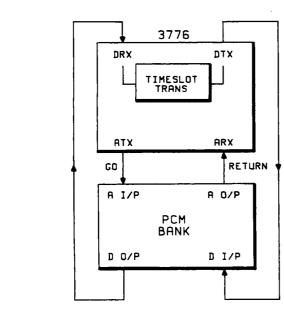
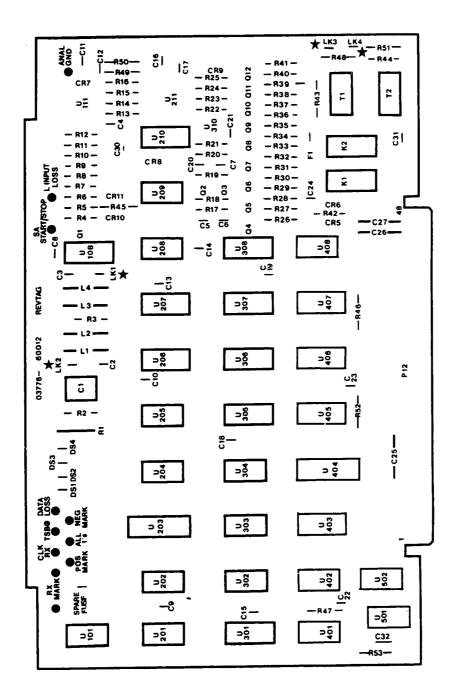



Figure A12-1 3776 Timeslot Translation

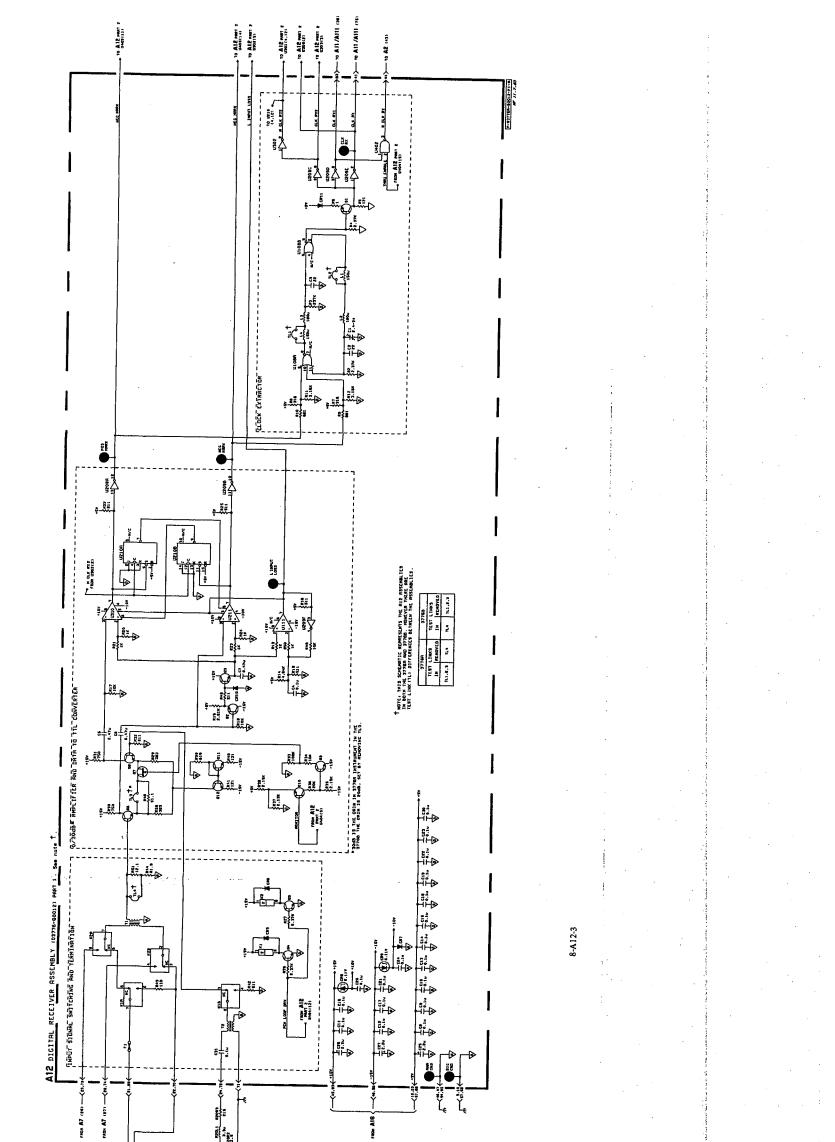

3776A	3776В
TS1 - TS17 TS2 - TS18 TS3 - TS19 TS4 - TS20 TS5 - TS21 TS6 - TS22 TS7 - TS23 TS8 - TS24 TS9 - TS26 TS11 - TS27 TS13 - TS29 TS14 - TS30 TS15 - TS31	TS1 - TS2 TS3 - TS4 TS5 - TS6 TS7 - TS8 TS9 - TS10 TS11 - TS12 TS13 - TS14 TS15 - TS16 TS17 - TS18 TS19 - TS20 TS21 - TS22 TS23 - TS24

Table A12-1 Timeslot Translation

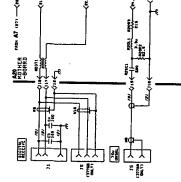
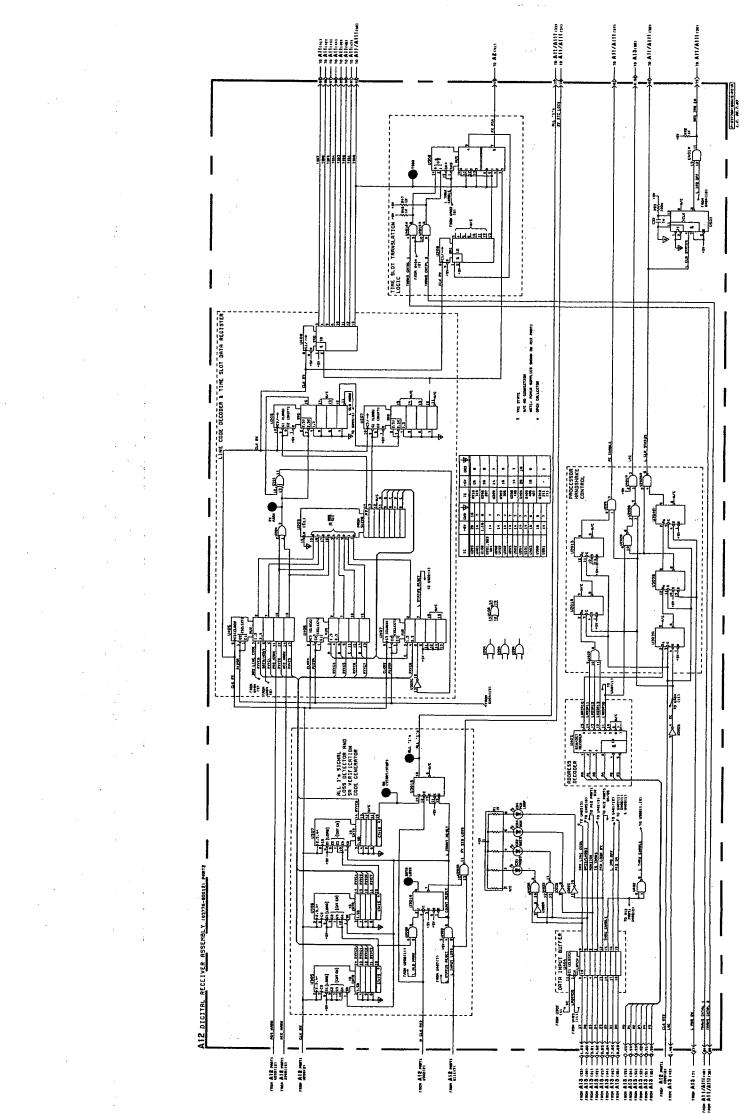

★ASSEMBLIES A12 & A112 ARE IDENTICAL EXCEPT FOR LINKING LK1, LK2, LK3 & LK4. REFER TO TABLE ON SCHEMATIC FOR DETAILS (A12 : 3776A/A112 : 3776B).

Figure A12-2 A12/A112 Component Location

يتعسين فيتقفين

Figure A12-3 A12/A112 Schematic - Part 1



2

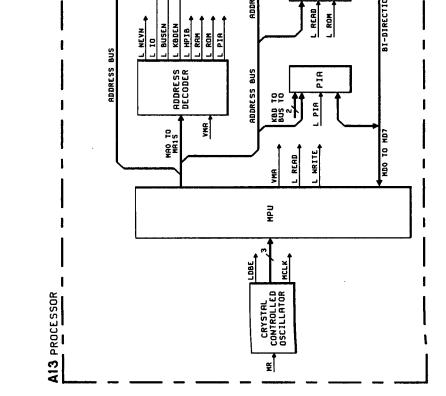
+ LK3 LK4 -R48- + R51--R48- + R44and 101 ទី ទឹ -R50----15 - R41 -CR9 R25 -R49---012 - R40 -R16 -CR7 -R39 -R24 -5 - R15 -- R38-2 55 R43 - R23 — F ∍≣ - R14 -- R37 -99 - R22 -— R13 — 30 -3 8 — R35 — 210 210 - R12 -- R34 -I ΞI - R11 -8ı R21 ő ¥ — R10 — - R20 --Ε — R32 — - R9 --CR8 C20 - - 5 6 — R31 — - R8 -– R19 – RN SOL - R30-- R7 -£ 8 8 - R18 -- R17 -8 C24 U 209. R6 - CR11 — R28 — _ R5 --845 _____ ___ R42 __ 8 — R27 — 8 R4 - CR10 — A26— <u>C5</u> <u>C6</u> CR5 -C27 5 SS. õ -C26-2 08 208 -5 408 ⊃õ ъ υ⊉ - ∃★ ះ -5 REVTAG 20⊂ ⊐č ⊃ģ -R46-R3 -. 60012 ¥ LK2 ⊃sõ ⊃ຶຶ່ຊ⊂ ⊃ຶ -8 03776-P12 5 ပဥ္သ 5 ŝ — R2 — ⊃Ş SS ⊃ğ⊂ Ē 8-S 0.25 26⊂ ⊃ğ⊂ ⊃ ‡ š E S 2<u>0</u>3 ⊐§ °3℃ · 꽃뜻 102 2<u>0</u>2 ⊐gc 20℃ MARK SPARE υR --° 5--R47 -⊇§⊂ **⊐**6 ⊃ē °2⊂ эē <u>C32</u> -R53-

★ASSEMBLIES A12 & A112 ARE IDENTICAL EXCEPT FOR LINKING LK1, LK2, LK3 & LK4. REFER TO TABLE ON SCHEMATIC FOR DETAILS (A12 : 3776A/A112 : 3776B).

Figure A12-2 A12/A112 Component Location

8-A12-5

rasa A12 mar uzusitu) rasa A12 mar rasa A12 mar rea Al2 man rum A12 mari . Į, Figure A12-4 A12/A112 Schematic - Part 2 :


y the following six sources:-	A13-10 The 8k byte ROM on A13 contains the power on sequence and special utility programs which check the processor in isolation from the rest of the instrument.
	A13-11 All circuit elements on A13 are controlled by the Address Decoder.
v	A13-12 The non-volatile memory NVM RAM on A14 is used to store set-up and default parameters. It is also used when there is a power failure. Under these conditions the operating program has 20ms to load all data being processed into the NVM RAM.
-service" routine. The operating program then ich requires attention.	A13-13 The RAM Standby Power Supply provides a 2.8V line to the NVM RAM under power down conditions.
ich when detected by the MPU immediately request. This interrupt occurs under power or keyboard bus time-out condition is detected. ted by LSC, is NOT completed by LAC. The PIA).	A13-14 CIRCUIT DESCRIPTION A13-15 Microbrocessor (MPU)
21/A22) via the Keyboard Bus, the remaining ed versions of the processor address and data instrument assembly replies with an acknow- (As far as the MPU is concerned the instru-	
ADRESS BUS ADRESS BUS ADDRESS BU	

A13-7 Interrupt requests (LIRQ) to the MPU can be issued by

A 8 Impulse Noise & Frequency Detector, Rear panel switches, A11/A111/A12 Digital Receiver, Front panel keys, A 5 Transients. HP-IB Chip,

These are maskable interrupts and can be enabled or disabled by the main 3776 operating program jumps to an "interrupt-request-service instructs the MPU to address each of the six sources to see which request also a non-maskable interrupt (LNMI) which whe breaks into the operating program to service the interrupt request failure (L PWR FAIL) conditions or when an instrument bus or keybo A time-out occurs when the bus Handshake Protocol initiated by NMI is fed to the MPU via the Peripheral Interface Adapter (PIA). Al 3-9 Data is transferred to the front panel assemblies (A21/A22) assemblies utilise the Instrument Bus. There are also buffered versibuses. The Al 3 Assembly issues a start signal (LSC) and the instrument bus endowed the data. (As fa

ledge signal (LAC) when it has accepted or provided the data. ment and keyboard buses behave like slow memory).

ASSEMBLY SERVICE SHEET A13/A113 A13 (3776A)/A113 (3776B) PROCESSOR

A13-1 INTRODUCTION

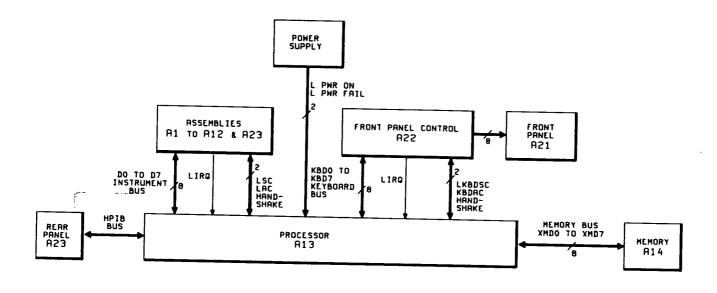


Figure A13-1 Processor Control

A13-2 The 3776 is microprocessor controlled, Figure A13-1 illustrates the communication buses and Handshake Control signals between the Processor Assembly A13 and the remainder of the 3776. Assemblies A13 and A14 form the instrument's main processing and memory store. The 3776 operating program stored in these assemblies allows the instrument to perform a wide variety of measurements.

A13-3 Figure A13-2 shows the main circuit elements of Assemblies A13 and A14.

A13-4 Processor and Memory

A13-5 The main processor (MPU) located on A13 is a 68B00. The 3776 operating software is contained in 72k bytes of ROM. 8k bytes are located on A13 and the remainder on A14. A13 and A14 are linked by address bus MA0 - MA15 and memory bus XMD0 - XMD7 (see Figure A13-2).

A13-6 During the running of the operating program the MPU interfaces with four bus systems: Memory, Keyboard, Instrument and HP-IB.

A13-17 The MPU address and data buses (MA0 to MA15 and MD0 to MD7) have to interface with:

- 1 RAMS,
- 2 ROMS,
- 3 HP-IB Chip,
- 4 Keyboard and Front panel bus,
- 5 Instrument bus.

In order to meet the access times of the RAMs and ROMs and the data set-up times of the MPU, a stretched form of M CLK is applied to the MPU data-bus-enable (DBE) input (see Figure A13-3 and the A13 schematic). A high DBE signal enables the data bus interface drivers which output data during a write cycle.

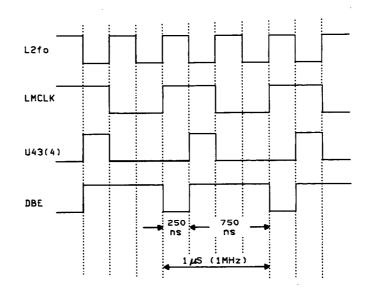


Figure A13-3 Clock Signals

A13-18 All signals illustrated in Figure A13-3 are derived from the 8MHz (nominal) Crystal Controlled Oscillator, ie 8.192MHz (3776A) and 9.264MHz (3776B).

A13-19 Interrupts

A13-20 Sources of Interrupt;

LNMI (non-maskable interrupt)

A logic '0' on this line will immediately interrupt the MPU. These interrupts cannot be masked off by software.

Sources of LNMI

1. Instrument Bus and Keyboard Bus time-outs (routed through the PIA),

2. Power Fail (LPWRFAIL)

LIRQ (interrupt request)

These interrupts can be masked off by software:-

Sources of LIRQ

- 1. HPIB chip (I8291A)
- 2. Front panel key
- 3. Rear panel switch
- 4. A11/A12 Digital Receiver
- 5. A8 Impulse Noise & Frequency Detector
- 6. A 5 Transients Option

A13-21 Test Facilities

A13-22 This assembly contains test switches (S2) and signature analysis (SA) links. The test switches can be set at power-on to select specialised self-test/diagnostic test routines. The SA links enable the MPU to be set to a non-operating or cycle mode. This allows signature analysis of the A13 and A14 Assemblies, see GENERAL SERVICE SHEET G3.

A13-23 Memory

A13-24 The organisation of the processor ROM and RAM memory is conventional, with minor differences being expanded upon in the following paragraphs.

A13-25 Read Only Memory (ROM)

A13-26 The 8k byte ROM on A13 contains the power-on sequence and special utility routines. This enables the A13 Processor Assembly to be tested in isolation.

A13-27 The main operating program memory is in the 64k bytes on A14. However, A14 can hold up to 80k bytes of memory in ROM.

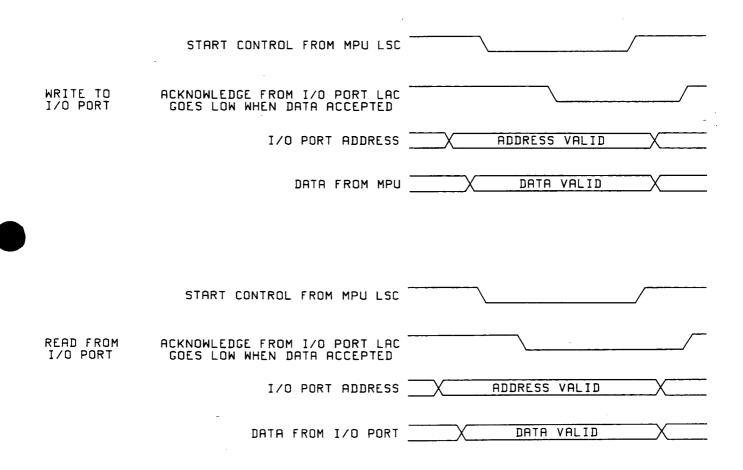
A13-28 Random Access Memory (RAM)

A16-29 5.5k bytes of RAM are available, 2k bytes on A13 and 3.5k bytes on A14. The 2k bytes of RAM on A13 is used as the main scratchpad. The 1.5k bytes of RAM (U43 on A14) is provided with a battery power source which takes over whenever the instrument +5V supply is not present. This effectively makes the RAM non-volatile memory (NVM) which is used to store set-up or default parameters. The remaining 2k of RAM (on A14) is used in measurement calculations.

A13-30 Input Output Interfaces

A13-31 Four bi-directional buffers interface the Processor with the rest of the 3776. These are the Memory, Keyboard, Instrument and HP-IB interfaces.

A13-32 HP-IB Interface


A13-33 The A13 HP-IB Interface U55/U65/U75 links an external HP-IB system to the A13 Processor. It also takes care of HP-IB protocol to bus management.

A13-34 Bus Handshake, Drivers and Receivers

A13-35 The Instrument bus D0 to D7 and the Keyboard bus KBD0 to KBD7 and Memory Bus XMD0 to XMD7 are all connected to the Processor via the tri-state Data Bus Drivers and Receivers U62, U52 and U72.

A13-36 Instrument and Keyboard Handshake Protocol

A13-37 The Instrument and Keyboard Bus Handshake Protocol for writing to or reading from the Input/Output Ports is illustrated in Figure A13-4.

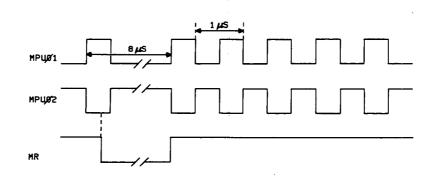


Figure A13-4 Handshake Protocol

A13-38 Keyboard & Instrument Bus Time-outs

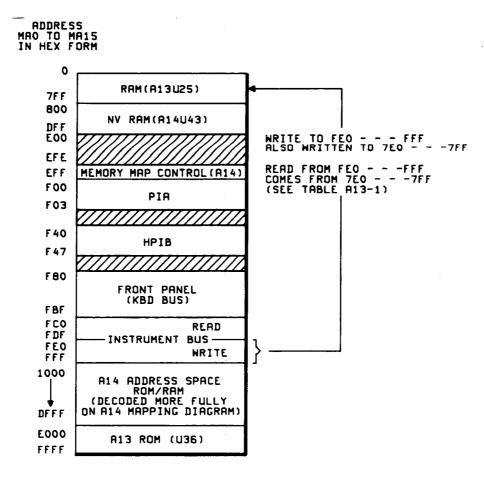
A13-39 If the handshake from either the keyboard or instrument bus is not acknowledged (no LAC) the MPU may be delayed by up to 8us. If LAC has not been returned after 8us a time-out is generated which is latched into the PIA. The PIA produces LNMI which interrupts the MPU.

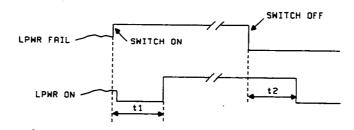
A13-40 Delaying the MPU or slow memory access is performed by stretching the MPU 01 and MPU 02 clocks signals. This stretching action is controlled by the memory ready signal MR from the Address Decoder (see Figure A13-5).

A13-5 Stretching MPU Clocks

A13-41 Address Decoder

A13-42 The MA0 to MA15 address lines from the MPU are decoded to control the various circuit elements illustrated in the mapping diagrams of Figure A13-6.




Figure A13-6 Mapping Diagram for A13

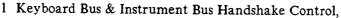
A13-43 Power-on/off Sequence

A13-44 When the 3776 is powered ON and OFF, two signals L PWR ON and L PWR FAIL are generated on the Power Supply Assembly A15. These two signals when applied to the processor ensure:

- 1 the processor is ready to run at switch ON,
- 2 the processor has enough time to store data in NVM (non-volatile memory) at switch OFF.

Figure A13-7 describes the Power on/off sequence.

- t1 = Processor reset (Processor starts the power on sequence when L PWR ON goes high). Delay t1 is present to ensure the +5V rail is up and stable. This is determined by Monostable A15 U52.
- t2 = Time allocated for Processor to store data in NVM before supply shut-down. Delay t2 is determined by the Mains Power Detection on A15 and is >20ms.
- NOTES: L PWR FAIL used primarily to instruct Processor that the power is about to fail, so start "Power fail routine".
 - L PWR ON is used to reset the processor. Processor starts running when L PWR ON goes high.


Figure A13-7 Power on/off Sequence

A13-45 PIA (Peripheral Interface Adapter)

A13-46 The PIA device in conjunction with the test switch S2 is used to select specialised self test/diagnostic test routines. It can also be configured to interrupt the MPU when a bus time-out occurs (ie when KBD TO or BUS TO go true)) or when there is an instrument power failure (ie L PWR FAIL is true). The PIA also drives the LEDs CR1 through CR8.

A1-47 Signature Analysis (see GENERAL SERVICE SHEET G3)

A13-48 Since signature analysis is used in the troubleshooting of the A13 Assembly, only the following circuit elements are described in detail:

2 Address Decoder.

A13-49 Keyboard Bus & Instrument Bus Handshake Control

A13-50 The Keyboard Bus & Instrument Bus Handshake Control, made up of two identical sets of logic gates, produce the initiating handshake signals L KBD SC and LSC for the Keyboard and Instrument buses respectively. When the data accepted signals (LKBD AC or LAC) which complete the handshake protocol are NOT received, time-out signals (KBD TO or BUS TO) are produced.

A13-51 Since the Keyboard and Instrument buses are accessed in a similar manner only the Instrument bus access is described in the following paragraphs and in Figure A13-8.

A13-52 The Instrument bus access cycle starts when an instrument bus address is present, the memory clock MPU 02 is low and the data bus enable signal DBE changes low to high ($\frac{1}{2}$). The DBE signal changes only when the address lines MA0 to MA15 have settled.

A13-53 When DBE changes low to high the Address Decoder produces L BUS EN. This signal produces LIO and enables the Instrument tranceiver U62.

A13-54 When the signal LIO goes low the Address Buffer U71 is enabled, triggering the time-out monostable U13A which enables the address lines A0 to A5. When U13A is triggered a memory not ready signal (low MR) is produced. When MR goes high MPU 02 is stretched.

A13-55 Only if L BUS EN and L MCLK are low is the initiating handshake signal LSC produced. This signal then goes to Assemblies A1 to A12. When LSC is low the address lines A0 to A5 are stable as are the data lines if writing from the MPU to the I/O Port.

A13-56 When the data accepted signal LAC goes low U13A is reset, MR goes high which allows MCLK to go low. This allows LSC to go high to terminate the handshake.

A13-57 If a low LAC is NOT received then U13A time-outs after 8us (ie resets). This action releases MR and produces a high time-out signal BUS TO which is latched by the PIA.

A13-58 P/O Address Decoder

A13-59 RAM U25 may read from or write to the Instrument Bus. The logic gates around U64 and U44A allow the reading or writing to be implemented (see Table A13-1).

U64(7)	MA5	L READ	L KBD	EN LRAMI	action
0	0*	0	0	1	read from bus, no ram access
0	0*	1	1	1	no bus access, no ram access
0	1+	0	1	0	no bus access, read from ram
0	1+	1	0	0	write to bue, write to ram
0 = 1 1 = 1	low HIGH				FCOFDF see Figure FEOFFF A13-6

Table A13-1 RAM Read from/Write to Instrument Bus

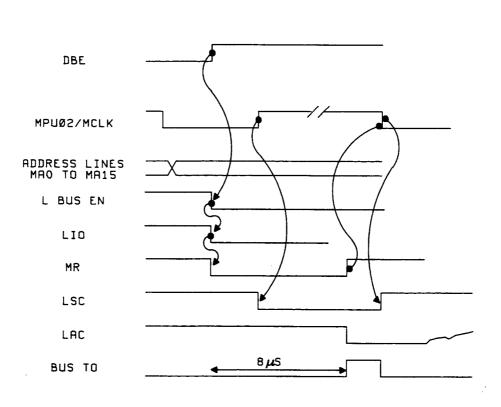


Figure A13-8 Timing Diagram

- -

-

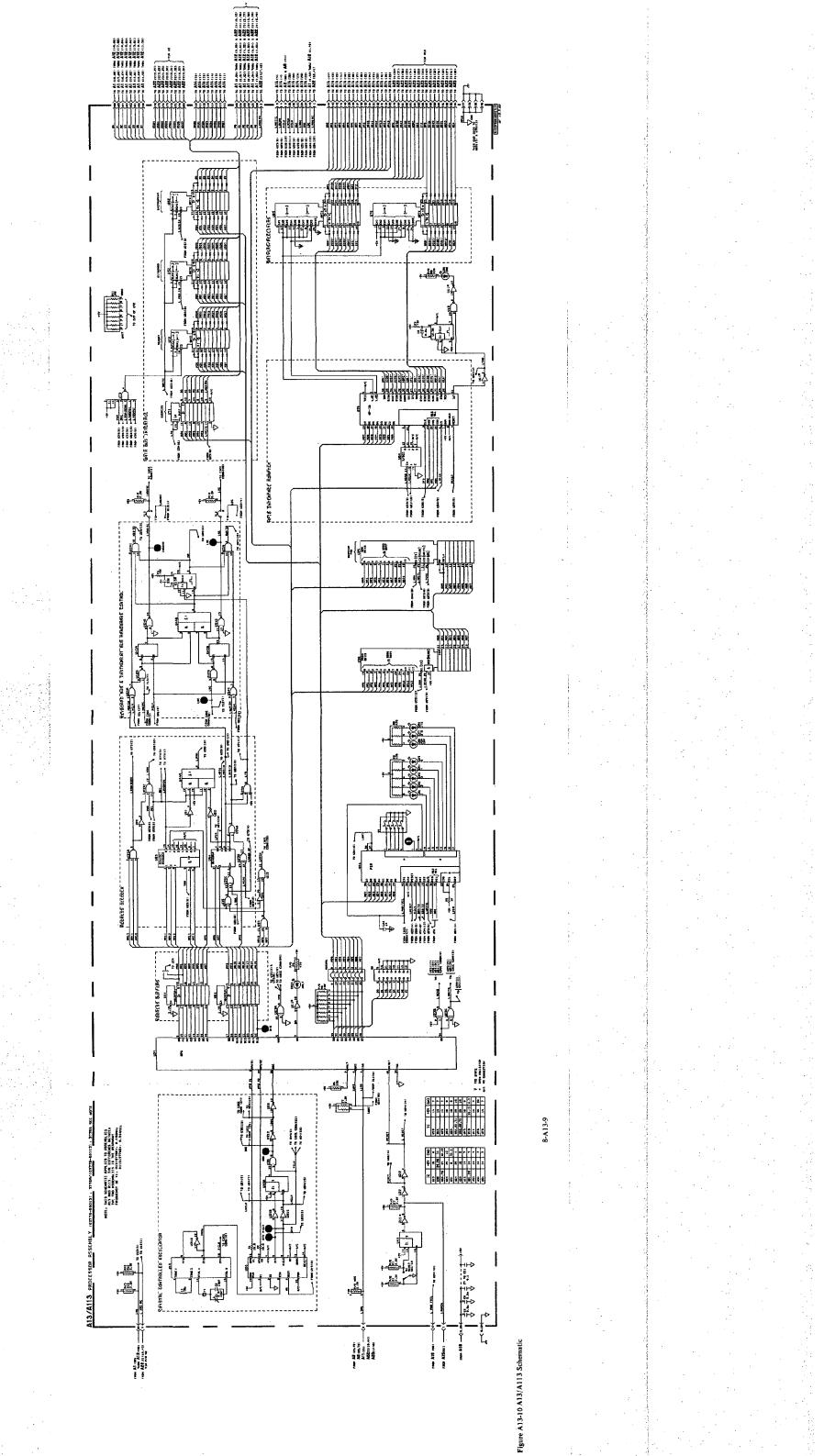
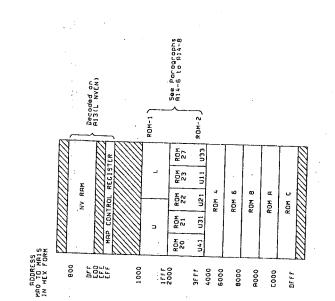
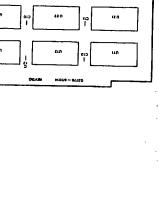



Figure A13-9 A13/A113 Component Location

Ċ

9¥0 een l ES +cn **92** | 11 ¢71 40 | 5


VOLTS CURRENT VOLTS


ل ۳۱

PEN

\$12)

950

Ъ,

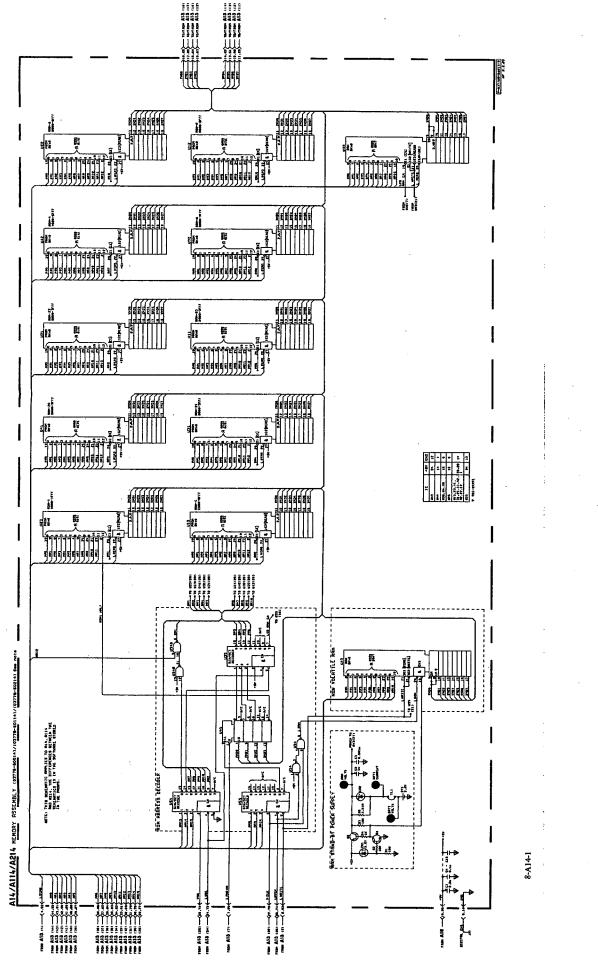
18 M

ıcn

M4

÷ ŧ

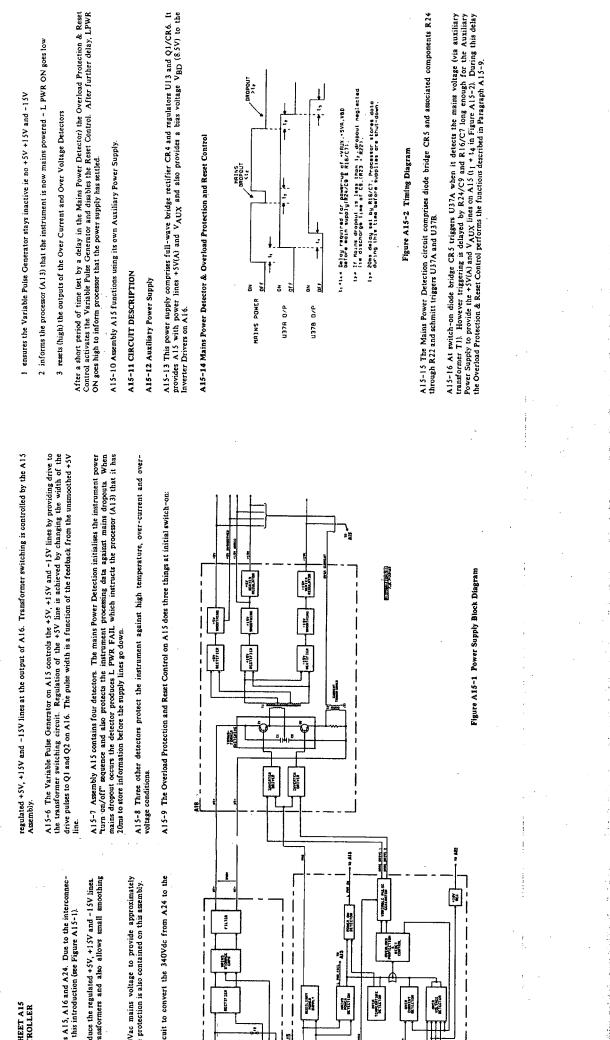
A14-2 The A14 Assembly is the main memory action of the 3176 (see Figure A13-1), it stores instruc-tions and routines performed by A13. Figure A13-2 shows the main circuit elements on A14. A14-3 Assembly A14 can hold up to 10 % & bytes of ROM (although only 8 X & bytes are used) and 3.5k bytes of RAM (1.5k bytes of RAM is non-volatile-memory [NVM]). A14-5 The RAMS and ROMS on A14 are addressed by the MAO to MA15 limes from the MPU on A13. A mapping diagram illustrating the addresses in HEX form and the RAMS and ROMS they address are abown in Figure A14-1. The mapping information is also shown next to the appropriate memory device on the A14-schematic. A14-7 One of four fk ROMs (ROM - 20, ROM - 21, ROM - 22 and ROM - 23) or the U33 2k RAM can be mapped into the 2000 -> 3FFF area. The required device is selected by the lower three bits of the memory mapping register U45. A14-8 ROM -1 (an 8k ROM) can have its upper or lower half mapped into 1000-> 1FFF. This is deter-mined by bit 3 of U45. A14-10 When there is a power failure the RAM standby Power Supply is the power source for the NVM RAM U13. When a power supply failure is detected the MPU on A13 goes into a power failure routine and all data to be retained is stored in U43. DO NOT INCINERATE OR MUTILATE THE BATTERY, IT MIGHT BURST OR RELEASE TOXIC MATERIALS CAUSING PERSONAL INURY. ASSEMBLY SERVICE SHEET A14/A114 A14(3776A)/A114(3776B) MEMORY WARNING A14-9 RAM Standby Power Supply A14-4 CIRCUIT DESCRIPTION A14-1 INTRODUCTION Model 3776A/B

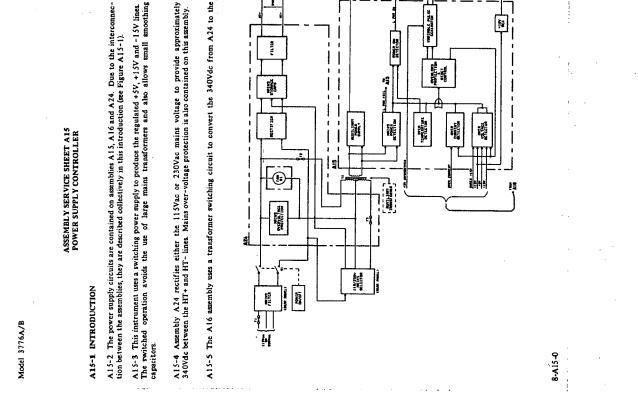

A14-6 The 2000 -> 3FFF area of Figure A14-1 (ROM -2) and 1000 -> 1FFF area (ROM -1) is bank rwitchable.

A14-11 ROM Address Decoder

A14-12 This circuit comprising three 3 to 8 line decoders, US4, US5 and U35 and latch U45 decodes the address lines MA 8, 9, 10 and MA 13, 14, 15 to produce the ROM enable signals RA1 to RA10. The decoder also produces the RAM enable signals L RAM for U43 and L GD RAM EN for U33

A14-13 Troublestooting information for the A14 Assembly is contained in GENERAL SERVICE SHEET G3.


8-A14-0



ASSEMBLY SERVICE SHEET A15 POWER SUPPLY CONTROLLER

1

and a second

PACENSAL TRAN

A15-17 U37B is triggered after U37A, the time delay between the triggering of these devices is determined by R16 and C7 (t_1 in Figure A15-2). The high now at the input of the Overload Protection & Reset Control allows the Variable Pulse Generator to operate by applying a high to U33(2) and a low to the bases of Q2 and Q3. The low at the output of U37D also de-activates the Reset Control device U36.

A15-18 When the instrument mains power is switched off or interrupted (mains dropout) the output of U37A is reset low after a delay (t_2 in Figure A15-2) determined by R23/R22/C9. This causes L PWR FAIL to go low instructing the processor on A13 that it has 20ms (t_3 in Figure A15-2) to store data before there is total power loss. However, if the mains voltage is interrupted for <20ms (at nominal mains voltage) this dropout is ignored by the Mains Power Detection and the supplies are maintained.

A15-19 The low at U37A(14) also resets U37B but only after a 20ms delay set by R16 and C7. (This 20ms is the time allocated to store data in the processor). The low at U37B instructs the Overload Protection & Reset Control to close-down the power supplies by de-activating the Variable Pulse Generator.

A15-20 The Overload Protection & Reset Control also switches off the power supplies when the output of either the Over-temperature, Over-current or Over-voltage Detectors goes low.

A15-21 Over-temperature Detector

A15-22 This detector uses a schmitt trigger and thermister to monitor the ambient temperature within the instrument. When the temperature exceeds 75 degrees Centigrade U56A triggers the Overload Protection and Reset Control which switches off the power supplies.

A15-23 Over-current Detector

A15-24 This detector comprises schmitt trigger U56B and flip-flop U35A. Over-current transformer A16 T2 monitors overload current in the supplies (due to shorts). When an overload current condition occurs the OVERLOAD CURRENT signal triggers U56B and U35A, which switch off the power supplies - CR3 illuminates.

A15-25 The Over-voltage Detector

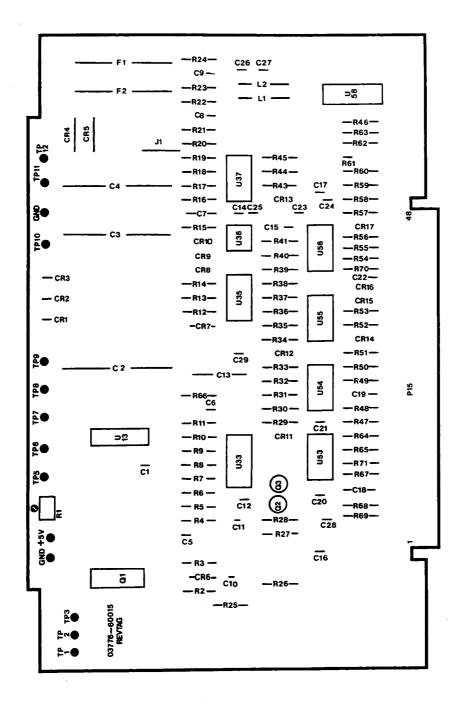
A15-26 This detector comprises 4 zener diodes, two schmitt triggers U56C and U56D and flip-flop U35B. When either the +5V, +15V or UNREG +15V goes over-voltage, and >1V appears at U56(4), the output of U56B is triggered low. The low at the input to U55 sets the inverted output of U35B low and CR2 is illuminated. In the case of the -15V line going over-voltage, U56D triggers when <1V appears at U56(7).

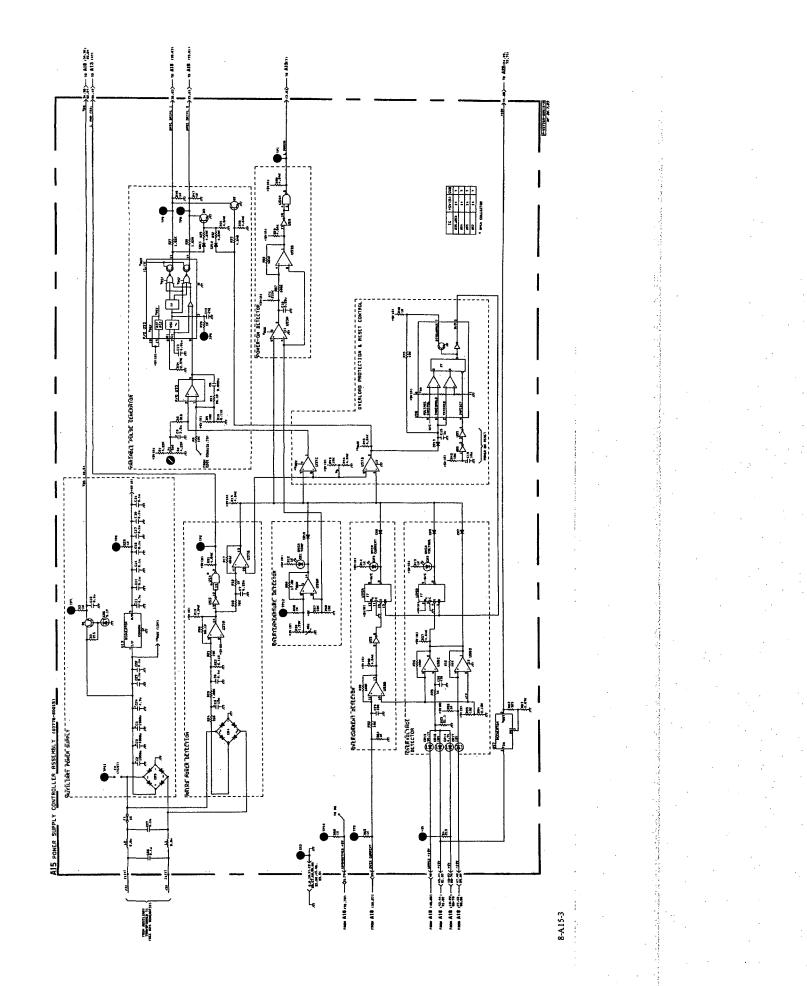
A15-27 Variable Pulse Generator

A15-28 Device U33 is a Variable Pulse Generator. It oscillates at 20kHz and its pulse width varies as the UNSMOOTHED +5V varies in relation to the +5V(A) from U13. When the power supplies are switched off Q2 and Q3 ensure that the output of U33 is clamped to GND.

A15-29 Power On Detector

A15-30 At initial switch on L PWR ON is set low (see Paragraph A15-9).


A15-31 10V Regulator


A15-32 A 10V regulated supply is provided at the output of U57. This power line is used on the A21/A22 front panel assemblies.

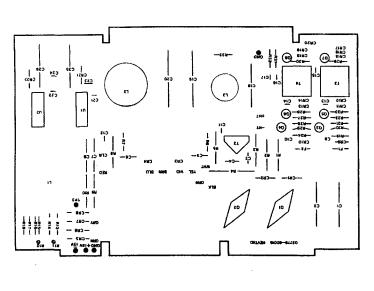
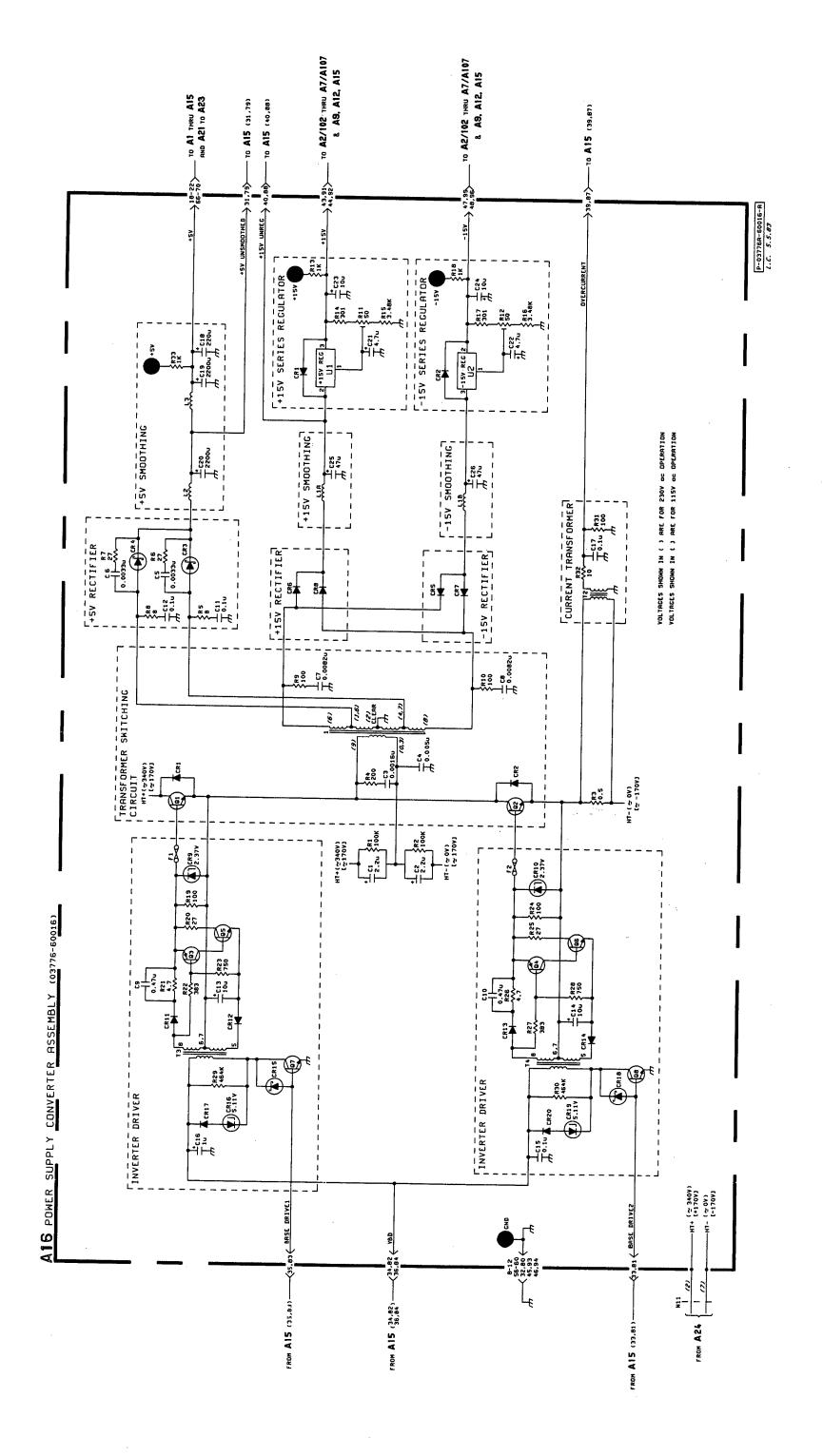
Service

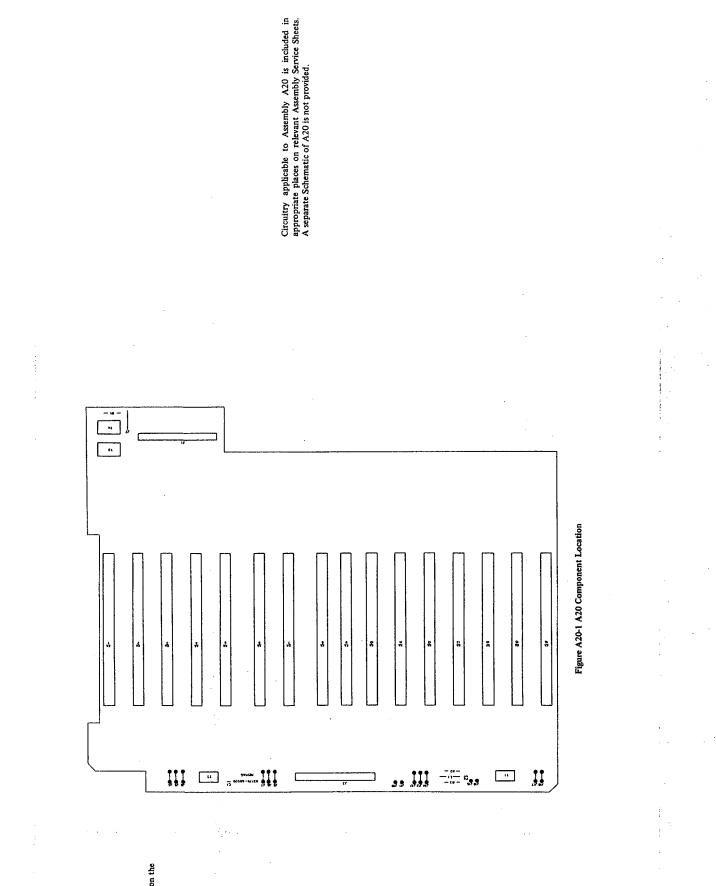
A15-33 Troubleshooting information for the power supplies is contained on GENERAL SERVICE SHEET. G2.

Figure A15-3 A15 Component Location

Figure A15-4 A15 Schematic

A16-15 Current transformer T2 monitors the current in the primary of T1 for overload conditions A16-16 Power Supply troubleshooting is contained on GENERAL SERVICE SHEET G2. A16-13 The +15V and -15V supplies are regulated by U1 and U2 respectively. A16-14 Current Transformer A 16-5 The Inverter Drivers for switching transitions Q_1 and Q_2 are identical, only the circuitry for Q_1 will be described. A16-2 A general description of the A15, A16 and A24 power supply circuits is contained on Assembly Service Sheet A15 together with a block diagram. A 16-6 The pulse train BASE DRIVE 1 from A15 is applied to Q7 where it switches current through the primary of T3. The resulting output pulses from the secondary (8 and 7) of T3 are fed to Q1 via CR11 and R21 to provide "turn on" drive. "Turn off" drive is provided by switching Q1 base negative by means of Q3/Q5. The negative voltage provided from the winding (6, 5) of T3 is rectified by CR12 and C13. Al6-8 Transistors Q1 and Q2 are driven on and off in a push-pull manner, alternately switching the positive and negative unregulated supplies HT+ and HT- through Switching Transformer T1. The primary of T1 is damped by R4 and C3. Figure A16-1 shows the waveform across the secondary of T1. A16-10 The cantre-tapped secondary of T1 is full-wave rectified by CR3/CR4 for +5V; CR6/CR8 for +15V and CR5/CR7 for -15V. A16-11 The +5V supply is obtained by full-wave rectification by hot carrier diodes CR3 and CR4. These diodes have a low forward voltage drop which minimises heat dissipation. A16-12 The +5V, -15V and +15V supplies are all smoothed by conventional L/C networks. Figure A16-1 Waveform at T1 Secondary ASSEMBLY SERVICE SHEET A16 POWER SUPPLY CONVERTER A16-3 CIRCUIT DESCRIPTION A16-9 Rectifiers and Smoothing ing A16-7 Transformer Switch A16-1 INTRODUCTION A16-4 Inverter Drivers the second second second second 8-A16-0


Figure A16-2 A16 Component Location

Model 3776A/B

8-A16-1

Figure A16-3 A16 Schematic

and the second second when the true we will be a set 1 ÷ a contraction of a contract ì and the states when the states the state of the s

Model 3776A/B

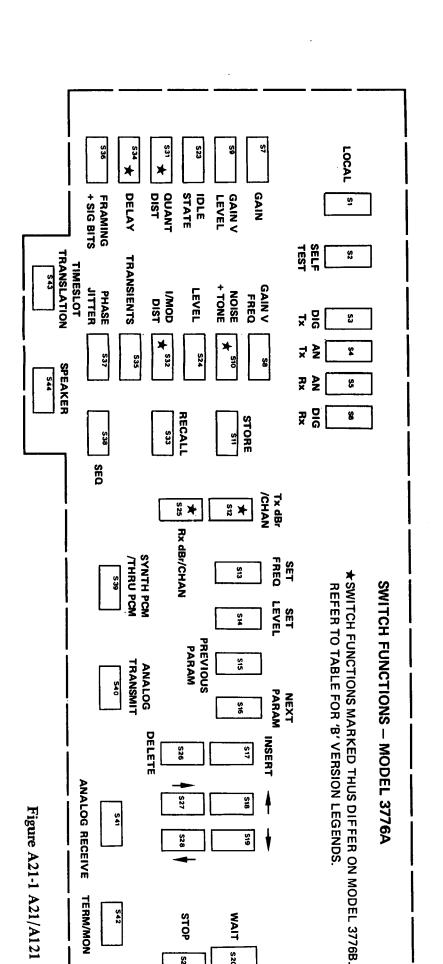
ASSEMBLY SERVICE SHEET A 20 MOTHERBOARD

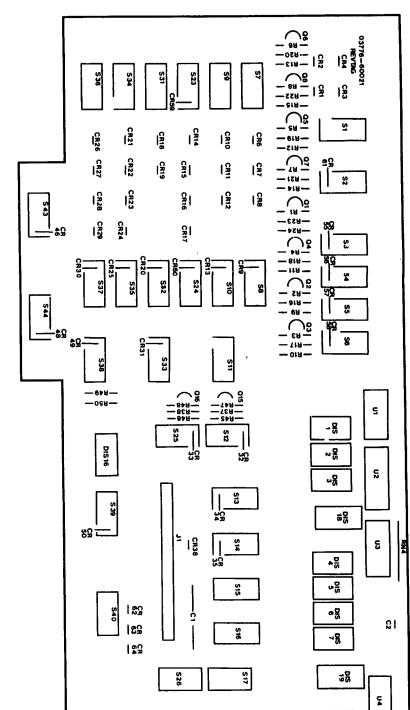
A20-1 INTRODUCTION

A20-2 All 3776 board assemblies with the exception of the A21, A22, A23 and A24 are housed on the Motherboard assembly.

-

.

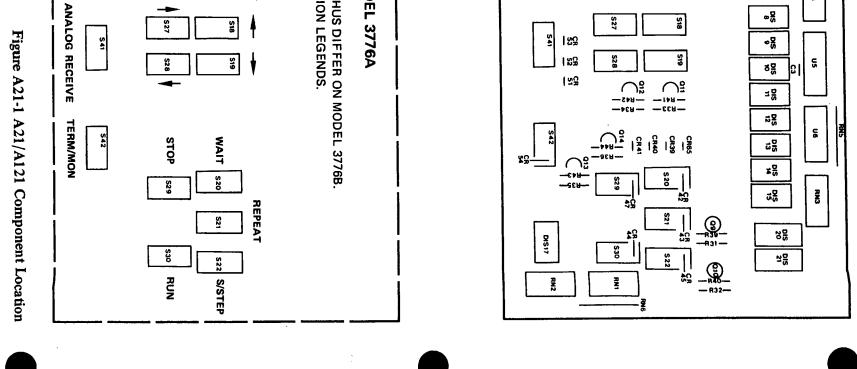

.


8-A20-0

 1^{-1}

ł

and the second second second



ALL OTHER FUNCTIONS AS MODEL 3776A

S34	S32	S 31	S25	S12	S10	SWITCH REF
OTHER MEAS	QUAD DIST	I/MOD DIST	Rx TLP/T-SLOT	Tx TLP/T-SLOT	NOTCHED NOISE	FUNCTION

SWITCH FUNCTIONS - MODEL 3776B

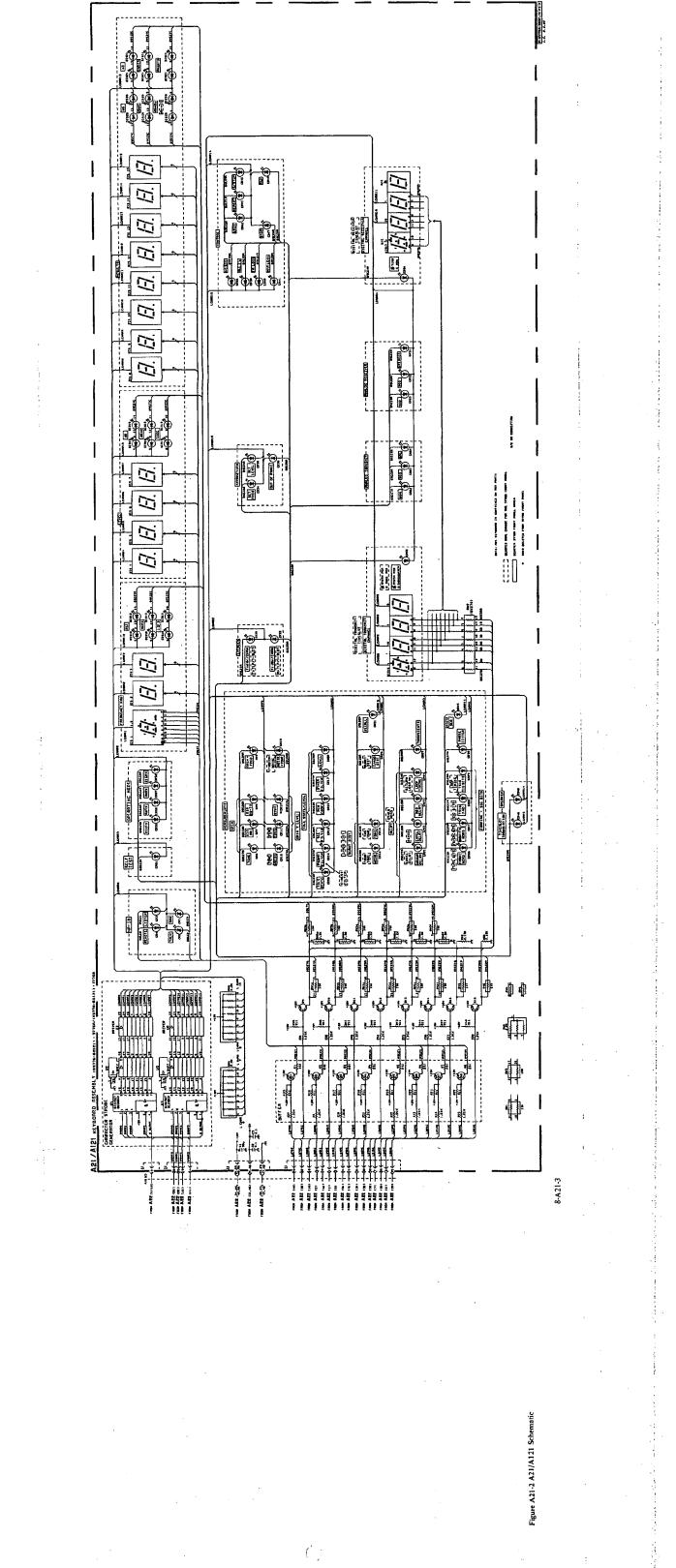
ASSEMBLY SERVICE SHEET A21/A121 A21(3776A)/A121(3776B) KEYBOARD ASSEMBLY

are described collectively in the INTRODUCTION in Assembly

A21-5 For ease of identification the 7-segment displays and LEDs on this schematic have been arranged in the same order as they appear on the instrument front panel.

A21-7 The Character Strobe Generator is made up of two decoders U1 and U4; two buffers U2 and U5 and two drivers U3/U6. The address data RAMA 0 to 3 from A22 is decoded by the Character Strobe Generator to produce the strobing data L CHAR 0 to 15, which is used to strobe the LEDs and displays on A21. H BLANK ensures that there is no ghosting of the front panel displays by disabling the Character Strobe Strobe Generator prior to new address data being applied to U1 and U4. When the new data is applied H BLANK goes low and U1 and U4 decode the new data.

A21-8 Keyboard troubleshooting information is contained in GENERAL SERVICE SHEET G4.


A21-1 INTRODUCTION

A21-2 The A21 and A22 assemblies Service Sheet A22.

A21-3 CIRCUIT DESCRIPTION

A21-4 7-Segment Displays and LEDs

A21-6 Character Strobe Generator

Model 3776A/B

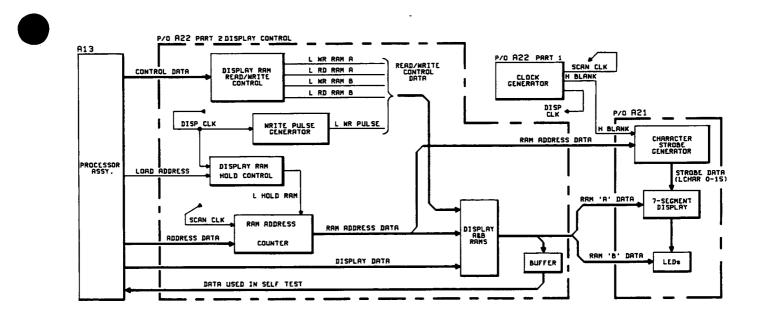


Figure A22-4 Strobing of the Front Panel Displays and Storage of Display Data

A22-14 Figure A22-4 illustrates the circuit elements required to,

- 1 strobe the front panel displays,
- 2 store display data into RAM,
- 3 read display data from RAM.

A22-15 Strobing the Front Panel Displays

A22-16 The front panel 7-segment displays and LEDs are strobed under the control of the Processor Assembly A13 and the Display Control on A22. Strobing is almost continuous, being interrupted only when DISPLAY DATA is to be stored in/read from RAM (see Figure A22-4).

A22-17 The front panel displays are arranged into 16 groups, or characters. Each character is allocated one of the strobing L CHAR 0 to 15 signals. Data to illuminate 7-segment display or group of LEDs is stored in RAM.

A22-18 SCAN CLK clocks the RAM Address Counter through its 16 RAM addresses. These in turn are applied to both the Character Strobe Generator and the Display A & B RAMs. The Character Strobe Generator enables each of the 16 groups of displays in turn while the Display A & B RAM output data selects the 7-segment display or LEDs to be illuminated within each group.

A22-19 Storing DISPLAY DATA in RAM

A22-20 Assembly A13 controls the storage of display information into RAM, by allocating the address into which the display information is to be stored and by deciding when to store.

A22-21 Data is stored in RAM by interrupting the front panel display strobing sequence. When display information is to be stored, the A13 assembly applies the DISPLAY DATA to the inputs of the Display A & B RAMs and applies the DISPLAY ADDRESS to the input of the RAM Address Counter. The ADDRESS is then loaded into the RAM Address Counter. With the RAM ADDRESS and DISPLAY DATA now at the inputs of the Display A&B RAMs the appropriate RAM WRITE signal is produce which together with the LWR PULSE signal from the Write Pulse Generator stores the display information in RAM. While the display information is being written into RAM, the front panel 7-segment displays and LEDs are blanked by H BLANK.

A22-22 The outputs of the Display A and B RAM may be fed back to the A13 Assembly during self test.

A22-23 Interaction between the Keyboard and the Front Panel Display

A22-24 An example is given here which illustrates the interaction between the pressing of a front panel key(s) and the updating of a front panel 7-segment display(s) and LED(s), ie UPDATING FREQUENCY VIA THE FRONT PANEL KEYS. This example comprises two steps;

- 1 Select mode of operation by pressing the SET FREQ key.
- 2 Update front panel FREQ display by pressing \leftarrow or \rightarrow and the INCR or DECR keys.
- INCR OF DECK Reys.

A22-25 Mode of Operation

A22-26 When the SET FREQ key is pressed, the key is identified by the processor on A13 which then updates the display RAMs to illuminate the SET FREQ LED. The processor on A13 is now waiting to initiate the updating of the FREQ display.

A22-27 Update of FREQ display

A22-28 When the SET FREQ key is pressed, the furthest right of the FREQ 7-segment displays is lit more brightly (Bright-up) than all the others and flashes at a 2Hz rate. "Bright-up" acts as a cursor for the front panel 7-segment displays and is shifted to the right by the \rightarrow key and left by \leftarrow key. The INCR and DECR keys alter the value of the selected digit. Figure 22-5 illustrates the circuits used for "Bright-up".

A22-29 When bright-up is required the Processor Assembly supplies the RAM address of the display to be brightly lit. The address is latched into the Keyboard Display Status Register by L SET DISP STATUS. The Flash Control compares the RAM ADDRESS with the address from the A13 assembly. When they are the same, two signals are produced, SCAN HOLD and PAUSE. SCAN HOLD prevents changes in the RAM Address Counter output for several SCAN CLK pulses. This causes the Character Strobe Generator on A21 to "hold-on" to the selected display. This holding causes the bright-up.

A22-30 Bright-up occurs only on data from the Display "A" RAM (data for the fifteen 7-segment displays). The PAUSE signal prevents bright-up on the Display "B" RAM output data by switching off the signal path, to the LEDs at the Bright-up Control.

A22-31 The 2Hz flashing of three LEDs (SET LEVEL, SET FREQ and OUT OF RANGE) is controlled by the A13 assembly, Keyboard Data Input Buffer and the 2Hz Generator. When 2Hz flashing is required, the A13 assembly has L FLASH latched into the Display Status Register, which in turn produces SYNC 2Hz.

a) SYNC 2Hz is applied to the Timeslot Contents Test Control to flash the 7-segment displays, ie PAUSE flashes at 2Hz.

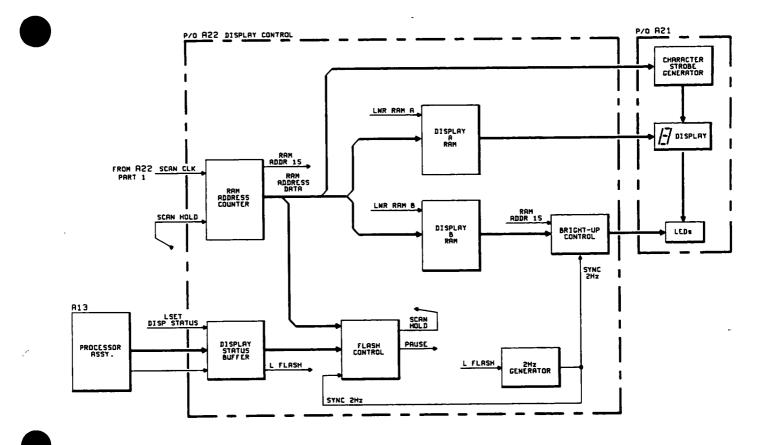


Figure A22-5 Bright-up and 2Hz Flashing

b) SYNC 2Hz is applied to the Flash Control to control the flashing of the three LEDs. RAM ADDR 15 must be true (ie address 15) for the LEDs to flash.

A22-32 CIRCUIT DESCRIPTION

A22-33 Scan Counter, Keyboard Scanner, Scan Inhibit Logic

A22-34 The Scan Counter U20 is a binary up counter. It is clocked through its sixteen output states by SCAN CLK. The output data from U20 is decoded by U21 and U22, the 3 to 8 line (Bin to Oct) decoders of the Keyboard Scanner. When a key is pressed the X lines of the keyboard are scanned for a further 5ms (determined by U11) before the scanning is inhibited by L KEY INT. When a low L KEY INT is applied to U20 the counter is inhibited and its output data along with data from the Y Decoder is applied to the processor A13 via the Keyboard Read Buffer for key identification.

A22-35 Y Decoder U34 is an octal to binary highest priority decoder. When a key is pressed, the Y line of the key is strobed by the X line once every 16 SCAN CLK pulses. This produces a train of pulses at U34(15) which activate the Debouncer circuit. The next pulse after the 5ms delay produces L KEY INT at the output of the Scan Inhibit Logic which stops the scan (see Figure A22-6). The binary output data from the Y Decoder is used by the processor to identify the key.

A22-36 The gated KEYINT signal clocks the keyboard co-ordinates into the Keyboard Read Buffer U46 when LRD KEY goes low. Once in the buffer the keyboard data can be read by the processor.

A22-37 Debouncer

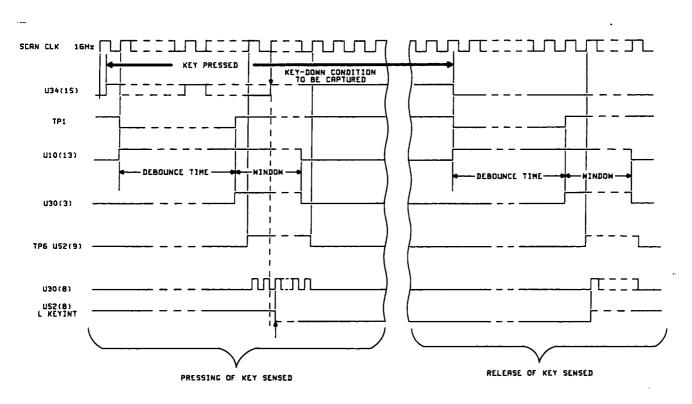


Figure A22-6 Debouncer Timing Diagram

A22-38 Two monostables U10 and U11, two AND gates and a flip-flop make up the Debouncer circuit. This circuit ensures that only a single pressing of a key is sensed, by utilising the 5 and 7ms time constants of U10 and U11. The circuit is described using timing diagram Figure A22-6.

A22-39 Repeat Enable Control Logic & IRQ Generator

A22-40 When a key is pressed and after a 5ms delay, KEYINT goes high at TP6 causing a low to high transition at U30(6) which triggers U12A. The high at U12(9) is inverted by U57A, producing an instrument request LIRQ for the processor.

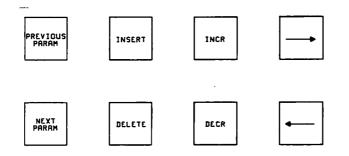


Figure A22-7 Repeat LIRQ Keys

A22-41 Certain keys, see Figure A22-7, when continuously pressed produce a continuous train of LIRQ pulses. The Repeat Enable Control Logic at TP2 repeatedly pulses the input of U30A. The first pulse is delayed by 750ms thereafter the pulses repeat every 250ms.

A22-42 When the X CODE 0 to 2 lines are decoded by U41A and U43A a low to high transition is obtained at U41(11), U10 triggers with an initial time constant of 750ms determined by R6/C8, C9. After 750ms TP2 goes high triggering U12B. This action forward biases CR1 which in turn changes the time constant of U10 to 250ms, determined by R3, R6/C8, C9.

A22-43 Keyboard Read Buffer

A22-44 When KEYINT goes low to high, U46 latches the X and Y data but only when LRD KEY is low.

A22-45 Display RAMs Read/Write Control & Keyboard Read Control

A22-46 The decoder U54 decodes data from the processor to provide control signals for A22.

A22-47 Display RAMs Hold Control & Write Pulse Generator + Handshake

A22-48 This circuit, made up of U56 and associate gates and controlled by the processor, performs three functions (see Paragraphs A22-12, A22-19 and A22-22). It provides the timing data which allows the various routines performed on this assembly to occur at the appropriate time. The Handshake protocol is illustrated in Figure A13-4.

A22-49 RAM Address Counter

A22-50 Binary up counter U33 either clocks through each of the 16 RAM addresses or is preloaded with an address sent from the processor. The carry output RAM ADDR 15 is used when flashing LEDs are required.

A22-51 Keyboard Data Input Buffer & Timeslot Contents Test Control

A22-52 When bright up is required the processor sends the appropriate information on the KBD (0to7) bus. This information is stored in U51 when L SET DISP STATUS goes high. The outputs of U51 and U33 are applied to 4 exclusives OR gates and an AND gate to produce SCAN HOLD at U41(8) and PAUSE at TP5 (see Paragraph A22-30 to 32).

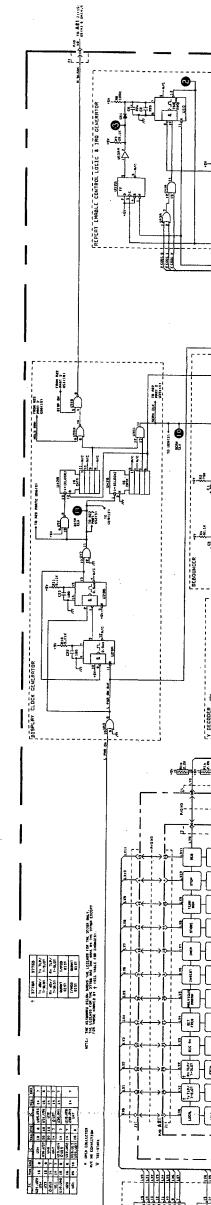
A22-53 Display "A" and "B" RAM

A22-54 Each RAM contains sixteen 4 bit words which are controlled by L WR PULSE, L WR RAMA and L WR RAMB.

A22-55 Display RAMs "A" and "B" Read Buffer

A22-56 The buffers U36 and U37 pass the contents of RAM "A" or "B" when either L RD RAMA or L RD RAMB is true.

A22-57 Bright-up Control


A22-58 When flashing (bright-up) is required the Bright-up Control circuit ensures that only data from the Display "A" RAM reaches the displays on A21 by inhibiting data from the Display "B" RAMs U17 and U27.

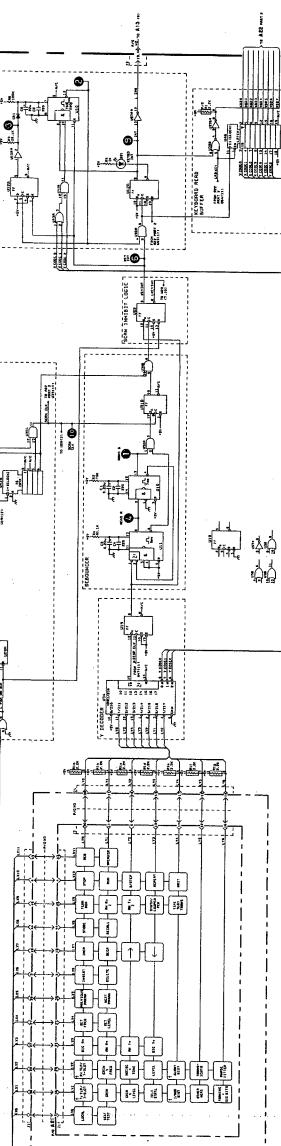
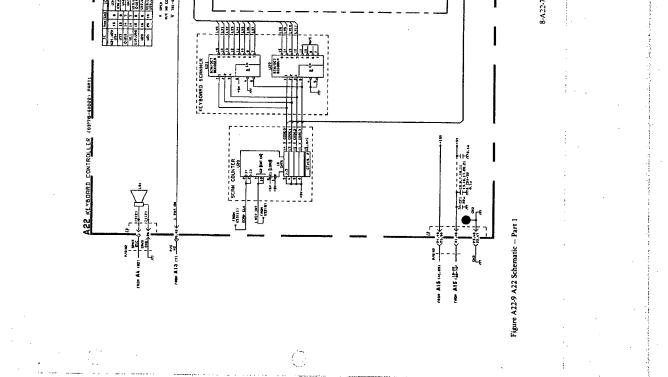

A22-59 Further Keyboard and Display troubleshooting is contained on GENERAL SERVICE SHEET G4.

Figure A22-8 A22 Component Location


-1^{C28} -5° 8 8 U29 - w -181 ŝ 650 1191 C27 | |Ct3 | U38 85 5 5 • • U28 C1 | C26 --R12 ----R13 --U37 417 U27 U47 US7 i C23 5-U46 99 N U26 U36 910 54ŝ **U**55 -<u>5</u> 1030 5 U54 5 I ce na C32 | U34 1031 **GND** U43 C33 U13 033 1c34 -89-1 cas 5 å• U42 U32 US2 U22 U12 1^{C36} 63 CIBI U41 - RA -- C3 -- C3 -131 5 U21 nsı <u>ი</u>ლ C20 -CR1-181 03776-60022 REV TAG -R8- -C18 13 | 19 | 19 U30 05U | 850 | 1 U40 8 U20 ŝ ŝ

.

1-1-2/12001-#1/1001

Model 3776A/B

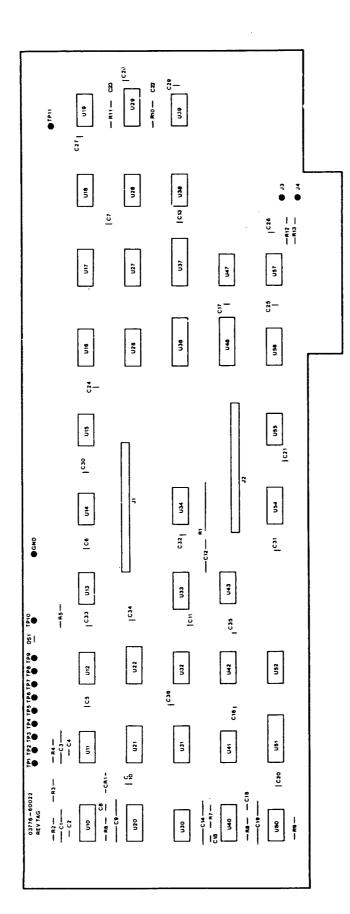
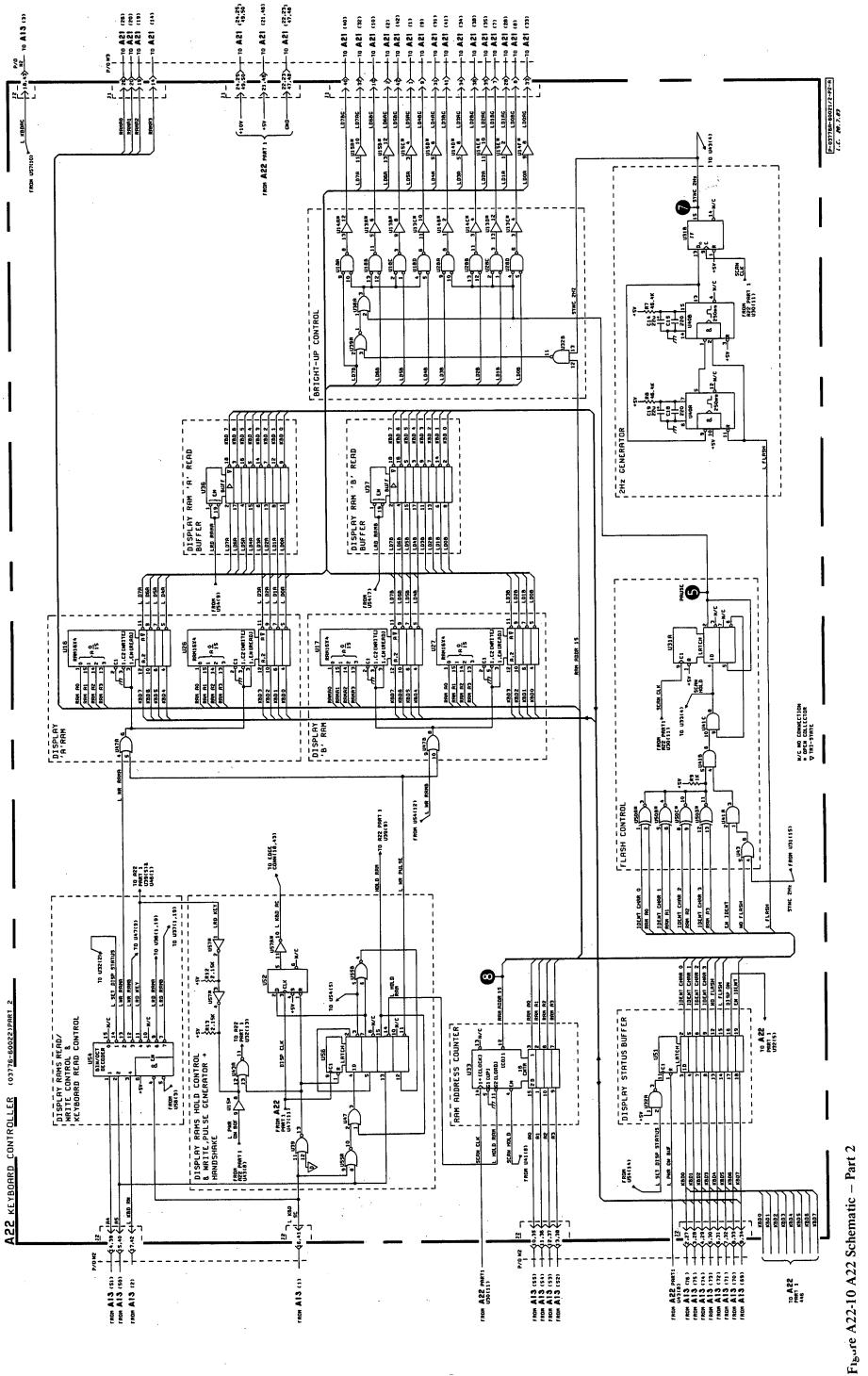



Figure A22-8 A22 Component Location

2

8-A22-9

A23-3 When assembly A13 is ready to identify the switch, it sends ADDRESS DATA and a handshake start control signal LSC to the Address Decoder on A23. Two addresses in turn are decoded, producing L ADDR00 and L ADDR01 which enable Output Buffers 1 and 2 respectively. An "accept-data" handshake signal LAC, derived from ADDR00 and ADDR01, is also produced which instructs the A13 assembly that the "switch data" is on the DATA BUS ready for identification. LAC is part of the handshake protocol - see Assembly Service Sheet A13.

A23-4 The A23 assembly also contains the input and output ports as illustrated in Figure A23-1.

A23-5 CIRCUIT DESCRIPTION

A33-6 The Address Decoder U7 decodes data from A13 to produce the buffer enable signals L ADDR00 and L ADDR01 for Output Buffers U5 and U4 respectively. Exclusive OR gates U19A and U19B decode L ADDR00 or L ADDR01 to produce the "accept data" handshake signal LAC for the A13 assembly.

A23-7 The Rear Panel Interrupt Logic comprises two parity encoders UI and U6; two flip-flops U3A and U3B; two monostables U2A and U2B and associated gates. The outputs of U1 change whenever a rear panel switch is changed. Exclusive OR gate U9C senses this change and triggers debourcer monostable U3A. After 45ms, U3A triggers U2A and U2B. The input and output of U2A are now at the same level - as are the inputs to U9C. This causes the output of U0A are u03A is ready to be retriggered. Flip-flop U2B, when triggered, produces the LIRQ signal via exclusive OR gate U9C.

A23-8 After applying L ADDR01 to the Output Buffer U4, it is necessary to reset the interrupt request signal, is set LIRQ high. This is achieved by triggering monostable U3B using L ADDR01. When U3B triggers its inverting output is set high for 4us, thereafter it goes low to reset the outputs of U2B. This action causes a high LIRQ at U9(6).

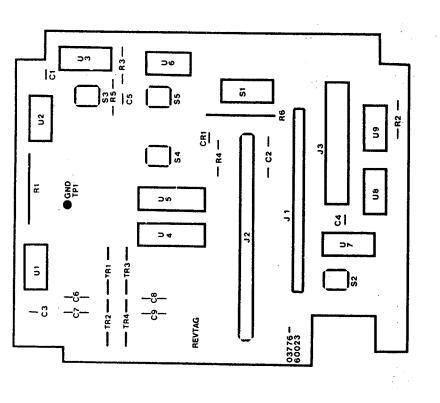
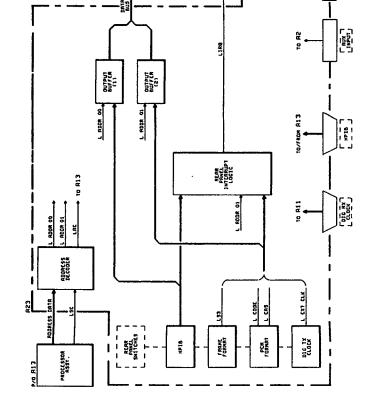


Figure A23-2 A23 Component Location

<u>م</u> بر

Model 3776A/B


ł

ł

ASSEMBLY SERVICE SHEET A 23 REAR PANEL CONTROL

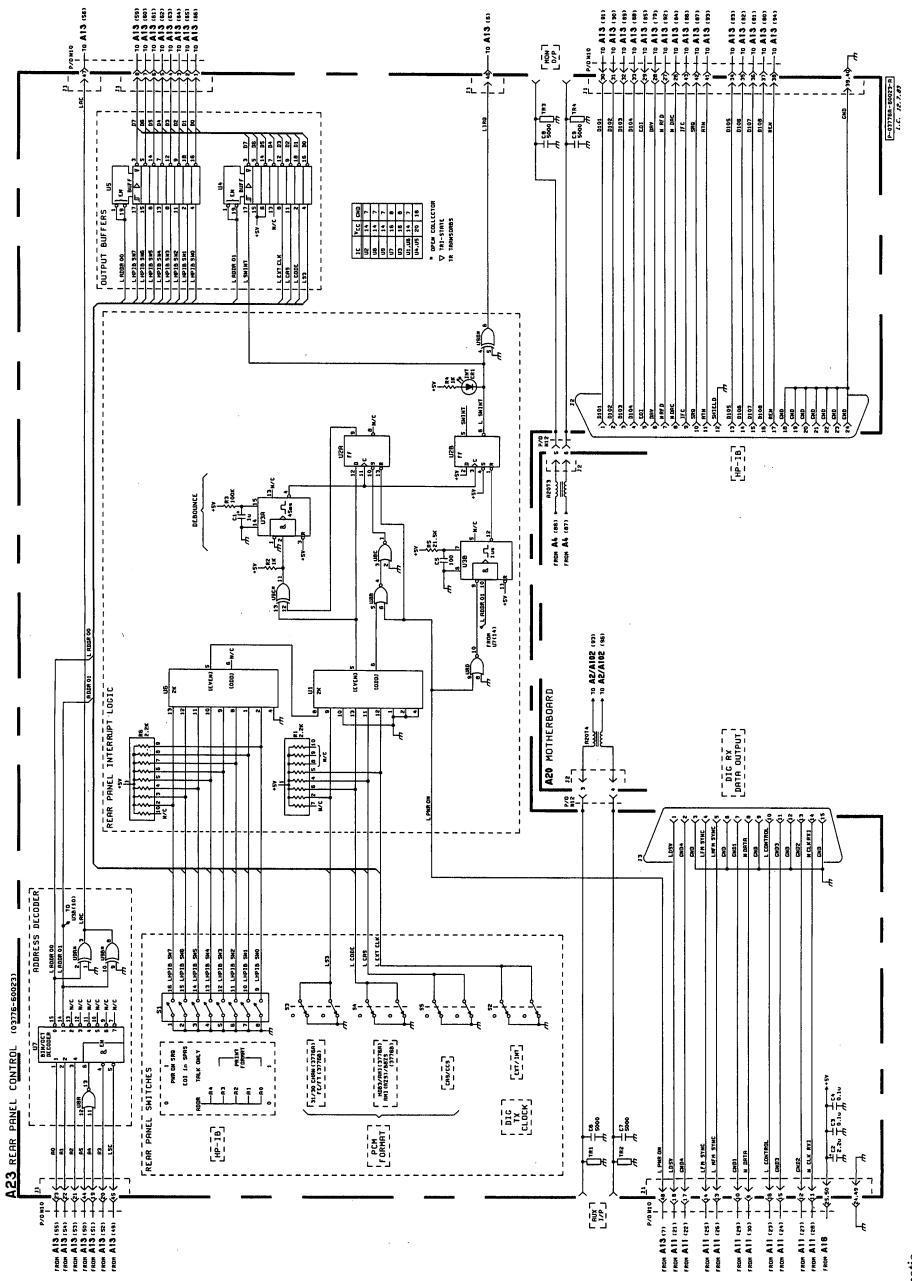
A23-1 INTRODUCTION

A23-2 Figure A23-1 illustrates the contents of the A23 assembly. Whenever the mode of operation of the instrument is changed, by changing one of the rear panel switches, the A23 assembly produces an interrupt request signal (LIRQ). This signal informs the Processor Assembly A13 that a rear panel switch has been changed.

PROCESSOR ASSY.

P/0 A13

١


ſ

96

ROW

8-A23-0

Figure A23-1 Rear Panel Control Block Diagram

ASSEMBLY SERVICE SHEET A24 MAINS INPUT

A24-13 The secondary of T1 provides the same drive to the auxilliary supply on A15 in both the 115Vac and 230Vac operating modes. A24-14 Fan B1 is driven by the primary winding of T1 (fused by F2) in both the 115Vac and 230Vac operating modes.

A24-15 Power supply troubleshooting information is contained on GENERAL SERVICE SHEET G2.

A24-5 The instrument is protected against mains over-voltage by a crowbar circuit. When the mains volt-age exceeds 150Vac in the 115Vac operation or 300Vac in the 230Vac operation the crowbar circuit (CR?) blows fuse F1.

A24-7 When the instrument is connected for 115Vac operation the junction of C1/C3 is connected to neutral and CR3 and CR4 are reverse biased. The circuit operates as a voltage doubler (see Figure A24-1).

230Vac operation the circuit operates as a standard full A24-8 When the instrument is connected for wave bridge rectifier (see Figure A24-2).

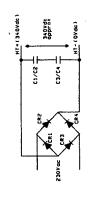


Figure A24-2 Full-wave Bridge Rectifier

۲Ť 8

-- cu? ---- cu? --F NEVTIC 03778-40034

--~

Figure A24-3 A24 Component Location

Model 3776A/B

1

A24-1 INTRODUCTION

A24-2 A general description of the A15, A16 and A24 power supply circuits is contained on Assembly Service Sheet A15 together with a block diagram.

A24-4 Mains Over-voltage Protection A24-3 CIRCUIT DESCRIPTION

A24-6 Rectifier and Storage Capacitors

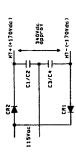
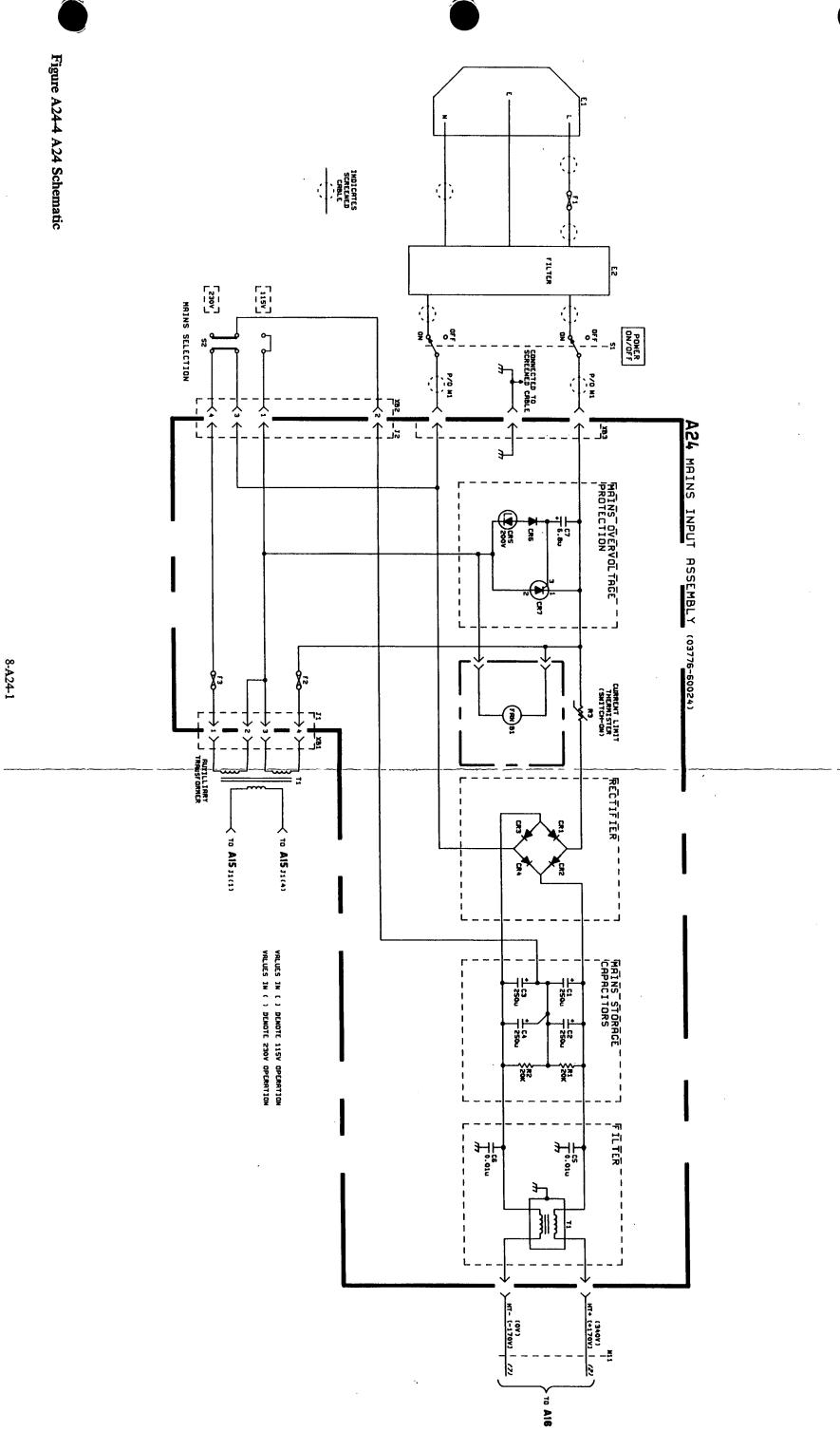


Figure A24-1 Voltage Doubler

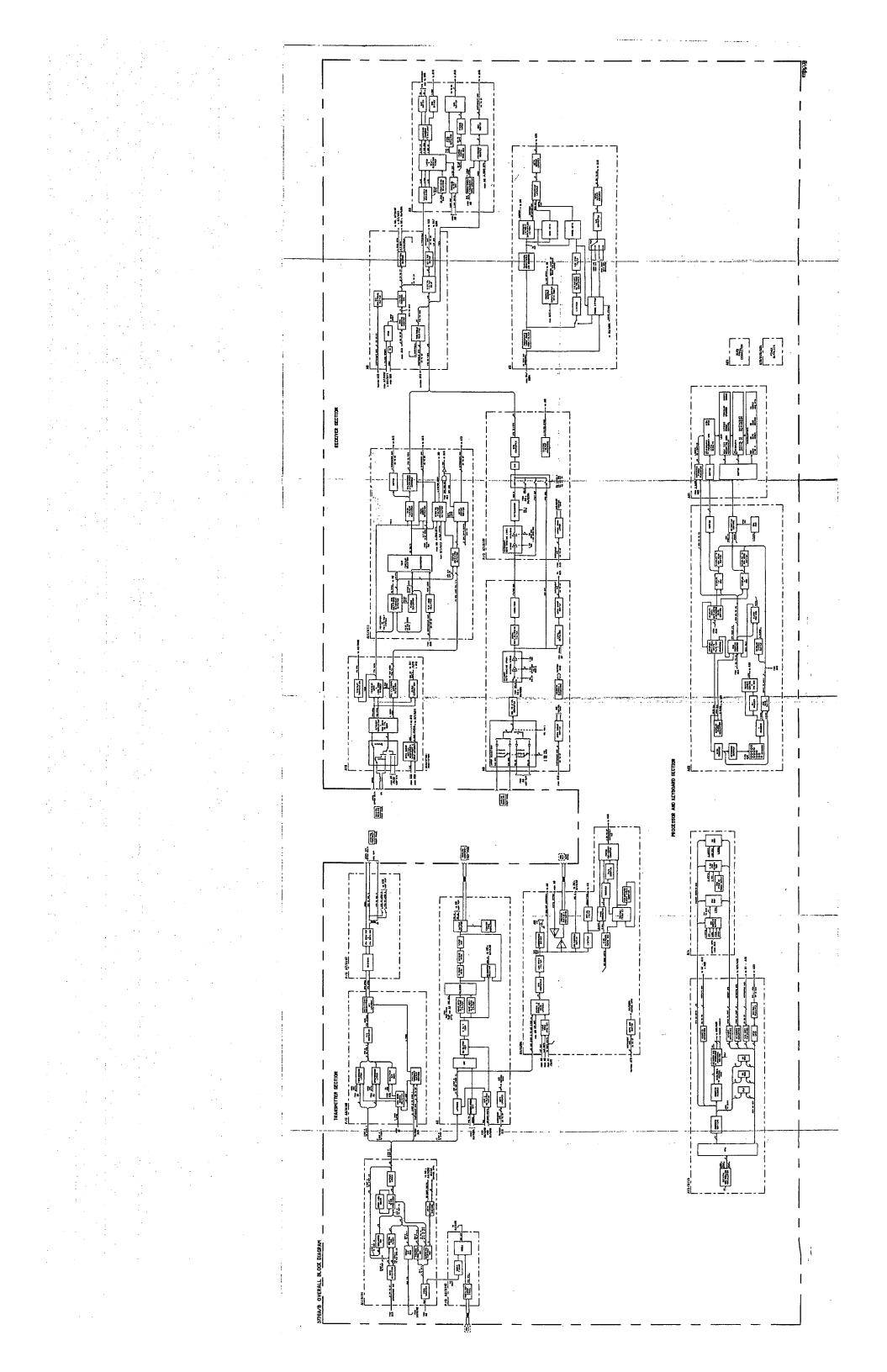
A24-9 Filter

A24-10 The Filter isolates the switching power supply noise from the mains supply.


A24-11 Auxilliary Tranformer (T1)

A24-12 T1 has two primary windings. In the 230Vac mode of operation, both windings are used. In the 115Vac mode, the winding fused by F3 is switched out of circuit.

8-A24-0


the second transformed have a determined of

alar

APPENDICES

APPENDIX A PCM FRAME STRUCTURES Page	
APPENDIX B ALIASING SIGNALS	APP-B-1
APPENDIX C CALIBRATION	APP-C-1
APPENDIX D SERVICE ACCESSORIES	APP-D-1

APPENDIX A PCM FRAME STRUCTURES

APPENDIX B ALIASING SIGNALS

> APPENDIX C CALIBRATION

Appendices A, B & C not available at time of printing.

•

To be issued later.

APPENDIX D

SERVICE ACCESSORIES

This Appendix provides the information required to build and test the three simple test circuits SA1, SA2 and SA3 called up in the Performance Tests for the 3776.

Complete circuit schematics, component location diagrams and component lists are given, together with performance test procedures to establish correct operation of the completed accessories. The specifications listed for each are the minimum acceptable and should be easily achieved using the recommended parts and layout.

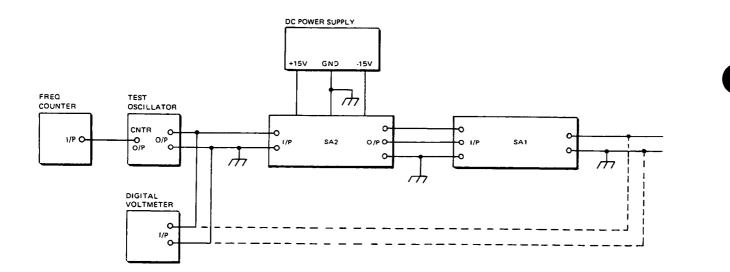
The part number of the blank printed circuit board for each accessory is included in the appropriate component list.

IMPORTANT

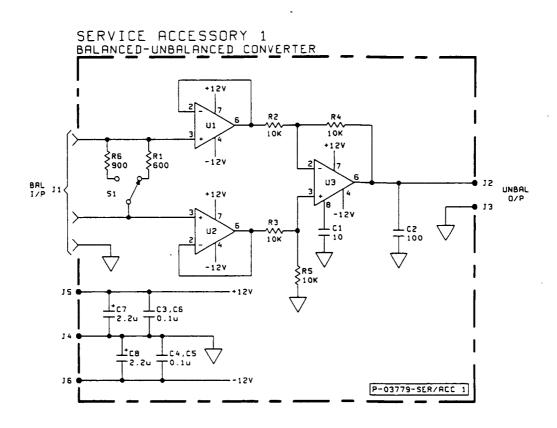
PERFORMANCE TESTING OF SA2 MUST BE CARRIED OUT BEFORE TESTING SA1.

Service Accessory 1 (SA1) - Balanced/Unbalanced Converter

PERFORMANCE TEST

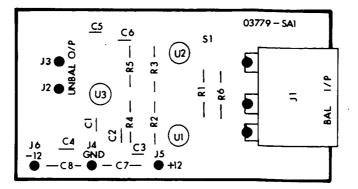

MINIMUM SPECIFICATION Input Impedance: 600Ω or 900Ω balanced. Output Impedance: $<1\Omega$ unbalanced. Gain: ± 0.005 dB, 40Hz - 4kHz. ± 0.05 dB, 4kHz - 40kHz.

EQUIPMENT REQUIRED


Dual DC Power Supply	
Test Oscillator	
Digital Voltmeter	
Frequency Counter	
$500/900\Omega$, Unbal/Bal Converter	
Resistor $600\Omega \pm 0.01\%$)2
Resistor 900 Ω ± 0.01%)4

PROCEDURE

1. Connect the test circuit as shown below (it is assumed that SA2 performs within specification).



- 2. Set SA1 input impedance and SA2 output impedance to 600Ω .
- 3. Set the Test Oscillator FREQUENCY to 40Hz and adjust its OUTPUT LEVEL to give a reference voltage on the Digital Voltmeter of 1.000V. Press the STORE Y pushbutton on the Digital Voltmeter.
- 4. Connect the Digital Voltmeter to SA1 output. Press the Digital Voltmeter % ERROR pushbutton and check that the % Error is within ± 0.115%. This tolerance corresponds to ± 0.01dB.
- 5. Set SA2 output impedance to 900 Ω and SA1 input impedance to 900 Ω . Check that the % Error is within ±0.115%.
- 6. Repeat Steps 2 to 5 at 4kHz. The same measurement tolerances apply.
- Repeat Steps 2 to 5 at 40kHz. Check that the % Error in Step 5 is within ± 1.16%. This tolerance corresponds to ±0.1dB.

Replaceable Parts

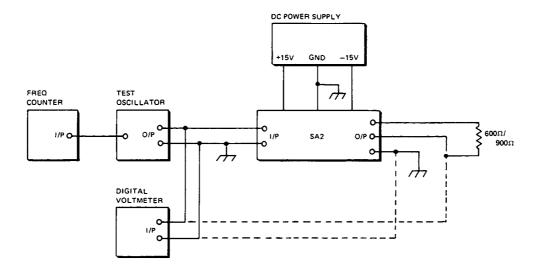
U1 TO U3	IC OP-AMP HA2-2605-5	1826-0413
R1	R FXD 600 Ω 0.01% .25W	0811-3502
R2 TO R5	R FXD 10K 0.01% 0.05W	0811-1185
R6	R FXD 900Ω 0.01% 0.25W	0811-3504
C1	C FXD 10PF 1% 63V CER	0160-3874
C2	C FXD 100PF 5% 200V CER	0160-4389
C3 TO C6	C FXD 0.1µF 20% 50V CER	0160-0576
C7, C8	C FXD 2.2µF 10% 20V TA	0180-0155
J1	CONN, 3-PIN	1251-2533
S1	SWITCH DPDT	3101-0407
MSC (QTY: 8)	CONN, SGL	1251-0600
MSC (QTY: 1)	BLANK P.C. BOARD	03779-20043

APP-D-3

Service Accessory 2 (SA2) - Unbalanced/Balanced Converter

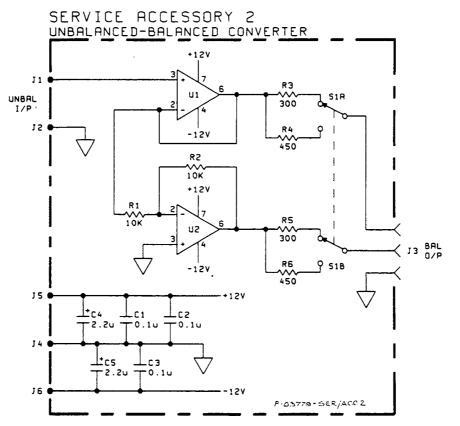
PERFORMANCE TEST

MINIMUM SPECIFICATION


Input Impedance:	$>$ 10k Ω , unbalanced.
Output Impedance:	600Ω or 900Ω , balanced.
Gain:	± 0.005dB, 40Hz – 4kHz
	\pm 0.05dB, 4kHz – 40kHz

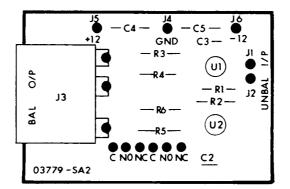
EQUIPMENT REQUIRED

Frequency Counter	HP 5328A
Dual DC Power Supply	HP 6205B
Test Oscillator	HP 654A
Digital Voltmeter	
Resistor $600\Omega \pm 0.01\%$	HP 0811-3502
Resistor 900 Ω ± 0.01%	HP 0811-3504


PROCEDURE

1. Connect the test circuit as shown below:

- 2. Set SA2 output impedance to 600Ω .
- 3. Set the Power Supply voltages to +15V and -15V and connect to the appropriate pins on SA2. Ensure that a good ground connection is made between the Power Supply and SA2.
- 4. Set the Digital Voltmeter to ACV and the Test oscillator frequency to 40Hz displayed on the Frequency Counter.
- 5. Adjust the Test Oscillator amplitude to give a reference voltage of 1.0000V displayed on the Digital Voltmeter. Press the STORE Y pushbutton on the Digital Voltmeter.
- Connect the Digital Voltmeter between one of SA2 output terminals and ground. Press the % ERROR pushbutton on the Digital Voltmeter and check that the percentage error displayed is 50 ± 0.057% (± 0.057% corresponds to ± 0.005dB).
- 7. Set SA2 output impedance to 900 Ω and connect the 900 Ω resistor across SA2 output terminal.
- 8. Repeat Steps 5 and 6.


- 9. Repeat Steps 1 to 8 with the Test Oscillator Frequency set to 4kHz. Measurement tolerances remain the same.
- Repeat steps 1 to 8 with the Test Oscillator Frequency set to 40kHz. In this case, the measurement tolerance is ± 0.577% (± 0.577% corresponds to ± 0.05dB).

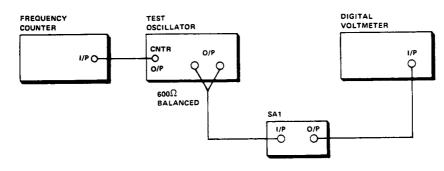
Replaceable Parts

U1 and U2 R1, R2 R3, R5 R4, R6 C1 TO C3 C4, C5 J3 S1 MSC (QTY: 5) MSC (QTY: 1)

IC OP-AMP HA2-2605-5	1826-0413
R FXD 10K 0.01% 0.05W	0811-1185
R FXD 300Ω 0.01% 0.25W	0811-3500
R FXD 450Ω 0.01% 0.25W	0811-3501
C FXD 0.1uF 20% 50V CER	0160-0576
C FXD 2.2uF 10% 20V TA	0180-0155
CONN, 3-PIN	1251-2533
SWITCH DPDT	3101-0407
CONN, SGL	1251-0600
BLANK P.C. BOARD	03779-20044

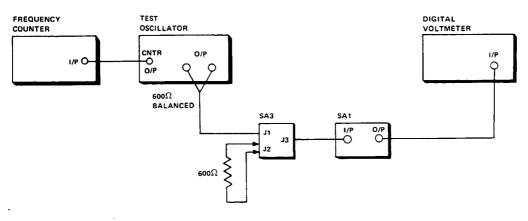
Service Accessory 3 (SA3) - Power Splitter/Adder

PERFORMANCE TEST

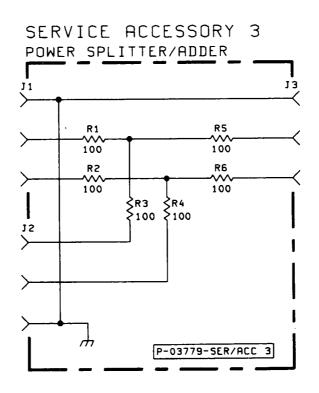

MINIMUM SPECIFICATION Characteristic Impedance: 600Ω Attenuation between any two ports: $6.02dB \pm 0.05dB$, 40Hz to 40kHz.

EQUIPMENT REQUIRED

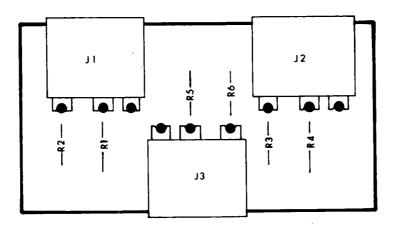
Balanced/Unbalanced Converter	IP Service Accessory 1
Frequency Counter	IP 5328A
Test Oscillator	IP 654A
Dual Dc Power Supply	
Digital Voltmeter	IP 3455A
Resistor $600\Omega \pm 0.01\%$	IP 0811-3502


PROCEDURE

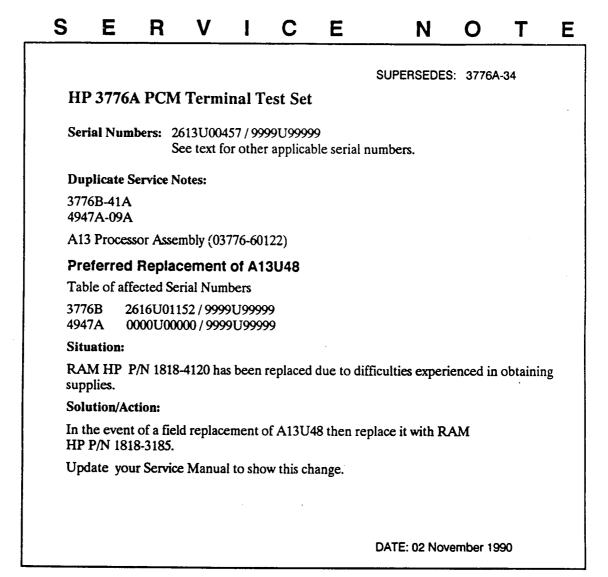
1. Connect the equipment as shown below:



- 2. Set SA1 input impedance to 600Ω .
- 3. Set the Test Oscillator FREQUENCY to 40Hz and the Digital Voltmeter to measure ACV.
- 4. Adjust the Test Oscillator OUTPUT LEVEL to give a reference voltage of 1.000V on the Digital Voltmeter. Press the STORE Y pushbutton on the Digital Voltmeter.
- 5. Connect the equipment as shown below, taking care not to disturb the Test Oscillator settings.


Test circuit 2

- 6. Press the Digital Voltmeter % ERROR pushbutton and check that the % Error displayed is within 50% ±0.58%, (±0.58% corresponds to ±0.05dB).
- 7. Repeat Step 6 with the Test Oscillator output connected to SA3J2 and SA3J1 terminated in 600Ω .
- 8. Repeat Steps 1 to 7 at 40kHz (same tolerances apply).



Replaceable Parts

R1 to R6	R FXD 100Ω 0.1% 1/8W	0698-6323
J1 to J3	CONN, 3-PIN	1251-2533
MSC (OTY: 9)	CONN, SGL	1251-0600
MSC (QTY: 1)	BLANK P.C. BOARD	03779-20045

3776A-34A

ADMINISTRATIVE INFORMATION

SERVICE NOTE CLASSIFICAT	ion:	
	INFORMA	TION ONLY
AUTHOR:	ENTITY:	ADDITIONAL INFORMATION:
ER	1400	For instruments below serial number 2613U00457: This Service Note applies where the instrument has had Service Note 3776A-26 implemented.
© 1990 HEWLETT-PACKA	RD COMPANY	

PRINTED IN U.S.A.

S	E	R	V		C	E	N	0	3776 T E
							SUPERSE	DES	None
H	IP 3776A IP 3776E IP 4947A	B PCM	Termin	al Tes	t Set	Measu	ring Set		
3	9uplicate S 776B-43 947A-10	Service N	otes:						
	erial Num e text for								
Ą	5 Transie	nts Asse	embly (0:	3776-60	005)				
P	referred F	Replacen	nent of A	5C107					
T	able of af	fected Se	erial Nun	ıbers					
	3776B 4947A	00	00U0000 00U0000	0/99991 0/99991	U99999 U99999				
Si	tuation					- ·			
Ca in:	apacitor, struments.	HP par	t numb	er 016	0-0576	has been	replaced in	curren	t production
So	lution/Ac	tion					、 ・		
In th	the event en replace	of a fie t with	ld replac capacito	ement o r HP pa	of HP pa Irt numb	er 0180-3	er 0160-0576 (C 463.	:107 on	assembly A5)
								20	lanuary 1989
							DATE		lanuary 1969

ADMINISTRATIVE INFORMATION

SERVICE NOTE CLASSIFICATION:	INFORMATION ONLY					
AUTHOR ER	ENTITY 1400	ADDITIONAL INFORMATION:	-			
©1988 HEWLETT-PACKARD COMPANY PRINTED IN U.S.A.			PACKARD			

3776A-36

S	E	R	V	1	С	Ε	· 1	N	0 -	ΓЕ
							SUPERS	EDES	Non	e
]	HP 3776	6A PCN	A Term	inal '	Fest Se	et .				
5	Serial Nui	nbers:	0000U00	000/99	99U9999	99				
ł	A7 A/D Co	nverter	& Digita	l Outp	ut Assy ((03776-6(0007)			
1	Preferre	d Repla	icemen	t of A	7Q21, 2	22				
5	Situation									
]	Fransistor	rs Q21, 2	2 have t	been re	placed	in curren	it producti	on instr	uments.	·
8	Solution/A	ction								
I t	n the eve oer 1853-0	nt of a f)314.	ield repl	laceme	nt of A	7Q21, 22	then repla	ice with	HP part	num-
							DATE	12 Fe	bruary 199	90

ADMINISTRATIVE INFORMATION

!:	· · · · · · · · · · · · · · · · · · ·
INFORMATI	ON ONLY
ENTITY:	ADDITIONAL INFORMATION:
1400	
COMPANY	
	ENTITY:

-

3776A-37

S	E	R	V	[С	Ε	N	0	Т	Ε
							SUPERSEDES		None	
,										
•	3776A P	'CM T	erminal	Tes	t Set (S	Std & (Opt 001)			
S	Serial Nun						al numbers.		· · · ·	
D	Duplicate	Service	Notes:	•						
	9776B-44 947A-12								•	
O	Opt 001 (0	3776-60	204).			·	d A204 Analog M	onitor	Assembly	
P	Preferred	l Repla	acement	of A	3U33 ai	nd A20	4U47			
			T	able o	of affecte	d Serial	Numbers			
			Model	No.			Serial Nos.			
			3776	В		0000U0	0000/99999U9999	99		
			4947	A		0000U0	0000/9999U9999	9		
									continue	ed
							DATE 05 Februa	ary 199	0	
	STRATIV	'E INFC	RMATIC)N	<u> </u>					
MINIS										
	NOTE CLASS	FICATION	4:							
	NOTE CLASS	SIFICATION		OR	MAT	ION	ONLY			
	NOTE CLASS	SIFICATION	INF		MAT	ION		FORMA	rion:	

© 1990 HEWLETT-PACKARD COMPANY PRINTED IN U.S.A.

. .

1

Page 2

Situation

IC HP Part Number 1826-0726 is being obsoleted by the suppliers.

Solution/Action

In the event of a field replacement of HP Part Number 1826-0726 (U33 on assembly A3 or U47 on assembly A204) then replace it with IC HP Part Number 1826-1013.

3776A-38

S	Ε	R	V	1	С	Е	N	0	Т	E
							SUPERSEDES	6	None	
	3776A P	CM Te	ermina	Test	Set					
5	Serial Nur	nbers: (0000 U 00	000/99	99U999	99				
1	A6 Analog	Receive	er Assem	bly (03	776-600	06)				
I	Duplicate	Service	Note: 37	76B-45	i					
1	Preferred	d Repla	icemen	t of A	6 CR3-	·6				
9	Situation									
- -	The curren	it diode i	is being c	bsolet	ed by the	e supplier	•			
S	Solution/A	ction								
	In the ever 50006) the						0376 (CR3-6 on	assemb	oly 03776-	
	·	•								
					•					
					·					
							DATE 29 May	/ 1990		

ADMINISTRATIVE INFORMATION

SERVICE NOTE CLASSIFICATION:	INFORMA	TION ONLY
AUTHOR:	ENTITY:	ADDITIONAL INFORMATION:
ER	1400	

© 1990 HEWLETT-PACKARD COMPANY PRINTED IN U.S.A.

-

· ·

3776B-41A

							SUPERSEDE	S: 3776B	-41
HI	9 3776	B PCM	[Term	inal T	'est Set	t			
Ser	ial Num	a bers: 2 S				999 ble serial	numbers.		
Du	plicate S	Service N	otes:						
	6A-34A 7A-09A	-							
A 11	3 Proce	essor Ass	embly ((3776-6	0123/4)				
Pre	ferred	i Replac	cement	t of A1	13U48				
Tab	le of af	fected Se	erial Nur	nbers:					
- · ·		613U004 000U000							
Situ	ation:								
RA sup	M HP I plies.	P/N 1818	-4120 ha	s been	replaced	due to di	fficulties exper	ienced in	obtainin
Solu	ition/Ac	tion:						-	
In ti HP	ne event P/N 181	t of a fiel 8-3185.	d replace	ement o	of A113U	J48 then r	eplace it with]	RAM	
						ange.			

ADMINISTRATIVE INFORMATION

SERVICE NOTE CLASSIFICATION	4:	
	INFORM A	TION ONLY
AUTHOR:	ENTITY:	ADDITIONAL INFORMATION: For instruments below serial number 2616U01152:
ER	1400	This Service Note applies where the instrument has had Service Note 3776B-28 implemented.

.

© 1990 HEWLETT-PACKARD COMPANY PRINTED IN U.S.A.

•	r	D	M	1	0	-		•	_	76B-4
S	E	R	<u> </u>		C	E	N	0	T	E
							SUPERSED	ES No	ne	
ΗР	3776B	РСМ Т	erminal	l Test	Set					
Seri	al Numi	bers: 000	0U00000,	/9999U	199999					
A10	2 Digita		ransmitte	r Assei	mbly					
Pret	ferred re	eplacem	ent of A1	02U309	9, 404, 40	5 & 406				
Situ	ation				•					
IC F	IP part	number	820-1997	'. has be	een replac	ed in curi	ent productio	n instrun	nents.	
Solu	ition/Ac	tion								
							1820-1997 (U 1820-2701.	309, 404.	405 & 4	06
Upd	late you	r Service	Manual t	o sh o w	v this char	nge.				

ADMINISTRATIVE INFORMATION

SERVICE NOTE CLASSIFICATION:	INFORMATION ONLY					
AUTHOR	ENTITY 1400	ADDITIONAL INFORMATION:				
© 1988 HEWLETT-PACKARD COMPANY PRINTED IN U.S.A.						

S E	• • •	R	V	1	C	Ε	N	0	377 T
							SUPER	SEDES	None
HP 37	776A F	PCM 1	Fermin Fermin mission	al Tes	t Set	Measu	ring Set		
Duplic 3776A- 4947A-	ate Ser -35						•		
Serial I See tex	Number t for o	rs: 000 ther ap	0U0000 plicable	0/99991 serial n	J999999 iumbers				
A5 Tra	nsients	s Asse	mbly (Q:	8776-60	005)				
Preferr	ed Rep	placem	ent of A	5C107					
Table o	of affec	ted Sei	rial Num	bers					
	76A 47A		000000 000000						
Situatio	n				-	-			
Capacit instrum	or, HI ents.	P part	numbe	er 0160	-0576 1	as b ee n	replaced i	n currer	nt productio
Solution	ı/Actio	n							
In the e then rep	vent of place it	f a fiel with c	d replac apacitor	ement o HP pa	of HP pa rt numb	rt number er 0180-34	· 0160-0576 63.	(C107 on	assembly A5
then rep	olace it	with c	apacitor	HP pa	rt numb	er 0180-34	63.		·
							DATE	30	January 1989

ADMINISTRATIVE INFORMATION

SERVICE NOTE CLASSIFICATION:	INFORMATION ONLY					
AUTHOR ER	ENTITY 1400	ADDITIONAL INFORMATION:				

PACKARD

. -

© 1988 HEWLETT-PACKARD COMPANY PRINTED IN U.S.A.

.

3776B-44

S	Е	R	V	I	С	E	1	1	0	т	Е
							SUPERS	EDES	;	None	
3	8776B P	CM Te	ermina	l Test	Set (S	Std & O	pt 001)				
S	Serial Nu						al numbers.				
Ľ	Duplicate	Service 1	Notes:								
	947A-37										
C	Opt 001 (0)3776-602	204).				d A204 Ana	log N	Aonito	r Assemb	ly
۲	Preferre	а неріа					4U47 Numbers				
			Mode	l No.		S	erial Nos.				
			377	6A	(0000000	000/9999U	J 999	99		
			494	7A		0000U0)000/99991	J999	99		
					·						
							DATE 05	Febr	uary 19	90	
MINIC	STRATIV		DMATIC								

ADMINISTRATIVE INFORMATION

SERVICE NOTE CLASSIFICATI	ON:	
	INFORMA	TION ONLY
AUTHOR:	ENTITY:	ADDITIONAL INFORMATION:
ER	1400	· · · ·

© 1990 HEWLETT-PACKARD COMPANY PRINTED IN U.S.A.

HEWLETT PACKARD

Situation

IC HP Part Number 1826-0726 is being obsoleted by the suppliers.

Solution/Action

In the event of a field replacement of HP Part Number 1826-0726 (U33 on assembly A3 or U47 on assembly A204) then replace it with IC HP Part Number 1826-1013.

3776B-45

S	_E	R	V		С	E	N	0 Т	E
							SUPERSEDES	None	
3	776B P	CM Te	ermina	l Test	Set				
S	erial Nur	nbers: (0000U00	000/99	99U999	99			
А	6 Analog	Receive	er Assem	bly (03	776-600	06)			
D	uplicate	Service I	Note: 37	76A-38	3				
P	referred	l Repla	cemen	t of A	6 CR3-	6			
Si	ituation						•		
Т	he currer	nt diode	is being c	obsolet	ed by th	e supplie	r.		
So	olution/A	ction							
In 03	the even 3776-6000	t of a fie 06) then	ld replac replace i	ement	of HP P HP P/N	/N 1901- 1901-003	0376 (CR3-6 on as 3.	sembly	
							DATE 29 May 199	90	

ADMINISTRATIVE INFORMATION

INFORMATION ONLY		
AUTHOR:	ENTITY:	ADDITIONAL INFORMATION:
ER	1400	
990 HEWLETT-PACKARD COMPANY ITED IN U.S.A.		HEWLET PACKAF

.

.

